Combinatorial and Spectral Properties of Graphs and Association Schemes

Total Page:16

File Type:pdf, Size:1020Kb

Combinatorial and Spectral Properties of Graphs and Association Schemes COMBINATORIAL AND SPECTRAL PROPERTIES OF GRAPHS AND ASSOCIATION SCHEMES by Matt McGinnis A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Spring 2018 c 2018 Matt McGinnis All Rights Reserved COMBINATORIAL AND SPECTRAL PROPERTIES OF GRAPHS AND ASSOCIATION SCHEMES by Matt McGinnis Approved: Louis F. Rossi, Ph.D. Chair of the Department of Mathematical Sciences Approved: George H. Watson, Ph.D. Dean of the College of Arts and Sciences Approved: Ann L. Ardis, Ph.D. Senior Vice Provost for Graduate and Professional Education I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Sebastian M. Cioab˘a,Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Robert S. Coulter, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Nayantara Bhatnager, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: William J. Martin, Ph.D. Member of dissertation committee ACKNOWLEDGEMENTS I give my greatest thanks to my advisor, Sebi. He has helped me grow as a mathematician over the past five years. His comments on previous versions of this thesis were invaluable. I could not have done this without him. Next, I would like to thank my committee members for taking an interest in my work. I truly appreciate the time they took to look at this dissertation and the advice they had to offer. I would also like to thank all the wonderful friends I made while in graduate school. I never would have lasted this long without you all to laugh and complain with. Finally, I would like to thank my family (Mom, Dad, Molly and Brooke). With- out their love and support none of this would have been possible. iv TABLE OF CONTENTS LIST OF TABLES :::::::::::::::::::::::::::::::: vii LIST OF FIGURES ::::::::::::::::::::::::::::::: viii ABSTRACT ::::::::::::::::::::::::::::::::::: x Chapter 1 INTRODUCTION :::::::::::::::::::::::::::::: 1 1.1 Algebraic Combinatorics ::::::::::::::::::::::::: 1 1.2 Definitions, Notations and Basic Graph Theory :::::::::::: 3 1.3 Spectra of Graphs ::::::::::::::::::::::::::::: 9 1.4 Strongly Regular Graphs, Distance-Regular Graphs and Association Schemes :::::::::::::::::::::::::::::::::: 16 1.4.1 Strongly regular graphs :::::::::::::::::::::: 17 1.4.2 Association schemes ::::::::::::::::::::::: 18 1.4.3 Distance-regular graphs ::::::::::::::::::::: 22 2 THE SMALLEST EIGENVALUES OF HAMMING GRAPHS AND JOHNSON GRAPHS :::::::::::::::::::::::: 25 2.1 The Hamming Association Scheme ::::::::::::::::::: 26 2.1.1 The graphs in the Hamming scheme ::::::::::::::: 26 2.1.2 Krawtchouk polynomials ::::::::::::::::::::: 27 2.2 The Johnson Association Scheme :::::::::::::::::::: 33 2.2.1 The graphs in the Johnson scheme ::::::::::::::: 33 2.2.2 Eberlein polynomials ::::::::::::::::::::::: 34 2.3 The Max-Cut Problem :::::::::::::::::::::::::: 41 2.4 Distance-j Hamming Graphs ::::::::::::::::::::::: 46 v 2.5 Distance-j Johnson Graphs ::::::::::::::::::::::: 53 2.6 Open Problems :::::::::::::::::::::::::::::: 61 3 COSPECTRAL MATES FOR GRAPHS IN THE JOHNSON ASSOCIATION SCHEME ::::::::::::::::::::::::: 63 3.1 Godsil-McKay Switching and Cospectral Graphs :::::::::::: 64 3.2 Spectral Characterization of Graphs in the Johnson Scheme ::::: 68 3.3 J(n; 2k + 1;S) where S = f0; 1; : : : ; kg ::::::::::::::::: 72 3.4 J(3m − 2k − 1; m; S) where S = f0; : : : ; kg ::::::::::::::: 75 3.5 Relation to Previous Work :::::::::::::::::::::::: 78 3.5.1 Relation to Kneser graphs and Johnson graphs ::::::::: 78 3.5.2 Vertices containing [m − 2] as a possible switching set ::::: 79 3.6 Computational Results :::::::::::::::::::::::::: 80 3.7 Open Problems :::::::::::::::::::::::::::::: 83 4 CONNECTIVITY OF SOME GRAPHS IN ASSOCIATION SCHEMES :::::::::::::::::::::::::::::::::: 84 4.1 Some Conjectures of Brouwer and Godsil :::::::::::::::: 84 4.2 Connectivity of Graphs in Association Schemes :::::::::::: 85 4.3 Disconnecting Distance-Regular Graphs into Nonsingleton Components by Removing Edges :::::::::::::::::::: 87 4.4 The Grassmann Graphs and Twisted Grassmann Graphs ::::::: 97 4.5 Edge-Connectivity of Distance-j Twisted Grassmann Graphs ::::: 100 4.6 Open Problems :::::::::::::::::::::::::::::: 102 4.6.1 Conjecture 4.1.3 and Conjecture 4.1.4 :::::::::::::: 102 4.6.2 Vertex-connectivity of graphs in association schemes :::::: 102 4.6.3 Disconnecting distance-regular graphs into nonsingleton components by removing vertices :::::::::::::::: 103 BIBLIOGRAPHY :::::::::::::::::::::::::::::::: 107 vi LIST OF TABLES 3.1 Switching sets checked for in J(n; m; S) with m = 3 ::::::::: 82 3.2 Switching sets checked for in J(n; m; S) with m = 4 ::::::::: 82 3.3 Switching sets checked for in J(n; m; S) with m = 5 ::::::::: 82 4.1 Cubic distance-regular graphs of diameter at least three :::::: 90 vii LIST OF FIGURES 1.1 The graphs P3 and C6 ::::::::::::::::::::::::: 4 1.2 The complements of P3 and C6 :::::::::::::::::::: 6 1.3 The graphs K4 and K3;3 :::::::::::::::::::::::: 7 1.4 Graph isomorphism example :::::::::::::::::::::: 7 1.5 Cartesian product K2 K2 :::::::::::::::::::::: 8 1.6 Two nonisomorphic graphs with spectrum f2(1); 0(3); (−2)(1)g :::: 16 1.7 The graphs C5 and J(5; 2) ::::::::::::::::::::::: 17 2.1 Hamming scheme H(3; 2) ::::::::::::::::::::::: 27 2.2 H(4; 3; 1) with the first eigenmatrix of H(4; 3) :::::::::::: 33 2.3 Johnson scheme J (5; 2) :::::::::::::::::::::::: 34 2.4 J(7; 3; 1) with the first eigenmatrix of J (7; 3) :::::::::::: 40 2.5 Max-Cut visualization ::::::::::::::::::::::::: 41 3.1 GM-switching produces a nonisomorphic graph ::::::::::: 66 3.2 GM-switching produces an isomorphic graph ::::::::::::: 67 3.3 GM-switching on a regular graph ::::::::::::::::::: 67 3.4 Switching sets for the Chang graphs from J(8; 2) :::::::::: 68 3.5 Example of GM-switching on J(7; 3) ::::::::::::::::: 70 3.6 Example of GM-switching on K(8; 3) ::::::::::::::::: 71 viii 3.7 Example of GM-switching on J(11; 5; f0; 1; 2g) :::::::::::: 73 3.8 Example of GM-switching on J(9; 4; f0; 1g) :::::::::::::: 76 4.1 Taylor graph with local graph Sp(2r; 2) :::::::::::::::: 105 ix ABSTRACT The main topics of this dissertation are related to spectral graph theory, a subtopic of algebraic combinatorics. Algebraic combinatorics is the area of mathemat- ics that implements techniques from linear and abstract algebra to solve problems in combinatorics as well as techniques from combinatorics to study algebraic structures. Spectral graph theory focuses on the study of the eigenvalues associated with various matrices for a graph and how the eigenvalues relate to structural properties of the graph. Properties such as connectedness, diameter, independence number, chromatic number and regularity, among others, are all related to the spectrum of a graph. In this dissertation we will study the spectra of various graphs and incorporate well known techniques in spectral graph theory to gain a better understanding of the structure of these graphs. We focus on three topics (Chapters2,3 and4). The variation of these topics reinforces how diverse and useful spectral techniques in graph theory can be. In Chapter1 we cover notation and basic definitions used throughout this disser- tation. We also introduce some well known and powerful results relating the structural properties of a graph to its spectrum. This includes a discussion of the properties of graphs that can be established from the spectrum as well as which graphs are deter- mined by their spectrum. Finally, we give definitions and basic results for association schemes and distance-regular graphs since the results of this dissertation are related to these structures. In Chapter2 we study the smallest eigenvalues for distance- j graphs in both the Hamming and Johnson association schemes. Our results for distance-j Hamming graphs settle a conjecture proposed by Van Dam and Sotirov in [29]. In fact, we reach a stronger conclusion than the one proposed by Van Dam and Sotirov. Our results for x distance-j Johnson graphs settle a conjecture proposed by Karloff in [46]. Again, we are able to obtain a stronger conslusion than what is presented in Karloff's conjecture. In Chapter3 we use the technique of Godsil-McKay switching to construct cospectral mates for graphs formed by taking the union of relations in the Johnson association scheme. Our results offer insight into which graphs in this scheme are not determined by their spectrum. Our work also unifies the switching sets previously found for Johnson graphs in [26] and Kneser graphs in [43]. We also present some open problems related to our work, including a switching set that we would like to see generalized in order to obtain a new infinite family of graphs in the Johnson scheme that are not determined by their spectrum. In Chapter4 we examine connectivity properties of distance-regular
Recommended publications
  • The Determining Number of Kneser Graphs José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas
    The determining number of Kneser graphs José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas To cite this version: José Cáceres, Delia Garijo, Antonio González, Alberto Márquez, Marıa Luz Puertas. The determining number of Kneser graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 1 (1), pp.1–14. hal-00990602 HAL Id: hal-00990602 https://hal.inria.fr/hal-00990602 Submitted on 13 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 15:1, 2013, 1–14 The determining number of Kneser graphsy Jose´ Caceres´ 1z Delia Garijo2x Antonio Gonzalez´ 2{ Alberto Marquez´ 2k Mar´ıa Luz Puertas1∗∗ 1 Department of Statistics and Applied Mathematics, University of Almeria, Spain. 2 Department of Applied Mathematics I, University of Seville, Spain. received 21st December 2011, revised 19th December 2012, accepted 19th December 2012. A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G is the minimum cardinality of a determining set of G.
    [Show full text]
  • Strongly Regular and Pseudo Geometric Graphs
    Strongly regular and pseudo geometric graphs M. Mitjana 1;2 Departament de Matem`atica Aplicada I Universitat Polit`ecnica de Catalunya Barcelona, Spain E. Bendito, A.´ Carmona, A. M. Encinas 1;3 Departament de Matem`atica Aplicada III Universitat Polit`ecnica de Catalunya Barcelona, Spain Abstract Very often, strongly regular graphs appear associated with partial geometries. The point graph of a partial geometry is the graph whose vertices are the points of the geometry and adjacency is defined by collinearity. It is well known that the point graph associated to a partial geometry is a strongly regular graph and, in this case, the strongly regular graph is named geometric. When the parameters of a strongly regular graph, Γ, satisfy the relations of a geometric graph, then Γ is named a pseudo geometric graph. Moreover, it is known that not every pseudo geometric graph is geometric. In this work, we characterize strongly regular graphs that are pseudo geometric and we analyze when the complement of a pseudo geometric graph is also pseudo geometric. Keywords: Strongly regular graph, partial geometry, pseudo geometric graph. 1 Strongly regular graphs A strongly regular graph with parameters (n; k; λ, µ) is a graph on n vertices which is regular of degree k, any two adjacent vertices have exactly λ common neighbours and two non{adjacent vertices have exactly µ common neighbours. We recall that antipodal strongly regular graphs are characterized by sat- isfying µ = k, or equivalently λ = 2k − n, which in particular implies that 2k ≥ n. In addition, any bipartite strongly regular graph is antipodal and it is characterized by satisfying µ = k and n = 2k.
    [Show full text]
  • Strongly Regular Graphs
    Chapter 4 Strongly Regular Graphs 4.1 Parameters and Properties Recall that a (simple, undirected) graph is regular if all of its vertices have the same degree. This is a strong property for a graph to have, and it can be recognized easily from the adjacency matrix, since it means that all row sums are equal, and that1 is an eigenvector. If a graphG of ordern is regular of degreek, it means that kn must be even, since this is twice the number of edges inG. Ifk�n− 1 and kn is even, then there does exist a graph of ordern that is regular of degreek (showing that this is true is an exercise worth thinking about). Regularity is a strong property for a graph to have, and it implies a kind of symmetry, but there are examples of regular graphs that are not particularly “symmetric”, such as the disjoint union of two cycles of different lengths, or the connected example below. Various properties of graphs that are stronger than regularity can be considered, one of the most interesting of which is strong regularity. Definition 4.1.1. A graphG of ordern is called strongly regular with parameters(n,k,λ,µ) if every vertex ofG has degreek; • ifu andv are adjacent vertices ofG, then the number of common neighbours ofu andv isλ (every • edge belongs toλ triangles); ifu andv are non-adjacent vertices ofG, then the number of common neighbours ofu andv isµ; • 1 k<n−1 (so the complete graph and the null graph ofn vertices are not considered to be • � strongly regular).
    [Show full text]
  • ISOMETRIC SUBGRAPHS of HAMMING GRAPHS and D-CONVEXITY
    4. K.V. Rudakov, "Completeness and universal constraints in the problem of correction of heuristic classification algorithms," Kibernetika, No, 3, 106-109 (1987). 5. K.V. Rudakov, "Symmetry and function constraints in the problem of correction of heur- istic classification algorithms," Kibernetika, No. 4, 74-77 (1987). 6. K.V. Rudakov, On Some Classes of Recognition Algorithms (General Results) [in Russian], VTs AN SSSR, Moscow (1980). ISOMETRIC SUBGRAPHS OF HAMMING GRAPHS AND d-CONVEXITY V. D. Chepoi UDC 519.176 In this study, we provide criteria of isometric embeddability of graphs in Hamming graphs. We consider ordinary connected graphs with a finite vertex set endowed with the natural metric d(x, y), equal to the number of edges in the shortest chain between the ver- tices x and y. Let al,...,a n be natural numbers. The Hamming graph Hal...a n is the graph with the ver- tex set X = {x = (x l..... xn):l~xi~a~, ~ = l,...n} in which two vertices are joined by an edge if and only if the corresponding vectors differ precisely in one coordinate [i, 2]. In other words, the graph Hal...a n is the Cartesian product of the graphs Hal,...,Han, where Hal is the ai-vertex complete graph. It is easy to show that in the Hamming graph the distance d(x, y) between the vertices x, y is equal to the number of different pairs of coordinates in the tuples corresponding to these vertices, i.e., it is equal to the Hamming distance between these tuples. It is also easy to show that the graph of the n-dimensional cube Qn may be treated as the Hamming graph H2..
    [Show full text]
  • Towards a Classification of Distance-Transitive Graphs
    数理解析研究所講究録 1063 巻 1998 年 72-83 72 Towards a classification of distance-transitive graphs John van Bon Abstract We outline the programme of classifying all finite distance-transitive graphs. We men- tion the most important classification results obtained so far and give special attention to the so called affine graphs. 1. Introduction The graphs in this paper will be always assumed to be finite, connected, undirected and without loops or multiple edges. The edge set of a graph can thus be identified with a subset of the set of unoidered pairs of vertices. Let $\Gamma=(V\Gamma, E\Gamma)$ be a graph and $x,$ $y\in V\Gamma$ . With $d(x, y)$ we will denote the usual distance $\Gamma$ in between the vertices $x$ and $y$ (i.e., the length of the shortest path connecting $x$ and $y$ ) and with $d$ we will denote the diameter of $\Gamma$ , the maximum of all possible values of $d(x, y)$ . Let $\Gamma_{i}(x)=\{y|y\in V\Gamma, d(x, y)=i\}$ be the set of all vertices at distance $i$ of $x$ . An $aut_{omo}rph7,sm$ of a graph is a permutation of the vertex set that maps edges to edges. Let $G$ be a group acting on a graph $\Gamma$ (i.e. we are given a morphism $Garrow Aut(\Gamma)$ ). For a $x\in V\Gamma$ $x^{g}$ vertex and $g\in G$ the image of $x$ under $g$ will be denoted by . The set $\{g\in G|x^{g}=x\}$ is a subgroup of $G$ , called that stabilizer in $G$ of $x$ and will be denoted by $G_{x}$ .
    [Show full text]
  • On the Classification of Locally Hamming Distance-Regular Graphs
    数理解析研究所講究録 第 76850巻 1991 年 50-61 On the Classification of Locally Hamming Distance-Regular Graphs BY MAKOTO MATSUMOTO Abstract. A distance-regular graph is locally Hamming if it is locally isomorphic to a Hamming scheme $H(r, 2)$ . This paper rediscovers the connection among locally Ham- ming distance-regular graphs, designs, and multiply transitive permutation groups, through which we classify some of locally Hamming distance-transitive graphs. \S 1. Introduction. By a graph we shall mean a finite undirected graph with no loops and no multiple edges. For a graph $G,$ $V(G)$ denotes the vertex set and $E(G)$ denotes the edge set of $G$ . For a vertex $v$ of a graph $G,$ $N(v)$ denotes the set of adjacent vertices with $v$ . By $\ovalbox{\tt\small REJECT}_{2}$ we denote the two-element field, and by $H(r)$ we denote the r-dimensional Hamming scheme for $r\geq 1$ ; that is, $H(r)$ is such a graph that its vertex set is the $\#_{2}^{=r}$ vector space a,nd $\tau\iota,$ $v\in\#_{2}^{=r}$ are adjacent if and only if the Hamming distance $d(u, v)=1$ ; i.e., $\#\{i u_{i}\neq v_{i}\}=1$ where $u=(u_{1}, \ldots u_{r})$ and $v=(v_{1}, \ldots , v_{r})$ . The graph obtained from $H(r)$ by identifying antipodal points is called a folded Hamming sheme(or a folded Hamming cube in [3, p.140]). The graph $H(3)$ is called a cube, and the induced subgraph obtained by removing one vertex tog$e$ ther with the three incident edges from a cube is called a tulip.
    [Show full text]
  • The Vertex Isoperimetric Problem on Kneser Graphs
    The Vertex Isoperimetric Problem on Kneser Graphs UROP+ Final Paper, Summer 2015 Simon Zheng Mentor: Brandon Tran Project suggested by: Brandon Tran September 1, 2015 Abstract For a simple graph G = (V; E), the vertex boundary of a subset A ⊆ V consists of all vertices not in A that are adjacent to some vertex in A. The goal of the vertex isoperimetric problem is to determine the minimum boundary size of all vertex subsets of a given size. In particular, define µG(r) as the minimum boundary size of all vertex subsets of G of size r. Meanwhile, the vertex set of the Kneser graph KGn;k is the set of all k-element subsets of f1; 2; : : : ; ng, and two vertices are adjacent if their correspond- ing sets are disjoint. The main results of this paper are to compute µG(r) for small and n 1 n−12 large values of r, and to prove the general lower bound µG(r) ≥ k − r k−1 −r when G = KGn;k. We will also survey the vertex isoperimetric problem on a closely related class of graphs called Johnson graphs and survey cross-intersecting families, which are closely related to the vertex isoperimetric problem on Kneser graphs. 1 1 Introduction The classical isoperimetric problem on the plane asks for the minimum perimeter of all closed curves with a fixed area. The ancient Greeks conjectured that a circle achieves the minimum boundary, but this was not rigorously proven until the 19th century using tools from analysis. There are two discrete versions of this problem in graph theory: the vertex isoperimetric problem and the edge isoperimetric problem.
    [Show full text]
  • The Graphs of Häggkvist and Hell
    The Graphs of H¨aggkvist and Hell by David E. Roberson A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Combinatorics & Optimization Waterloo, Ontario, Canada, 2008 c David E. Roberson 2008 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract This thesis investigates H¨aggkvist & Hell graphs. These graphs are an ex- tension of the idea of Kneser graphs, and as such share many attributes with them. A variety of original results on many different properties of these graphs are given. We begin with an examination of the transitivity and structural properties of H¨aggkvist & Hell graphs. Capitalizing on the known results for Kneser graphs, the exact values of girth, odd girth, and diameter are derived. We also discuss subgraphs of H¨aggkvist & Hell graphs that are isomorphic to subgraphs of Kneser graphs. We then give some background on graph homomorphisms before giving some explicit homomorphisms of H¨aggkvist & Hell graphs that motivate many of our results. Using the theory of equitable partitions we compute some eigenvalues of these graphs. Moving on to independent sets we give several bounds including the ratio bound, which is computed using the least eigenvalue. A bound for the chromatic number is given using the homomorphism to the Kneser graphs, as well as a recursive bound.
    [Show full text]
  • The Extendability of Matchings in Strongly Regular Graphs
    The extendability of matchings in strongly regular graphs Sebastian M. Cioab˘a∗ Weiqiang Li Department of Mathematical Sciences Department of Mathematical Sciences University of Delaware University of Delaware Newark, DE 19707-2553, U.S.A. Newark, DE 19707-2553, U.S.A. [email protected] [email protected] Submitted: Feb 25, 2014; Accepted: Apr 29, 2014; Published: May 13, 2014 Mathematics Subject Classifications: 05E30, 05C50, 05C70 Abstract A graph G of even order v is called t-extendable if it contains a perfect matching, t < v=2 and any matching of t edges is contained in some perfect matching. The extendability of G is the maximum t such that G is t-extendable. In this paper, we study the extendability properties of strongly regular graphs. We improve previous results and classify all strongly regular graphs that are not 3-extendable. We also show that strongly regular graphs of valency k > 3 with λ > 1 are bk=3c-extendable k+1 (when µ 6 k=2) and d 4 e-extendable (when µ > k=2), where λ is the number of common neighbors of any two adjacent vertices and µ is the number of common neighbors of any two non-adjacent vertices. Our results are close to being best pos- sible as there are strongly regular graphs of valency k that are not dk=2e-extendable. We show that the extendability of many strongly regular graphs of valency k is at least dk=2e − 1 and we conjecture that this is true for all primitive strongly regular graphs. We obtain similar results for strongly regular graphs of odd order.
    [Show full text]
  • On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
    On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G.
    [Show full text]
  • Spreads in Strongly Regular Graphs Haemers, W.H.; Touchev, V.D
    Tilburg University Spreads in strongly regular graphs Haemers, W.H.; Touchev, V.D. Published in: Designs Codes and Cryptography Publication date: 1996 Link to publication in Tilburg University Research Portal Citation for published version (APA): Haemers, W. H., & Touchev, V. D. (1996). Spreads in strongly regular graphs. Designs Codes and Cryptography, 8, 145-157. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. sep. 2021 Designs, Codes and Cryptography, 8, 145-157 (1996) 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Spreads in Strongly Regular Graphs WILLEM H. HAEMERS Tilburg University, Tilburg, The Netherlands VLADIMIR D. TONCHEV* Michigan Technological University, Houghton, M149931, USA Communicated by: D. Jungnickel Received March 24, 1995; Accepted November 8, 1995 Dedicated to Hanfried Lenz on the occasion of his 80th birthday Abstract. A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound).
    [Show full text]
  • Dynamic Cage Survey
    Dynamic Cage Survey Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, U.S.A. [email protected] Robert Jajcay Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809, U.S.A. [email protected] Department of Algebra Comenius University Bratislava, Slovakia [email protected] Submitted: May 22, 2008 Accepted: Sep 15, 2008 Version 1 published: Sep 29, 2008 (48 pages) Version 2 published: May 8, 2011 (54 pages) Version 3 published: July 26, 2013 (55 pages) Mathematics Subject Classifications: 05C35, 05C25 Abstract A(k; g)-cage is a k-regular graph of girth g of minimum order. In this survey, we present the results of over 50 years of searches for cages. We present the important theorems, list all the known cages, compile tables of current record holders, and describe in some detail most of the relevant constructions. the electronic journal of combinatorics (2013), #DS16 1 Contents 1 Origins of the Problem 3 2 Known Cages 6 2.1 Small Examples . 6 2.1.1 (3,5)-Cage: Petersen Graph . 7 2.1.2 (3,6)-Cage: Heawood Graph . 7 2.1.3 (3,7)-Cage: McGee Graph . 7 2.1.4 (3,8)-Cage: Tutte-Coxeter Graph . 8 2.1.5 (3,9)-Cages . 8 2.1.6 (3,10)-Cages . 9 2.1.7 (3,11)-Cage: Balaban Graph . 9 2.1.8 (3,12)-Cage: Benson Graph . 9 2.1.9 (4,5)-Cage: Robertson Graph . 9 2.1.10 (5,5)-Cages .
    [Show full text]