New Roles in Immune Tolerance and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Maintenance of Self-Renewal Ability of Mouse Embryonic Stem Cells in The
MaintenanceBlackwellMalden,GTCGenes1365-2443©?117OriginalDnmt1/3a/3bA 2006 TsumuraBlackwell to USA ArticleCells Publishing et Publishing al. triple knockoutInc Ltd ES cells of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b Akiko Tsumura1,4, Tomohiro Hayakawa2, Yuichi Kumaki3,6, Shin-ichiro Takebayashi1, Morito Sakaue1, Chisa Matsuoka1, Kunitada Shimotohno4, Fuyuki Ishikawa5, En Li7, Hiroki R. Ueda3, Jun-ichi Nakayama2 and Masaki Okano1,* 1Laboratory for Mammalian Epigenetic Studies, 2Laboratory for Chromatin Dynamics, and 3Laboratory for Systems Biology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan 4Department of Viral Oncology, Institute for Virus Research, Kyoto University, 53 Kawaharacho, Shogoin, Sakyo-ku, Kyoto 606-8501, Japan 5Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan 6INTEC Web and Genome Informatics Corp., 1-3-3 Shinsuna, Koto-ku, Tokyo 136-8637, Japan 7Epigenetics Program, Novartis Institute for Biomedical Research, 250 Massachusetts Ave., Cambridge, MA 02139, USA DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1–/– or Dnmt3a–/–Dnmt3b–/– ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights Into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
animals Article Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle Masoumeh Naserkheil 1 , Abolfazl Bahrami 1 , Deukhwan Lee 2,* and Hossein Mehrban 3 1 Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; [email protected] (M.N.); [email protected] (A.B.) 2 Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea 3 Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran; [email protected] * Correspondence: [email protected]; Tel.: +82-31-670-5091 Received: 25 August 2020; Accepted: 6 October 2020; Published: 9 October 2020 Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. -
TASOR Is a Pseudo-PARP That Directs HUSH Complex Assembly and Epigenetic Transposon Control
Lawrence Berkeley National Laboratory Recent Work Title TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control. Permalink https://escholarship.org/uc/item/6021r2cd Journal Nature communications, 11(1) ISSN 2041-1723 Authors Douse, Christopher H Tchasovnikarova, Iva A Timms, Richard T et al. Publication Date 2020-10-02 DOI 10.1038/s41467-020-18761-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE https://doi.org/10.1038/s41467-020-18761-6 OPEN TASOR is a pseudo-PARP that directs HUSH complex assembly and epigenetic transposon control Christopher H. Douse 1,4,9, Iva A. Tchasovnikarova2,5,9, Richard T. Timms 2,9, Anna V. Protasio 2,6, Marta Seczynska2, Daniil M. Prigozhin 1,7, Anna Albecka1,2,8, Jane Wagstaff3, James C. Williamson2, ✉ ✉ Stefan M. V. Freund3, Paul J. Lehner 2 & Yorgo Modis 1,2 1234567890():,; The HUSH complex represses retroviruses, transposons and genes to maintain the integrity of vertebrate genomes. HUSH regulates deposition of the epigenetic mark H3K9me3, but how its three core subunits — TASOR, MPP8 and Periphilin — contribute to assembly and targeting of the complex remains unknown. Here, we define the biochemical basis of HUSH assembly and find that its modular architecture resembles the yeast RNA-induced tran- scriptional silencing complex. TASOR, the central HUSH subunit, associates with RNA pro- cessing components. TASOR is required for H3K9me3 deposition over LINE-1 repeats and repetitive exons in transcribed genes. In the context of previous studies, this suggests that an RNA intermediate is important for HUSH activity. We dissect the TASOR and MPP8 domains necessary for transgene repression. -
The H3K9 Methylation Writer SETDB1 and Its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells
G C A T T A C G G C A T genes Article The H3K9 Methylation Writer SETDB1 and Its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells 1,2,3,4 1 1, 1 Paola Cruz-Tapias , Philippe Robin , Julien Pontis y, Laurence Del Maestro and Slimane Ait-Si-Ali 1,* 1 Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Université Paris Diderot, F-75013 Paris, France; [email protected] (P.C.-T.); [email protected] (P.R.); julien.pontis@epfl.ch (J.P.); [email protected] (L.D.M.) 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia 3 School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia 4 Doctoral Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá 111221, Colombia * Correspondence: [email protected]; Tel.: +33-(0)1-5727-8919 Current: Ecole Polytechnique Fédérale de Lausanne (EPFL), SV LVG Station 19, 1015 Lausanne, Switzerland. y Received: 25 August 2019; Accepted: 24 September 2019; Published: 25 September 2019 Abstract: SETDB1 (SET Domain Bifurcated histone lysine methyltransferase 1) is a key lysine methyltransferase (KMT) required in embryonic stem cells (ESCs), where it silences transposable elements and DNA repeats via histone H3 lysine 9 tri-methylation (H3K9me3), independently of DNA methylation. The H3K9 methylation reader M-Phase Phosphoprotein 8 (MPP8) is highly expressed in ESCs and germline cells. Although evidence of a cooperation between H3K9 KMTs and MPP8 in committed cells has emerged, the interplay between H3K9 methylation writers and MPP8 in ESCs remains elusive. -
Specificity, Propagation, and Memory of Pericentric Heterochromatin
Article Specificity, propagation, and memory of pericentric heterochromatin Katharina Müller-Ott1, Fabian Erdel1, Anna Matveeva2, Jan-Philipp Mallm1, Anne Rademacher1, Matthias Hahn3, Caroline Bauer1, Qin Zhang2, Sabine Kaltofen1,†, Gunnar Schotta3, Thomas Höfer2 & Karsten Rippe1,* Abstract (Berger et al, 2009). These chromatin signals in turn recruit archi- tectural chromatin components or chromatin remodeling factors in The cell establishes heritable patterns of active and silenced chro- a highly dynamic manner and regulate genome access (McBryant matin via interacting factors that set, remove, and read epigenetic et al, 2006; Taverna et al, 2007; Campos & Reinberg, 2009; Clapier marks. To understand how the underlying networks operate, we & Cairns, 2009; Erdel et al, 2011a). On a global scale, the concerted have dissected transcriptional silencing in pericentric heterochro- and targeted activity of these networks results in the formation of matin (PCH) of mouse fibroblasts. We assembled a quantitative the denser, transcriptionally repressed heterochromatin state and map for the abundance and interactions of 16 factors related to the more open and biologically active euchromatin, which can be PCH in living cells and found that stably bound complexes of the distinguished at the resolution of the light microscope (Grewal & histone methyltransferase SUV39H1/2 demarcate the PCH state. Jia, 2007; Eissenberg & Reuter, 2009). A prototypic example for a From the experimental data, we developed a predictive mathe- constitutive heterochromatin domain is pericentric heterochromatin matical model that explains how chromatin-bound SUV39H1/2 (PCH) in mouse cells (Probst & Almouzni, 2008). It is characterized complexes act as nucleation sites and propagate a spatially by its high content of repetitive major satellite repeats and repres- confined PCH domain with elevated histone H3 lysine 9 trimethyla- sive epigenetic marks such as 5-methylcytosine (5meC) the binding tion levels via chromatin dynamics. -
The Conserved DNMT1-Dependent Methylation Regions in Human Cells
Freeman et al. Epigenetics & Chromatin (2020) 13:17 https://doi.org/10.1186/s13072-020-00338-8 Epigenetics & Chromatin RESEARCH Open Access The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure Dana M. Freeman1 , Dan Lou1, Yanqiang Li1, Suzanne N. Martos1 and Zhibin Wang1,2,3* Abstract Background: Allele-specifc DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The signifcance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-tradi- tional ASMs are sensitive to exposures in association with human disease. Results: We frst explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal develop- ment and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identifed regions were diferentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegenera- tion. -
Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients. -
H19 Lncrna Controls Gene Expression of the Imprinted Gene Network by Recruiting MBD1
H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1 Paul Monniera,b, Clémence Martineta, Julien Pontisc, Irina Stanchevad, Slimane Ait-Si-Alic, and Luisa Dandoloa,1 aGenetics and Development Department, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8104, University Paris Descartes, Institut Cochin, Paris 75014, France; bUniversity Paris Pierre and Marie Curie, Paris 75005, France; cUniversity Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris 75013, France; and dWellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Edited by Marisa Bartolomei, University of Pennsylvania, Philadelphia, PA, and accepted by the Editorial Board November 11, 2013 (received for review May 30, 2013) The H19 gene controls the expression of several genes within the this control is transcriptional or posttranscriptional and whether Imprinted Gene Network (IGN), involved in growth control of the these nine targets are direct or indirect targets remain elusive. embryo. However, the underlying mechanisms of this control re- Several lncRNAs interact with chromatin-modifying com- main elusive. Here, we identified the methyl-CpG–binding domain plexes and appear to exert a transcriptional control by targeting fi protein 1 MBD1 as a physical and functional partner of the H19 local chromatin modi cations at discrete genomic regions (8, 9). long noncoding RNA (lncRNA). The H19 lncRNA–MBD1 complex is In the case of imprinted clusters, the DMRs controlling the ex- fi pression of imprinted genes exhibit parent-of-origin epigenetic required for the control of ve genes of the IGN. -
Gene Expression Responses to DNA Damage Are Altered in Human Aging and in Werner Syndrome
Oncogene (2005) 24, 5026–5042 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc Gene expression responses to DNA damage are altered in human aging and in Werner Syndrome Kasper J Kyng1,2, Alfred May1, Tinna Stevnsner2, Kevin G Becker3, Steen Klvra˚ 4 and Vilhelm A Bohr*,1 1Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA; 2Danish Center for Molecular Gerontology, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark; 3Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; 4Institute for Human Genetics, University of Aarhus, Denmark The accumulation of DNA damage and mutations is syndromes, caused by heritable mutations inactivating considered a major cause of cancer and aging. While it is proteins that sense or repair DNA damage, which known that DNA damage can affect changes in gene accelerate some but not all signs of normal aging (Hasty expression, transcriptional regulation after DNA damage et al., 2003). Age is associated withan increase in is poorly understood. We characterized the expression of susceptibility to various forms of stress, and sporadic 6912 genes in human primary fibroblasts after exposure to reports suggest that an age-related decrease in DNA three different kinds of cellular stress that introduces repair may increase the susceptibility of cells to agents DNA damage: 4-nitroquinoline-1-oxide (4NQO), c-irra- causing DNA damage. Reduced base excision repair has diation, or UV-irradiation. Each type of stress elicited been demonstrated in nuclear extracts from aged human damage specific gene expression changes of up to 10-fold. -
Amplified Fragments of an Autosome-Borne Gene
G C A T T A C G G C A T genes Article Amplified Fragments of an Autosome-Borne Gene Constitute a Significant Component of the W Sex Chromosome of Eremias velox (Reptilia, Lacertidae) Artem Lisachov 1,2,* , Daria Andreyushkova 3, Guzel Davletshina 2,3, Dmitry Prokopov 3 , Svetlana Romanenko 3 , Svetlana Galkina 4 , Alsu Saifitdinova 5 , Evgeniy Simonov 1, Pavel Borodin 2,6 and Vladimir Trifonov 3,6 1 Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia; [email protected] 2 Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; [email protected] (G.D.); [email protected] (P.B.) 3 Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; [email protected] (D.A.); [email protected] (D.P.); [email protected] (S.R.); [email protected] (V.T.) 4 Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint Petersburg, Russia; [email protected] 5 Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, Moyka Emb. 48, 191186 Saint Petersburg, Russia; saifi[email protected] 6 Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia Citation: Lisachov, A.; * Correspondence: [email protected] Andreyushkova, D.; Davletshina, G.; Prokopov, D.; Romanenko, S.; Abstract: Heteromorphic W and Y sex chromosomes often experience gene loss and heterochroma- Galkina, S.; Saifitdinova, A.; Simonov, tinization, which is frequently viewed as their “degeneration”. -
MBD1 Antibody
BioVision 09/14 For research use only MBD1 Antibody ChIP assays were performed using U2OS cells and the antibody and ALTERNATE NAMES: CXXC3, PCM1, RFT, Methyl-CpG-Binding Domain 1 optimized PCR primer sets for qPCR. Beads only were used as a negative CATALOG #: 6828-25 control. The Fig shows the recovery, expressed as a % of input (the relative AMOUNT: 25 µg amount of IP DNA compared to input DNA after qPCR analysis). HOST/ISOTYPE: Rabbit IMMUNOGEN: MBD1 (Methyl-CpG-binding domain protein 1) synthetic peptide containing a sequence from the N-terminal conjugated to KLH FORM: Liquid FORMULATION: In PBS containing 0.05% azide and 0.05% ProClin 300. PURIFICATION: Affinity purified SPECIES REACTIVITY: Human. STORAGE CONDITIONS: Store at -20°C; for long storage, store at -80°C. Avoid multiple freeze-thaw cycles. To determine the titer, an ELISA was performed using a serial dilution of the DESCRIPTION: MBD1 is a transcriptional repressor that specifically binds to methylated antibody. The antigen used was a CpG dinucleotides in promoter sequences. MBD1 acts by recruiting a variety of histone peptide containing the histone deacetylases (HDAC’s) and chromatin remodelling factors. MBD1-dependent transcriptional modification of interest. By plotting the repression is mediated by ATF7IP through the recruitment of factors such as the histone absorbance against the antibody methyltransferase SETDB1. MBD1 probably forms a complex with SETDB1 and ATF7IP dilution the titer of the antibody was which couples DNA methylation to H3K9 trimethylation and represses transcription. estimated to be 1:20,000. APPLICATION: ChIP: 1.5 µg/ChIP, WB: 1:500, ELISA: 1:1000.