OSTEOCHONDRODYSPLASIAS, LEG DEFORMITIES, and DWARFISM in the CANINE Part Two (Warning: Pictures Are Slow to Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inheritance of Multiple Epiphyseal Dysplasia, Tarda
Inheritance of Multiple Epiphyseal Dysplasia, Tarda RICHARD C. JUBERG1 AND JOHN F. HOLT2 Multiple epiphyseal dysplasia, tarda, a modeling error of the epiphyses, is charac- terized by shortness of stature and micromelia, particularly stubby hands (Rubin, 1964). A patient with this trait generally shows satisfactory development, adequate muscle mass, and normal intelligence. As a rule, there are few complaints of joint discomfort during childhood. Eventually, however, problems arise from joint motion, which lead to difficulty in walking because of pain in the hips, knees, or ankles. De- formities may result. On the other hand, the defect may not be recognized until the patient presents manifestations of degenerative arthritis at an unusually early age. The classification of epiphyseal modeling errors by Rubin (1964) contains six different entities. Spondyloepiphyseal dysplasia, congenita (Morquio's disease) is characterized by irregularity of epiphyses and vertebrae. It is an abnormality of mucopolysaccharide metabolism, and it is transmitted as an autosomal recessive. Multiple epiphyseal dysplasia, congenita (stippled epiphyses) is characterized by stippled or punctate epiphyses, and it too is transmitted as an autosomal recessive. Epiphyseal retardation, which occurs in cretinism (hypothyroidism), may result from any of several different metabolic errors which appear to be transmitted as autosomal recessives (Stanbury, 1966). Diastrophic dwarfism results in delayed appearance of epiphyses and joint luxations, and this, too, apparently is transmitted as an autosomal recessive. Multiple epiphyseal dysplasia, tarda, which is also known in the literature as epi- physeal dysplasia multiplex, must be differentiated from spondyloepiphyseal dys- plasia, tarda. As the name implies, one difference is in the extent and severity of spinal involvement as well as in the changes in the epiphyses of the long tubular bones. -
Dwarfism Awareness
LPA Mission Statement LPA is dedicated to improving the quality of life for people with dwarfism throughout their lives, while celebrating with great pride little people’s contribution to social diversity. LPA strives to bring solutions and global For More Information awareness to the prominent issues affecting individuals of Contact LPA short stature and their families. Toll Free…(888) LPA-2001 Direct....(714) 368-3689 Fax…..(707) 721-1896 Dwarfism Check out our website at Awareness www.lpaonline.org A Community Outreach Program 617 Broadway #518 Sponsored by Little People of America Sonoma, CA 95476 LPA is a non-profit tax exempt 501(c)3 organization funded by individual donations. Contact LPA to help. Dwarfism - Facts and Fiction Mythbusters Terminology Bodies come in all shapes and sizes. There are about 400 People with dwarfism are not magical; they do not fly, nor are Preferred terminology is a personal decision, but different types of dwarfism. Each type of dwarfism is they leprechauns, elves, fairies or any other mythological commonly accepted terms are - short stature, different than the other. Many types of dwarfism have creature. They are people - people whose bones happen to dwarfism, little person, dwarf. And we say some medical complications but most people have an grow differently than yours. That is all. "average-height" instead of "normal height". average lifespan, being productive members of society. People with dwarfism do not all know each People with dwarfism are different, yes, but not Eighty percent of people with dwarfism have average- other or look alike, nor are there towns "abnormal". height parents and siblings. -
MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. -
Laron Syndrome
Laron syndrome Description Laron syndrome is a rare form of short stature that results from the body's inability to use growth hormone, a substance produced by the brain's pituitary gland that helps promote growth. Affected individuals are close to normal size at birth, but they experience slow growth from early childhood that results in very short stature. If the condition is not treated, adult males typically reach a maximum height of about 4.5 feet; adult females may be just over 4 feet tall. Other features of untreated Laron syndrome include reduced muscle strength and endurance, low blood sugar levels (hypoglycemia) in infancy, small genitals and delayed puberty, hair that is thin and fragile, and dental abnormalities. Many affected individuals have a distinctive facial appearance, including a protruding forehead, a sunken bridge of the nose (saddle nose), and a blue tint to the whites of the eyes (blue sclerae). Affected individuals have short limbs compared to the size of their torso, as well as small hands and feet. Adults with this condition tend to develop obesity. However, the signs and symptoms of Laron syndrome vary, even among affected members of the same family. Studies suggest that people with Laron syndrome have a significantly reduced risk of cancer and type 2 diabetes. Affected individuals appear to develop these common diseases much less frequently than their unaffected relatives, despite having obesity (a risk factor for both cancer and type 2 diabetes). However, people with Laron syndrome do not seem to have an increased lifespan compared with their unaffected relatives. Frequency Laron syndrome is a rare disorder. -
Fibrochondrogenesis
Fibrochondrogenesis Description Fibrochondrogenesis is a very severe disorder of bone growth. Affected infants have a very narrow chest, which prevents the lungs from developing normally. Most infants with this condition are stillborn or die shortly after birth from respiratory failure. However, some affected individuals have lived into childhood. Fibrochondrogenesis is characterized by short stature (dwarfism) and other skeletal abnormalities. Affected individuals have shortened long bones in the arms and legs that are unusually wide at the ends (described as dumbbell-shaped). People with this condition also have a narrow chest with short, wide ribs and a round and prominent abdomen. The bones of the spine (vertebrae) are flattened (platyspondyly) and have a characteristic pinched or pear shape that is noticeable on x-rays. Other skeletal abnormalities associated with fibrochondrogenesis include abnormal curvature of the spine and underdeveloped hip (pelvic) bones. People with fibrochondrogenesis also have distinctive facial features. These include prominent eyes, low-set ears, a small mouth with a long upper lip, and a small chin ( micrognathia). Affected individuals have a relatively flat-appearing midface, particularly a small nose with a flat nasal bridge and nostrils that open to the front rather than downward (anteverted nares). Vision problems, including severe nearsightedness (high myopia) and clouding of the lens of the eye (cataract), are common in those who survive infancy. Most affected individuals also have sensorineural hearing loss, which is caused by abnormalities of the inner ear. Frequency Fibrochondrogenesis appears to be a rare disorder. About 20 affected individuals have been described in the medical literature. Causes Fibrochondrogenesis can result from mutations in the COL11A1 or COL11A2 gene. -
Congenital Abnormalities Reported in Pelger-Huët Homozygosity As Compared to Greenberg/HEM Dysplasia
937 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.40.12.937 on 18 December 2003. Downloaded from Congenital abnormalities reported in Pelger-Hue¨t homozygosity as compared to Greenberg/HEM dysplasia: highly variable expression of allelic phenotypes J C Oosterwijk, S Mansour, G van Noort, H R Waterham, C M Hall, R C M Hennekam ............................................................................................................................... J Med Genet 2003;40:937–941 n 1928 the Dutch physician Pelger described two patients Key points with a morphological abnormality of leukocytes that Iconsisted of hypolobulation of the nuclei: there were two lobes instead of the usual five or more and the chromatin N Pelger-Hue¨t anomaly (PHA) is a benign, autosomal structure was coarse and denser.1 This was subsequently dominant haematological trait characterised by hypo- shown to be a genetic trait by paediatrician Hue¨t.2 In the lobulation of granulocyte nuclei. PHA homozygosity, following years many families with Pelger-Hue¨t anomaly however, is associated with skeletal abnormalities and (PHA) from different countries were reported and autosomal early lethality on the basis of animal studies and case dominant inheritance was firmly established.3 Bilobulated reports. In 2002 PHA was found to be due to PHA nuclei (‘‘spectacle’’ or ‘‘pince-nez’’ cells) can also be a heterozygous mutations in the lamin B receptor gene transient symptom in the presence of underlying disease (— (LBR), and a homozygous LBR mutation was detected in for example, infection, myeloid leukaemia or medication) as a boy with mild congenital abnormalities. Homozygous part of a ‘‘shift to the left’’ (pseudo PHA), but constitutional mutations in Lbr cause the ic/ic phenotype in mice. -
Subbarao K Skeletal Dysplasia (Non - Sclerosing Dysplasias – Part II)
REVIEW ARTICLE Skeletal Dysplasia (Non - Sclerosing dysplasias – Part II) Subbarao K Padmasri Awardee Prof. Dr. Kakarla Subbarao, Hyderabad, India Introduction Out of 70 dwarfism syndromes, the most In continuation with Sclerosing Dysplasias common form of dwarfism is (Part I), non sclerosing dysplasias constitute achondroplasia. It is a proportionate a major group of skeletal lesions including dwarfism and is rhizomelic in 70% of the dwarfism syndromes. The following list patients. It is autosomal dominant. There is includes most of the common dysplasias rhizomelic type of short limbs with increased either involving epiphysis, metaphysis, spinal curvature. Skull abnormalities are also diaphysis or epimetaphysis. These include noted. The radiographic features are multiple epiphyseal dysplasia, spondylo- mentioned in Table I. epiphyseal dysplasia, metaphyseal dysplasia, spondylometaphyseal dysplasia and Table I: Achondroplasia- Radiographic epimetaphyseal dysplasia (Hindigodu features Syndrome). These are included in dwarfism Large skull with prominent frontal syndromes. bones and a narrow base. The interpedicular distance decreases Dwarfism indicates a short person in stature caudally in lumbar region but with due to genetic or acquired causes. It is normal vertebral height. defined as an adult height of less than Posterior scalloping 147 cm (4 feet 10 inches). The pelvis is square with small sciatic notches and the inlet The average height of Indians is men- 5ft 3 configuration with classical ½ inches and women–5 ft 0 inches much less champagne glass appearance than average American or Chinese people. Trident hands Delayed appearance of carpal bones Dwarfism syndromes consist of 200 distinct Dumb bell shaped limb bones medical entities. In Proportionate Dwarfism, the body appears normally proportioned, but is unusually small. -
Fibrochondrogenesis, an Antenatal and Postnatal Correlation
Editor-in-Chief: Vikram S. Dogra, MD OPEN ACCESS Department of Imaging Sciences, University of Rochester Medical Center, Rochester, USA HTML format Journal of Clinical Imaging Science For entire Editorial Board visit : www.clinicalimagingscience.org/editorialboard.asp www.clinicalimagingscience.org CASE REPORT Fibrochondrogenesis, an Antenatal and Postnatal Correlation Nischal G. Kundaragi, Kishor Taori, Chetan Jathar, Amit Disawal Department of Radiodiagnosis, Government Medical College, Nagpur, India Address for correspondence: Dr. Nischal G. Kundaragi, ABSTRACT Consultant, Government Medical College, Nagpur and SRM University Fibrochondrogenesis is a rare, neonatally lethal osteochondrodysplasia, with autosomal Medical College, Kanchipurum, recessive inheritance. It differs from other lethal dwarfisms in that it leads to broad, Tamil Nadu, India. long-bone metaphyses (dumb-bell shaped) and pear-shaped vertebral bodies. E-mail: [email protected] We report a case of fibrochondrogenesis with severe pear-shaped platyspondyly, suspected antenatally, and give a comprehensive pictorial review of the antenatal ultrasound and postnatal radiographic findings. Only few cases of fibrochondrogenesis are diagnosed before the termination of pregnancy. Received : 03-01-2012 Accepted : 28-01-2012 Key words: Antenatal diagnosis, fibrochorogenesis, platyspondyly, ultrasonography Published : 18-02-2012 INTRODUCTION (dumbbell shaped) and shortened ribs with pear-shaped vertebral bodies. We report a case of fibrochondrogenesis Fibrochondrogenesis is a genetically inherited form of with severe pear-shaped platyspondyly (flattened spine), osteochondrodysplasia that occurs in neonate. This lethal suspected on antenatal ultrasound examination. Only few variant results from the inheritance of an autosomal recessive cases of fibrochondrogenesis are diagnosed before the gene and causes abnormal development of cartilage and termination of pregnancy.[1] This case gives a comprehensive fibrous connective tissues. -
Anesthesia for a Patient with Osteogenesis Imperfecta, Achondroplastic Dwarfism and History of Malignant Hyperthermia
anesthesia for a Patient with osteogenesis imPerfecta, achondroPlastic dwarfism and history of malignant hyPerthermia Jaclyn Harvey SRNA AbstrAct A primary goal for anesthesia providers is to maintain patient safety. This is an even greater concern when taking care of a patient with a complicated medical history. This case report, discusses the care of a 47 year-old female patient who presented to a tertiary care center for an orthopedic procedure. Her medical history included osteogenesis imperfecta (OI), achondro- plastic dwarfism and suspicion of malignant hyperthermia (MH). There were multiple anesthetic implications to ensure safety for this patient during the perioperative period. OI concerns include bone fragility and potential for multiple fractures even after inoffensive trauma. Achondroplastic dwarfism concerns include abnormalities of the upper airway and difficulty with visual- izing the glottic opening during direct laryngoscopy.1 Malignant Hyperthermia is a life threatening disorder, which places the patient at risk for a hypermetabolic reaction if exposed to select anesthetic agents. IntroductIon: Patients with osteogenesis imperfect (OI) are placed at high risk during anesthesia for both physiological and anatomical reasons. Complications include osteoporosis, joint laxity, and tendon weakness.2 Pulmonary compromise may also occur if the patient displays thoracic distortion. These patients have an elevated basal metabolic rate that causes an increase in core body temper- ature and can mistaken to be MH. No consistent evidence has shown that OI is always associated with MH.2 Achondroplastic dwarfism is the most common form of dwarfism occurring at the rate of 1:30,000 live births. Airway abnormalities such as macroglossia, micrognathia, small oral opening and temporo- mandibular joint immobility can make mask ventilation and intubation challenging for anesthesia providers. -
The Osteopetrotic Mutation Toothless (Tl) Is a Loss-Of-Function Frameshift Mutation in the Rat Csf1 Gene: Evidence of a Crucial
The osteopetrotic mutation toothless (tl)isa loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification Liesbeth Van Wesenbeeck*, Paul R. Odgren†, Carole A. MacKay†, Marina D’Angelo‡§, Fayez F. Safadi‡, Steven N. Popoff‡, Wim Van Hul*, and Sandy C. Marks, Jr.†¶ *Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium; †Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue, North Worcester, MA 01655; and ‡Department of Anatomy and Cell Biology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140 Edited by Elizabeth D. Hay, Harvard Medical School, Boston, MA, and approved July 30, 2002 (received for review June 3, 2002) The toothless (tl) mutation in the rat is a naturally occurring, dritic cells, and formation of osteoclasts (refs. 9–12; reviewed in autosomal recessive mutation resulting in a profound deficiency of ref. 13). The transcription factor PU.1 functions in osteoclast bone-resorbing osteoclasts and peritoneal macrophages. The fail- differentiation and activation and in myeloid cells and B lym- ure to resorb bone produces severe, unrelenting osteopetrosis, phocytes (14); and NF-B, originally described as regulating with a highly sclerotic skeleton, lack of marrow spaces, failure of transcription of Ig light chain genes, is likewise necessary for tooth eruption, and other pathologies. Injections of CSF-1 improve osteoclastogenesis (15). some, but not all, of these. In this report we have used polymor- Phenotypes of osteopetrotic mutations vary widely, depending phism mapping, sequencing, and expression studies to identify the on where bone resorption is intercepted. -
Pituitary Dwarfism
Pituitary Dwarfism Other names for this condition: juvenile panhypopituitarism, hypopituitarism, growth hormone deficiency, hyposomatotropism. Disease description Pituitary dwarfism is a congenital abnormality of the pituitary gland that results in reduced growth and development. It can be caused by an isolated growth hormone (GH) deficiency, but sometimes it is part of a combined pituitary hormone deficiency syndrome whereby other hormones (e.g., thyroid, reproductive, etc.) are also deficient.1-3 Pituitary dwarfism is seen most often in the German shepherd dog, but is also seen in the Karelian Bear Dog, Saarloos Wolfhound, Czechoslovakian Wolfdog, Miniature pinscher, American Eskimo Dog (Spitz), and Weimaraner. Symptoms While not all pituitary dwarfs display the same symptoms, most have marked growth Two 7 weeks old German shepherd litter mates. retardation (usually noted by 2-5 months of age) and retention of their “puppy coat,” resulting in an abnormally soft and woolly hair. The fur is easily removed, resulting in baldness that begins at points of wear, such as the collar area on the neck and on the tail. Eventually, much or the hair on the body and rear end is lost. Fur often remains on the head and legs/feet. The skin becomes progressively blackened and scaly, often with secondary bacterial infections.1 There are delays in bone growth, and premature closure of the growth plates resulting in small stature. The teeth erupt later than usual and external genitalia remain infantile. Some affected patients also have congenital Most pups in the litter averaged 13-14 pounds (left) except for one that weighed less than 4 pounds (right). -
Seckel Syndrome
Seckel syndrome Authors: Doctors Laurence Faivre1 and Valérie Cormier-Daire Creation Date: July 2001 Updated: May 2003 April 2005 Scientific Editor: Doctor Valérie Cormier-Daire 1Service de génétique, CHU Hôpital d'Enfants, 10 Boulevard Maréchal de Lattre de Tassigny BP 77908, 21079 Dijon Cedex, France. [email protected] Abstract Keywords Disease name and synonyms Prevalence Diagnosis criteria/Definition Clinical description Differential diagnosis Diagnostic methods Etiology Genetic counseling Antenatal diagnosis Management including treatment Unresolved questions References Abstract Seckel syndrome, an autosomal recessive disorder is the most common of the microcephalic osteodysplastic dwarfisms. Seckel syndrome is characterized by a proportionate dwarfism of prenatal onset, a severe microcephaly with a bird-headed like appearance and mental retardation. Hematological abnormalities with chromosome breakage have only been found in 15 to 25% of patients. The differential diagnosis with microcephalic osteodysplastic dwarfism type II can only be made with a complete radiographic survey in the first years of life. Besides to a wide phenotypic heterogeneity between affected patients, genetic heterogeneity has also been proven, with three loci identified to date by homozygosity mapping: SCKL1 (3q22.1-q24, ataxia-telangiectasia and Rad3-related protein (ATR) gene), SCKL2 (18p11.31-q11.2, unknown gene) and SCKL3 (14q23, unknown gene). SCKL3 seems to be the predominant locus for Seckel syndrome. Approaching the function of the ATR gene, the genes with a role in DNA repair are good candidates for SCKL2 and 3. Mental retardation is usually severe and families should be helped for social problems. In case of associated hematological abnormalities (anemia, pancytopenia, acute myeloid leukaemia), medical treatment should be provided.