Large Marine Ecosystems of the World: an Annotated Bibliography

Total Page:16

File Type:pdf, Size:1020Kb

Large Marine Ecosystems of the World: an Annotated Bibliography Large Marine Ecosystems of the World: An Annotated Bibliography E. Kelley (editor) U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS-F/SPO-167 October 2016 Large Marine Ecosystems of the World: An Annotated Bibliography E. Kelley (editor) NOAA Technical Memorandum NMFS-F/SPO-167 October 2016 U.S. Department of Commerce Penny S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. Sullivan, Administrator National Marine Fisheries Service Eileen Sobeck, Assistant Administrator for Fisheries Recommended citation: Large marine ecosystems of the world: an annotated bibliography (E. Kelley, ed.), 2016. NOAA Technical Memorandum NMFS-F/SPO-167, 94 p. Also available through the NOAA LISD Current References 2016-03. Copies of this report may be obtained from: Office of Science and Technology National Marine Fisheries Service National Oceanic and Atmospheric Administration 1315 East-West Highway [SSMC3, Office #12620] Silver Spring, MD 20910 Or online at: http://spo.nmfs.noaa.gov/tm/ or http://www.lib.noaa.gov/researchtools/subjectguides/bibliographies.html ii Table of Contents Introduction ................................................................................................................................................ 1 Methodology .............................................................................................................................................. 3 A. Literature search for journal publications ............................................................................................. 3 B. Other literature ...................................................................................................................................... 4 Annotated Bibliography…………………………………………………………………………………..4 A. LME Volumes ....................................................................................................................................... 4 B. Journal Publications .............................................................................................................................. 6 Group One ............................................................................................................................................. 6 Group Two .......................................................................................................................................... 18 Group Three ........................................................................................................................................ 26 Group Four .......................................................................................................................................... 43 Group Five .......................................................................................................................................... 67 C. IOC-IUCN-NOAA Consultative Committee Meeting on Large Marine Ecosystems Reports .......... 86 D. Other relevant reports ......................................................................................................................... 88 References ................................................................................................................................................ 94 iii Introduction Large marine ecosystems (LMEs) are areas of coastal oceans delineated on the basis of ecological characteristics—bathymetry, hydrography, productivity, and trophically linked populations (Sherman and Alexander, 1986). LMEs cover large areas on the order of 200,000 km2 and greater. Their ecologically defined boundaries generally transcend national political boundaries and encompass coastal ocean domains of two or more countries, thereby fostering international cooperation among countries working towards implementation of ecosystem-based management (EBM) of LME goods and services. The 66 LMEs of the world annually produce 80% of the global marine fisheries biomass yield (Pauly et al., 2008) and contribute an estimated $12.6 trillion (USD) in goods and services annually to the global economy (Costanza et al., 1997). LMEs also include global centers of marine tourism, shipping, mining, and energy production. For example, the Gulf of Mexico LME supports offshore gas and oil energy production, extensive commercial and recreational fisheries, and extensive tourism sectors of the U.S. economy. These ecosystems, and the services they provide, threatened by overfishing, pollution, habitat degradation, eutrophication, the loss of biodiversity, acidification, and the effects of climate change. The LME approach to the assessment, monitoring, and management of coastal marine resources is multidisciplinary and multisectoral, built on the need to link natural sciences with social sciences to achieve a more holistic management strategy for addressing human and environmental threats. This approach was introduced in the 1980s by Dr. Kenneth Sherman of NOAA and Dr. Lewis Alexander of the University of Rhode Island (Sherman and Alexander, 1986). The LME approach was further developed through a series of symposia with the American Association for the Advancement of Science and workshops with the Intergovernmental Oceanographic Commission of the United Nations Educational, Scientific and Cultural Organization (IOC-UNESCO) and the National Oceanic and Atmospheric Administration (NOAA) of the United States (Sherman 1993, 2016). The outcome of these workshops was the five-module assessment framework of both natural-science- and social- science-based suites of indicators for monitoring changing conditions in LMEs. There are three natural-science-based suites: (i) productivity, (ii) fish and fisheries, and (iii) pollution and ecosystem health; and two social science suites focused on the human dimensions of LMEs: (iv) socioeconomics and (v) governance. In 1995, the Global Environmental Facility (GEF), an international financial institution for supporting sustainable development of natural resources, adopted the LME assessment and management approach for planning and implementing the coastal and marine projects of their International Waters focal area. Since then, the GEF has catalyzed $3.15 billion in financial assistance to 110 developing countries across the globe to support the implementation of EBM of coastal and marine resources in 22 LMEs (Sherman, 2014). 1 The LME approach has also received notable recognition in recent years. NOAA has recognized the LME approach as one of the 10 major scientific breakthroughs since the beginning of the agency and the establishment of the Coast Survey by President Thomas Jefferson in 1807 (see http://celebrating200years.noaa.gov/breakthroughs/ecosystems/welcome.html). In 2010, the Interagency Ocean Policy Task Force of the White House Council on Environmental Quality issued their final recommendations document, which designates LMEs as coastal ocean domains for implementing ecosystem-based management practices (United States, 2010). In 2015, the GEF published a report for distribution to the Conference of Parties (COP21) meeting in Paris, describing the LME approach as “the cornerstone of the GEF strategy for ocean and coastal conservation and the GEF is the leading global funding source for transboundary water systems” (GEF, 2015). The sound scientific foundation for the LME approach to EBM has developed through a large body of literature. Since the publication of the seminal volume Variability and Management of Large Marine Ecosystems (Sherman and Alexander, 1986), a total of 14 LME volumes with contributions from 450 authors have been published by AAAS, Blackwell Science, and Elsevier Science. An additional four LME volumes have been published by IUCN (2009, 2010) and jointly by UNDP and GEF (2012, 2013). In addition to the volumes, the LME approach has provided a common basis for a growing number of comparative studies published in scientific journals. Since 1983, LMEs have been mentioned in 392 journal articles and served as the basis of specific case studies or as comparative LME studies in 304 of them. This work has continued in 2016 with the IOC-UNESCO Transboundary Waters Assessment Program (TWAP), which produced a global assessment of the ecological conditions of the world’s 66 LMEs based on a 2- year study sponsored by the GEF. In April 2016, a theme volume of Elsevier Science’s journal Environmental Development, titled “Ecosystem based management of Large Marine Ecosystems,” was published as Volume 17, Part 1 (Sherman and Hamukuaya, 2016). As described in this document, the LME published literature has grown significantly since the early 1980s. To provide a reliable source for the widely disseminated LME literature, an electronic search effort was undertaken by NOAA Fisheries in 2015. The present annotated bibliography is a result of this effort. The literature search included more than120 journals, 18 published LME volumes, and 38 reports. 2 Methodology A. Literature Search for Journal Publications Searches for peer-reviewed journal articles were conducted in 2015, using the Web of Science database, the Duke University online databases, and the Google Scholar search engine. Keyword search results (listed later) for each database/search engine were first screened based on exclusion criteria (listed later). If the keyword searches passed, the full text was opened in Adobe Acrobat Pro, and the Find tool was used to check the entire document for keywords. Documents with at least one keyword were
Recommended publications
  • Dung Beetle Richness, Abundance, and Biomass Meghan Gabrielle Radtke Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Tropical Pyramids: Dung Beetle Richness, Abundance, and Biomass Meghan Gabrielle Radtke Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Radtke, Meghan Gabrielle, "Tropical Pyramids: Dung Beetle Richness, Abundance, and Biomass" (2006). LSU Doctoral Dissertations. 364. https://digitalcommons.lsu.edu/gradschool_dissertations/364 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. TROPICAL PYRAMIDS: DUNG BEETLE RICHNESS, ABUNDANCE, AND BIOMASS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Meghan Gabrielle Radtke B.S., Arizona State University, 2001 May 2007 ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. G. Bruce Williamson, and my committee members, Dr. Chris Carlton, Dr. Jay Geaghan, Dr. Kyle Harms, and Dr. Dorothy Prowell for their help and guidance in my research project. Dr. Claudio Ruy opened his laboratory to me during my stay in Brazil and collaborated with me on my project. Thanks go to my field assistants, Joshua Dyke, Christena Gazave, Jeremy Gerald, Gabriela Lopez, and Fernando Pinto, and to Alejandro Lopera for assisting me with Ecuadorian specimen identifications. I am grateful to Victoria Mosely-Bayless and the Louisiana State Arthropod Museum for allowing me work space and access to specimens.
    [Show full text]
  • Select Terrestrial, Freshwater and Marine Conservation Targets/Biodiversity Elements/Features Across Multiple Biological and Spatial Scales
    Standard 7: Select terrestrial, freshwater and marine conservation targets/biodiversity elements/features across multiple biological and spatial scales. [plan] Rationale It is necessary to define a subset of targets that best represent the biodiversity of an ecoregion to focus the assessment. Conservation targets should cover the suite of biological scales (species to communities, ecological systems and other targets), taxa, and ecological characteristics to adequately inform comprehensive biodiversity conservation. Targets should include coarse and fine filter targets. This includes using rare and endangered, wide ranging, migratory and keystone species, rare communities, and all ecological systems and/or ecosystem types, as well as additional targets that are useful in capturing the variety of biodiversity characteristics, scales and ecological processes. Recommended Products ,,,List, and attributes of fine-filter targets such as distribution (local, widespread), conservation status (threatened and endangered), endemic, wide-ranging, rare communities and coarse-filter targets (ecological systems and ecosystems) as well as other types of targets as appropriate. See the Ecoregional Assessment Data Standards 1.0 for required fields. Maps of occurrences of targets throughout the ecoregion. Description of data gaps for specific target groups and geographic areas. GUIDANCE A systematic approach to conservation planning demands that we be explicit about what features of biodiversity we are trying to conserve (Groves 2003). With the goal of conserving the biodiversity of an ecoregion, we need to define a subset of features to work with that will adequately capture that representation and variety. We refer to these features as conservation targets (Redford et al. 2003). Conservation targets are the species, communities, ecological systems 1 and surrogates that we focus our assessments on in order to capture the broad range of biodiversity as best we can.
    [Show full text]
  • Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
    - 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]].
    [Show full text]
  • Benthic Macrofaunal Structure and Secondary Production in Tropical Estuaries on the Eastern Marine Ecoregion of Brazil
    Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil Lorena B. Bissoli and Angelo F. Bernardino Grupo de Ecologia Bêntica, Department of Oceanography, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil ABSTRACT Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine
    [Show full text]
  • An Assessment of Marine Ecosystem Damage from the Penglai 19-3 Oil Spill Accident
    Journal of Marine Science and Engineering Article An Assessment of Marine Ecosystem Damage from the Penglai 19-3 Oil Spill Accident Haiwen Han 1, Shengmao Huang 1, Shuang Liu 2,3,*, Jingjing Sha 2,3 and Xianqing Lv 1,* 1 Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China; [email protected] (H.H.); [email protected] (S.H.) 2 North China Sea Environment Monitoring Center, State Oceanic Administration (SOA), Qingdao 266033, China; [email protected] 3 Department of Environment and Ecology, Shandong Province Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation, Qingdao 266100, China * Correspondence: [email protected] (S.L.); [email protected] (X.L.) Abstract: Oil spills have immediate adverse effects on marine ecological functions. Accurate as- sessment of the damage caused by the oil spill is of great significance for the protection of marine ecosystems. In this study the observation data of Chaetoceros and shellfish before and after the Penglai 19-3 oil spill in the Bohai Sea were analyzed by the least-squares fitting method and radial basis function (RBF) interpolation. Besides, an oil transport model is provided which considers both the hydrodynamic mechanism and monitoring data to accurately simulate the spatial and temporal distribution of total petroleum hydrocarbons (TPH) in the Bohai Sea. It was found that the abundance of Chaetoceros and shellfish exposed to the oil spill decreased rapidly. The biomass loss of Chaetoceros and shellfish are 7.25 × 1014 ∼ 7.28 × 1014 ind and 2.30 × 1012 ∼ 2.51 × 1012 ind in the area with TPH over 50 mg/m3 during the observation period, respectively.
    [Show full text]
  • Aquatic Ecosystems
    February 19, 2014 Nantahala and Pisgah NFs Assessment Aquatic Ecosystems The overall richness of North Carolina’s aquatic fauna is directly related to the geomorphology of the state, which defines the major drainage divisions and the diversity of habitats found within. There are seventeen major river basins in North Carolina. Five western basins are part of the Interior Basin (IB) and drain to the Mississippi River and the Gulf of Mexico (Hiwassee, Little Tennessee, French Broad, Watauga, and New). Parts of these five river basins are within the Nantahala and Pisgah National Forests (NFs). Twelve central and eastern basins are part of the Atlantic Slope (AS) and flow to the Atlantic Ocean. Of these twelve central and eastern basins, parts of the Savannah, Broad, Catawba, and Yadkin-Pee Dee basins are within the Nantahala and Pisgah NFs. As described later in this report, the Nantahala and Pisgah NFs, for the most part, support higher elevation coldwater streams, and relatively little cool- and warmwater resources. To gain perspective on the importance of aquatic ecosystems on the Nantahala and Pisgah NFs, it is first necessary to understand their value at regional and national scales. The southeastern United States has the highest aquatic species diversity in the entire United States (Burr and Mayden 1992; Williams et al. 1993; Taylor et al. 1996; Warren et al. 2000,), with southeastern fishes comprising 62% of the United States fauna, and nearly 50% of the North American fish fauna (Burr and Mayden 1992). Freshwater mollusk diversity in the southeast is ‘globally unparalleled’, representing 91% of all United States mussel species (Neves et al.
    [Show full text]
  • Fact Sheet on Health and Biodiversity
    Living in harmony with nature Health and Biodiversity We rely on biodiversity to stay healthy. Biodiversity sustains our food supply, is a source of medicines, and supports the provision of clean air and fresh water while also contributing to economic development, cultural and spiritual enrichment. It is now also widely recognized that biodiversity is affected by climate change, with negative consequences for human well-being, but biodiversity, through the ecosystem services it supports, also makes an important contribution to both climate change mitigation and adaptation. As all people require freedom from illness as well as social, emotional, physical, spiritual and cultural well-being, we cannot have healthy societies without biodiversity. Changes to biodiversity can have severe and unpredictable effects on the health of all living things, including people. Clearing new land, for example, can bring people into closer contact with wildlife that may transmit their diseases to humans and also promote the spread of disease from humans to animals. It may also reduce populations of predators that hold disease-carrying organisms in check. In addition, clearing of land may bring about the loss of plants and other organisms useful in medical research or that may contain substances used as medicines. People in developing countries face particularly heavy health burdens from a loss of biodiversity, with impacts on food supply and quality, medicines, and cultural and religious values. It has been estimated that approximately 80% of the world’s population from developing countries rely mainly on traditional medicines derived from plants and that 25% of prescriptions dispensed in United States pharmacies contained plant extracts or active ingredients derived from plants.
    [Show full text]
  • Red Sea Large Marine Ecosystem (Lme
    III-6 Red Sea: LME #33 S. Heileman and N. Mistafa The Red Sea LME is bordered by Djibouti, Egypt, Eritrea, Israel, Jordan, Saudi Arabia, Sudan and Yemen. It has a surface area of 458,620 km2, of which 2.33% is protected and includes 3.8% of the world’s coral reefs (Sea Around Us 2007). It is characterised by dense, salty water formed by net evaporation with rates up to 1.4 - 2.0 m yr-1 (Hastenrath & Lamb 1979) and deep convection in the northern sector resulting in the formation of a deep water mass flowing out into the Gulf of Aden underneath a layer of less saline inflowing water (Morcos 1970). A dominant phenomenon affecting the oceanography and meteorology of the region is the Arabian monsoon. In winter, northeast monsoon winds extend well into the Gulf of Aden and the southern Red Sea, causing a seasonal reversal in the winds over this entire region (Patzert 1974). The seasonal monsoon reversal and the local coastal configuration combine in summer to force a radically different circulation pattern composed of a thin surface outflow, an intermediate inflowing layer of Gulf of Aden thermocline water and a vastly reduced (often extinguished) outflowing deep layer (Patzert 1974). Within the basin itself, the general surface circulation is cyclonic (Longhurst 1998). High evaporation and low precipitation maintain the Red Sea LME as one of the most saline water masses of the world oceans, with a mean surface salinity of 42.5 ppt and a mean temperature of 30° C during the summer (Sofianos et al.
    [Show full text]
  • Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses
    Fisheries in Large Marine Ecosystems: Descriptions and Diagnoses D. Pauly, J. Alder, S. Booth, W.W.L. Cheung, V. Christensen, C. Close, U.R. Sumaila, W. Swartz, A. Tavakolie, R. Watson, L. Wood and D. Zeller Abstract We present a rationale for the description and diagnosis of fisheries at the level of Large Marine Ecosystems (LMEs), which is relatively new, and encompasses a series of concepts and indicators different from those typically used to describe fisheries at the stock level. We then document how catch data, which are usually available on a smaller scale, are mapped by the Sea Around Us Project (see www.seaaroundus.org) on a worldwide grid of half-degree lat.-long. cells. The time series of catches thus obtained for over 180,000 half-degree cells can be regrouped on any larger scale, here that of LMEs. This yields catch time series by species (groups) and LME, which began in 1950 when the FAO started collecting global fisheries statistics, and ends in 2004 with the last update of these datasets. The catch data by species, multiplied by ex-vessel price data and then summed, yield the value of the fishery for each LME, here presented as time series by higher (i.e., commercial) groups. Also, these catch data can be used to evaluate the primary production required (PPR) to sustain fisheries catches. PPR, when related to observed primary production, provides another index for assessing the impact of the countries fishing in LMEs. The mean trophic level of species caught by fisheries (or ‘Marine Trophic Index’) is also used, in conjunction with a related indicator, the Fishing-in-Balance Index (FiB), to assess changes in the species composition of the fisheries in LMEs.
    [Show full text]
  • Chesapeake Bay Trust Hypoxia Project
    Chesapeake Bay dissolved oxygen profiling using a lightweight, low- powered, real-time inductive CTDO2 mooring with sensors at multiple vertical measurement levels Doug Wilson Caribbean Wind LLC Baltimore, MD Darius Miller SoundNine Inc. Kirkland, WA Chesapeake Bay Trust EPA Chesapeake Bay Program Goal Implementation Team Support This project has been funded wholly or in part by the United States Environmental Protection Agency under assistance agreement CB96341401 to the Chesapeake Bay Trust. The contents of this document do not necessarily reflect the views and policies of the Environmental Protection Agency, nor does the EPA endorse trade names or recommend the use of commercial products mentioned in this document. SCOPE 8: “…demonstrate a reliable, cost effective, real-time dissolved oxygen vertical monitoring system for characterizing mainstem Chesapeake Bay hypoxia.” Water quality impairment in the Chesapeake Bay, caused primarily by excessive long-term nutrient input from runoff and groundwater, is characterized by extreme seasonal hypoxia, particularly in the bottom layers of the deeper mainstem (although it is often present elsewhere). In addition to obvious negative impacts on ecosystems where it occurs, hypoxia represents the integrated effect of watershed-wide nutrient pollution, and monitoring the size and location of the hypoxic regions is important to assessing Chesapeake Bay health and restoration progress. Chesapeake Bay Program direct mainstem water quality monitoring has been by necessity widely spaced in time and location, with monthly or bi-monthly single fixed stations separated by several kilometers. The need for continuous, real time, vertically sampled profiles of dissolved oxygen has been long recognized, and improvements in hypoxia modeling and sensor technology make it achievable.
    [Show full text]
  • "Species Richness: Small Scale". In: Encyclopedia of Life Sciences (ELS)
    Species Richness: Small Advanced article Scale Article Contents . Introduction Rebecca L Brown, Eastern Washington University, Cheney, Washington, USA . Factors that Affect Species Richness . Factors Affected by Species Richness Lee Anne Jacobs, University of North Carolina, Chapel Hill, North Carolina, USA . Conclusion Robert K Peet, University of North Carolina, Chapel Hill, North Carolina, USA doi: 10.1002/9780470015902.a0020488 Species richness, defined as the number of species per unit area, is perhaps the simplest measure of biodiversity. Understanding the factors that affect and are affected by small- scale species richness is fundamental to community ecology. Introduction diversity indices of Simpson and Shannon incorporate species abundances in addition to species richness and are The ability to measure biodiversity is critically important, intended to reflect the likelihood that two individuals taken given the soaring rates of species extinction and human at random are of the same species. However, they tend to alteration of natural habitats. Perhaps the simplest and de-emphasize uncommon species. most frequently used measure of biological diversity is Species richness measures are typically separated into species richness, the number of species per unit area. A vast measures of a, b and g diversity (Whittaker, 1972). a Di- amount of ecological research has been undertaken using versity (also referred to as local or site diversity) is nearly species richness as a measure to understand what affects, synonymous with small-scale species richness; it is meas- and what is affected by, biodiversity. At the small scale, ured at the local scale and consists of a count of species species richness is generally used as a measure of diversity within a relatively homogeneous area.
    [Show full text]
  • Assessing Ecosystem Health D.J
    REVIEWS Assessing ecosystem health D.J. Rapport, R. Costanza and A.J. McMichael here is now abundant evi- Evaluating ecosystem health in relation to health in terms of ‘system organiz- dence that many human- the ecological, economic and human ation, resilience and vigor, as well dominated ecosystems, in- health spheres requires integrating human as the absence of signs of ecosys- Tcluding various biophysical values with biophysical processes, an tem distress24. The definition also systems at regional and global lev- integration that has been explicitly includes the presence of essential els, have become highly stressed avoided by conventional science. The field functions and key attributes that and dysfunctional1. The ‘services’ is advancing with the articulation of the sustain life systems (Box 1). provided by these ecosystems are linkages between human activity, regional A healthy ecosystem is defined extremely important to human wel- and global environmental change, as being ‘stable and sustainable’; fare2–5. As stressed ecosystems reduction in ecological services and the maintaining its organization and have become highly degraded1,6–9, consequences for human health, autonomy over time and its re- they have also become incapable economic opportunity and human silience to stress24. Assessment of of supplying services to the same communities. Increasing our these properties in large-scale sys- level as in the past5,10. The ca- understanding of these interactions will tems through specific indicators pacity of the environment to sus- involve more active collaboration between of resilience, organization and tain economic activity4,10 and hu- the ecological, social and health vigor has been attempted for the man health11–15 is, therefore, being sciences.
    [Show full text]