Removal of Metallic Iron from Reduced Ilmenite by Aeration Leaching

Total Page:16

File Type:pdf, Size:1020Kb

Removal of Metallic Iron from Reduced Ilmenite by Aeration Leaching metals Article Removal of Metallic Iron from Reduced Ilmenite by Aeration Leaching Qiuyue Zhao 1,2,3 , Maoyuan Li 1, Lei Zhou 1, Mingzhao Zheng 1 and Ting’an Zhang 1,2,3,* 1 School of Metallurgy, Northeastern University, Shenyang 110004, China; [email protected] (Q.Z.); [email protected] (M.L.); [email protected] (L.Z.); [email protected] (M.Z.) 2 Engineering Research Center of Metallurgy of Non-Ferrous Metal Materials Process Technology of Ministry of Education, Shenyang 110004, China 3 Key Laboratory of Ecological Utilization of Multi-metal Intergrown Ores of Ministry of Education, Shenyang 110004, China * Correspondence: [email protected]; Tel.: +86-24-83686283 Received: 24 June 2020; Accepted: 27 July 2020; Published: 29 July 2020 Abstract: Aeration leaching was used to obtain synthetic rutile from a reduced ilmenite. The reduced ilmenite, obtained from the carbothermic reduction of ilmenite concentrate in a rotary kiln at about 1100 ◦C, contained 62.88% TiO2 and 28.93% Metallic iron. The particle size was about 200 µm and the size distribution was uniform. The effects of NH4Cl and HCl concentrations, stirring speed, and aeration leaching time on the extent of removal of metallic iron from the reduced ilmenite were studied at room temperature. The results revealed that aeration leaching is feasible at room temperature. When using the NH4Cl system, the metallic iron content was reduced to 1.98% in synthetic rutile, but the TiO2 content only reached 69.16%. Higher NH4Cl concentration did not improve the leaching. Using 2% NH4Cl with 3% HCl, we were able to upgrade the synthetic rutile to 75%, with a metallic iron content as low as 0.14% and a total iron content of about 4%. Synthetic rutile could be upgraded to about 90% using HCl solution alone. HCl and NH4Cl are both effective on the aeration leaching process. However, within the scope of this experiment, hydrochloric acid is more efficient in aeration leaching. Keywords: reduced ilmenite; synthetic rutile; aeration leaching; Becher process 1. Introduction Titanium dioxide (TiO2) is the most widely used titanium product, being employed as pigment, as filler in the paper, plastic, and rubber industries, and as flux in glass manufacture. Synthetic rutile (SR) is one of the major sources of TiO2 [1–3]. Industrial processes usually involve the initial preparation of titanium dioxide, followed by titanium metal production [4,5]. Several commercial or proposed processes are available to produce SR or high-grade titanium slag from ilmenite which is mainly composed of FeTiO3. These involve a combination of thermal oxidation and reduction by roasting, leaching, and physical separation steps. Iron is converted to soluble ferrous or elemental forms by reduction at a high temperature, followed by acid leaching to obtain a SR product. Ilmenite generally contains impurities such as iron, which leads to its low grade and cannot be directly used. Synthetic rutile is a kind of titanium rich raw material with the same composition and structural properties as natural rutile by separating most iron components from ilmenite. An industrial process for upgrading ilmenite to SR is typically represented by the Becher process [6–8]. Ilmenite contains 40–65% titanium as TiO2, with the rest being iron oxide. The Becher process removes the iron oxide, leaving a residue of SR that contains more than 90% TiO2. The Becher process comprises Metals 2020, 10, 1020; doi:10.3390/met10081020 www.mdpi.com/journal/metals Metals 2020, 10, 1020 2 of 9 four major steps: oxidation, reduction, aeration, and acid leaching [9,10]. Oxidation involves heating the ilmenite in a rotary kiln with air to convert the contained iron to iron oxide: 4FeTiO +O 2Fe O TiO +TiO (1) 3(s) 2(g) ! 2 3 · 2(s) 2(s) This allows for the use of a wide range of ilmenite materials with various Fe(II) and Fe(III) contents for the subsequent step. Reduction is performed in a rotary kiln with a mixture of pseudobrookite (Fe O TiO ) and coal at about 1200 C to reduce iron oxide to metallic iron: 2 3· 2 ◦ Fe O TiO + 3CO 2Fe + 2TiO + 3CO (2) 2 3 · 2(s) ! (s) 2(s) 2(g) Metallic iron is then oxidized and precipitated from the solution as a slime in an aeration or ‘rusting’ step in large tanks using 1% ammonium chloride solution at 80 ◦C: 4Fe + 3O 2Fe O (3) (s) 2(g) ! 2 3 The finer iron oxide is then separated from the larger SR particles. When most of the iron oxide is removed, the residual portion is leached using 0.5 M sulfuric acid and then separated from the SR. In the aeration leaching step, the removal of metallic iron from the reduced ilmenite (RI) grains is essentially a redox reaction, which can be represented by the following half-cell reactions: 2+ 2Fe 2Fe + 4e− (anodic reaction) (4) ! + O + 4H + 4e− 2H O (cathodic reaction) (5) 2 ! 2 The oxidation of ferrous ions is then given by: 2+ 2Fe + 4OH− + 1/2O Fe O H O + H O (6) 2 ! 2 3 · 2 2 In current industrial practice, the aeration step of the Becher process can take as long as 22 h to complete [11]. Some reports show that the rusting process can be accelerated by improving aeration [12] or by adding a component such as acetic, tartaric, or citric acid [13,14]; a ligand, such as ethylenediammonium dichloride; various phenolic and aldehyde compounds, such as pyrogallol, saccharin, starch, and formaldehyde; sugars, such as glucose and sucrose; and water-soluble redox catalysts, namely, methyl viologen dichloride and diquat dibromide [11,15–18]. These additives differ in effectiveness and cost. Most prior research was carried out at relatively high temperature (70 ◦C). Other related hydrometallurgical processes include, for example, ultrasonic-assisted acid leaching for iron removal from quartz sand [19–21] and the goethite process for iron removal from hydrochloric acid leaching solution of reduced laterite [22]. In the present work, we report a study of aeration leaching of reduced ilmenite at room temperature. Aeration leaching experiments using the hydrochloric acid system with oxygen injection at room temperature are rarely studied. The effects of hydrochloric acid and ammonia chloride in improving the aeration efficiency were evaluated. The effects of leaching parameters, including stirring speed and NH4Cl and hydrochloric acid concentrations, were investigated. Through the above research, the method of strengthening the aeration process at room temperature is explored to provide a new way to obtain high-grade SR. 2. Materials and Methods 2.1. Materials A Chinese source of reduced ilmenite, produced by carbothermic reduction of ilmenite concentrate in a rotary kiln at about 1100 ◦C, was used. The chemical composition and particle size is reported in Table1 and Figure1, respectively. MFe stands for metal iron and TFe stands for all iron in Table1. Metals 2020, 10, 1020 3 of 9 The composition of reduced ilmenite and SR obtained by XRF analysis and MFe was determined by chemical titration. Figure1 shows that almost 80% of the particles were distributed between 90 and 400Metalsµ m,2020 with, 10, xa FOR mode PEER value REVIEW of about 200 µm and a uniform distribution. 3 of 9 Metals 2020, 10, x FOR PEER REVIEW 3 of 9 Table 1.1. Composition of reduced ilmenite (mass%). Table 1. Composition of reduced ilmenite (mass%). ComponentComponent TiO2 TiOMFe2 MFe FeO FeO TFeTFe CaOCaO MgO MgO MnMn Al2O Al3 2OSiO3 2 SiO2 Component TiO2 MFe FeO TFe CaO MgO Mn Al2O3 SiO2 Content 62.88 28.93 3.69 31.90 0.15 0.23 1.89 1.55 1.84 ContentContent 62.8862.88 28.9328.93 3.693.69 31.9031.90 0.150.15 0.230.23 1.891.89 1.551.55 1.841.84 12 12 Reduced ilmenite Reduced ilmenite 10 10 8 8 6 6 Volume /% Volume 4 Volume /% Volume 4 2 2 0 0 1 10 100 1000 1 10 100 1000 Particle size /μm Particle size /μm Figure 1. Particle size distribution of reduced ilmenite. Figure 1. Particle size distribution of reduced ilmenite. 2.2. Aeration Conditions 2.2.2.2. AerationAeration ConditionsConditions The aeration leaching experiments were performed in a 1 L stirred reactor. Details of the The aeration leaching experiments were performed in a 1 L stirred reactor. Details of the experimentalThe aeration apparatus leaching are illustrated experiments in Figure were2 .perfor The innermed diameter in a 1 L of stirred the stirred reactor. reactor Details was 80 of mm the experimental apparatus are illustrated in Figure 2. The inner diameter of the stirred reactor was 80 andexperimental the agitator apparatus was a four-blade are illustrated propeller. in Figure The blade 2. The length inner as di 30ameter mm. of the stirred reactor was 80 mmmm andand thethe agitatoragitator waswas aa four-bladefour-blade propeller.propeller. TheThe bladeblade lengthlength asas 3030 mm.mm. Figure 2. Aeration leaching reactor. FigureFigure 2.2. AerationAeration leachingleaching reactor.reactor. TheThe initialinitial reactionreaction mixturemixture comprisedcomprised 640640 mLmL solutionsolution andand 320320 gg reducedreduced ilmenite,ilmenite, whichwhich werewere addedadded toto thethe stirredstirred reactor.reactor. TheThe solutionsolution containedcontainecontainedd didifferentdifferentfferent concentrationsconcentrationsconcentrations ofof ammonium ammoniumammonium chloridechloride andand/orand/or/or hydrochlorichydrochlorichydrochloric acid.acid.acid. The The pulp pulp was was stirred stirred byby aa four-bladefour-bladefour-blade agitator.agitator.agitator. Aeration Aeration gas gas waswas thenthen introducedintroduced andand and passedpassed passed throughthrough through thethe the pulppulp pulp forfor for thethe the entireentire entire durationduration duration ofof of thethe the experiment.experiment. experiment. AfterAfter 44 h,h, fine finefine ironiron oxidesoxides werewere separatedseparated fromfrom thethe SRSR bybyby wetwetwet screening.screening.screening. ParticlesParticles ofof ironiron oxidesoxides andand SRSR werewere washedwashed andand drieddried forfor analysis.analysis.
Recommended publications
  • Iron (III) Oxide Anhydrous
    Material Safety Data Sheet Iron (III) Oxide Anhydrous MSDS# 11521 Section 1 - Chemical Product and Company Identification MSDS Name: Iron (III) Oxide Anhydrous Catalog Numbers: I116-3, I116-500 Synonyms: Ferric Oxide Red; Iron (III) Oxide; Iron Sesquioxide; Red Iron Oxide. Fisher Scientific Company Identification: One Reagent Lane Fair Lawn, NJ 07410 For information in the US, call: 201-796-7100 Emergency Number US: 201-796-7100 CHEMTREC Phone Number, US: 800-424-9300 Section 2 - Composition, Information on Ingredients ---------------------------------------- CAS#: 1309-37-1 Chemical Name: Iron (III) Oxide %: 100 EINECS#: 215-168-2 ---------------------------------------- Hazard Symbols: None listed Risk Phrases: None listed Section 3 - Hazards Identification EMERGENCY OVERVIEW Warning! May cause respiratory tract irritation. May cause mechanical eye and skin irritation. Inhalation of fumes may cause metal-fume fever. Causes severe digestive tract irritation with pain, nausea, vomiting and diarrhea. May corrode the digestive tract with hemorrhaging and possible shock. Target Organs: None. Potential Health Effects Eye: Dust may cause mechanical irritation. Skin: Dust may cause mechanical irritation. May cause severe and permanent damage to the digestive tract. May cause liver damage. Causes severe pain, Ingestion: nausea, vomiting, diarrhea, and shock. May cause hemorrhaging of the digestive tract. The toxicological properties of this substance have not been fully investigated. Dust is irritating to the respiratory tract. Inhalation of fumes may cause metal fume fever, which is characterized Inhalation: by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count. Chronic: Chronic inhalation may cause effects similar to those of acute inhalation.
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Earth Systems Science Grades 9-12
    Earth Systems Science Grades 9-12 Lesson 2: The Irony of Rust The Earth can be considered a family of four major components; a biosphere, atmosphere, hydrosphere, and geosphere. Together, these interacting and all-encompassing subdivisions constitute the structure and dynamics of the entire Earth. These systems do not, and can not, stand alone. This Module demonstrates, at every grade level, the concept that one system depends on every other for molding the Earth into the world we know. For example, the biosphere could not effi ciently prosper as is without gas exchange from the atmosphere, liquid water from the hydrosphere, and food and other materials provided by the geosphere. Similarly, the other systems are signifi cantly affected by the biosphere in one way or another. This Module uses Earth’s systems to provide the ultimate lesson in teamwork. March 2006 2 JOURNEY THROUGH THE UNIVERSE Lesson 2: The Irony of Rust Lesson at a Glance Lesson Overview In this lesson, students will investigate the chemistry of rust—the forma- tion of iron oxide (Fe2O3)—within a modern context, by experimenting with the conditions under which iron oxide forms. Students will apply what they have learned to deduce the atmospheric chemistry at the time that the sediments, which eventually became common iron ore found in the United States and elsewhere, were deposited. Students will interpret the necessary formation conditions of this iron-bearing rock in the context of Earth’s geochemical history and the history of life on Earth. Lesson Duration Four 45-minute class periods plus 10 minutes a day for maintence and observation for two weeks Core Education Standards National Science Education Standards Standard B3: A large number of important reactions involve the transfer of either electrons (oxidation/reduction reactions) or hydrogen ions (acid/base reactions) between reacting ions, molecules, or atoms.
    [Show full text]
  • The Role of Titanium Dioxide on the Hydration of Portland Cement: a Combined NMR and Ultrasonic Study
    molecules Article The Role of Titanium Dioxide on the Hydration of Portland Cement: A Combined NMR and Ultrasonic Study George Diamantopoulos 1,2 , Marios Katsiotis 2, Michael Fardis 2, Ioannis Karatasios 2 , Saeed Alhassan 3, Marina Karagianni 2 , George Papavassiliou 2 and Jamal Hassan 1,* 1 Department of Physics, Khalifa University, Abu Dhabi 127788, UAE; [email protected] 2 Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310 Aghia Paraskevi, Attikis, Greece; [email protected] (M.K.); [email protected] (M.F.); [email protected] (I.K.); [email protected] (M.K.); [email protected] (G.P.) 3 Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, UAE; [email protected] * Correspondence: [email protected] Academic Editor: Igor Serša Received: 30 September 2020; Accepted: 9 November 2020; Published: 17 November 2020 Abstract: Titanium dioxide (TiO2) is an excellent photocatalytic material that imparts biocidal, self-cleaning and smog-abating functionalities when added to cement-based materials. The presence of TiO2 influences the hydration process of cement and the development of its internal structure. In this article, the hydration process and development of a pore network of cement pastes containing different ratios of TiO2 were studied using two noninvasive techniques (ultrasonic and NMR). Ultrasonic results show that the addition of TiO2 enhances the mechanical properties of cement paste during early-age hydration, while an opposite behavior is observed at later hydration stages. Calorimetry and NMR spin–lattice relaxation time T1 results indicated an enhancement of the early hydration reaction.
    [Show full text]
  • Nanosized Particles of Titanium Dioxide Specifically Increase the Efficency of Conventional Polymerase Chain Reaction
    Digest Journal of Nanomaterials and Biostructures Vol. 8, No. 4, October - December 2013, p. 1435 - 1445 NANOSIZED PARTICLES OF TITANIUM DIOXIDE SPECIFICALLY INCREASE THE EFFICENCY OF CONVENTIONAL POLYMERASE CHAIN REACTION GOVINDA LENKA, WEN-HUI WENG* Department of Chemical Engineering and Biotechnology, Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R. O. C. In recent years, the use of nanoparticles (NPs) for improving the specificity and efficiency of the polymerase chain reaction (PCR) and exploring the PCR enhancing mechanism has come under intense scrutiny. In this study, the effect of titanium dioxide (TiO2) NPs in improving the efficiency of different PCR assays was evaluated. Transmission electron microscopy (TEM) results revealed the average diameter of TiO2 particles to be about 7 nm. Aqueous suspension of TiO2 NPs was included in PCR, reverse transcription PCR (RT-PCR) and quantitative real time PCR (qPCR) assays. For conventional PCR, the results showed that in the presence of 0.2 nM of TiO2 a significant amount of target DNA (P<0.05) could be obtained even with the less initial template concentration. Relative to the larger TiO2 particles (25 nm) used in a previous study, the smaller TiO2 particles (7 nm) used in our study increased the yield of PCR by three or more fold. Sequencing results revealed that TiO2 assisted PCR had similar fidelity to that of a conventional PCR system. Contrary to expectation, TiO2 NPs were unable to enhance the efficiency of RT- PCR and qPCR. Therefore, TiO2 NPs may be used as efficient additives to improve the conventional PCR system.
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Properties of Thermally Evaporated Titanium Dioxide As an Electron-Selective Contact for Silicon Solar Cells
    energies Article Properties of Thermally eVaporated Titanium Dioxide as an Electron-Selective Contact for Silicon Solar Cells Changhyun Lee 1, Soohyun Bae 1, HyunJung Park 1, Dongjin Choi 1, Hoyoung Song 1, Hyunju Lee 2, Yoshio Ohshita 2, Donghwan Kim 1,3, Yoonmook Kang 3,* and Hae-Seok Lee 3,* 1 Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; [email protected] (C.L.); [email protected] (S.B.); [email protected] (H.P.); [email protected] (D.C.); [email protected] (H.S.); [email protected] (D.K.) 2 Semiconductor Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan; [email protected] (H.L.); [email protected] (Y.O.) 3 KU-KIST Green School, Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea * Correspondence: [email protected] (Y.K.); [email protected] (H.-S.L.) Received: 6 January 2020; Accepted: 23 January 2020; Published: 5 February 2020 Abstract: Recently, titanium oxide has been widely investigated as a carrier-selective contact material for silicon solar cells. Herein, titanium oxide films were fabricated via simple deposition methods involving thermal eVaporation and oxidation. This study focuses on characterizing an electron-selective passivated contact layer with this oxidized method. Subsequently, the SiO2/TiO2 stack was examined using high-resolution transmission electron microscopy. The phase and chemical composition of the titanium oxide films were analyzed using X-ray diffraction and X-ray photoelectron spectroscopy, respectively.
    [Show full text]
  • TITANIUM DIOXIDE Chemical and Technical Assessment First Draft
    TITANIUM DIOXIDE Chemical and Technical Assessment First draft prepared by Paul M. Kuznesof, Ph.D. Reviewed by M.V. Rao, Ph.D. 1. Summary Titanium dioxide (INS no. 171; CAS no. 13463-67-7) is produced either in the anatase or rutile crystal form. Most titanium dioxide in the anatase form is produced as a white powder, whereas various rutile grades are often off-white and can even exhibit a slight colour, depending on the physical form, which affects light reflectance. Titanium dioxide may be coated with small amounts of alumina and silica to improve technological properties. Commercial titanium dioxide pigment is produced by either the sulfate process or the chloride process. The principal raw materials for manufacturing titanium dioxide include ilmenite (FeO/TiO2), naturally occurring rutile, or titanium slag. Both anatase and rutile forms of titanium dioxide can be produced by the sulfate process, whereas the chloride process yields the rutile form. Titanium dioxide can be prepared at a high level of purity. Specifications for food use currently contain a minimum purity assay of 99.0%. Titanium dioxide is the most widely used white pigment in products such as paints, coatings, plastics, paper, inks, fibres, and food and cosmetics because of its brightness and high refractive index (> 2.4), which determines the degree of opacity that a material confers to the host matrix. When combined with other colours, soft pastel shades can be achieved. The high refractive index, surpassed by few other materials, allows titanium dioxide to be used at relatively low levels to achieve its technical effect. The food applications of titanium dioxide are broad.
    [Show full text]
  • Combustion of Iron Wool – Student Sheet
    Combustion of iron wool – Student sheet To study Iron is a metal. Iron wool is made up of thin strands of iron loosely bundled together. Your teacher has attached a piece of iron wool to a see-saw balance. At the other end of the see-saw is a piece of Plasticine. Iron wool can combust. Your teacher is going to make the iron wool combust by heating it. If there is a change in mass, the see-saw will either tip to the left or to the right. To discuss or to answer 1 What do you think will happen? ............................................................................................................................................................. 2 Why do you think this will happen? ............................................................................................................................................................. ............................................................................................................................................................. 3 What do you see happen when it is demonstrated? ............................................................................................................................................................. 4 Was your prediction correct? ............................................................................................................................................................. Nuffield Practical Work for Learning: Model-based Inquiry • Combustion of iron wool • Student sheets page 1 of 4 © Nuffield Foundation 2013 • downloaded from
    [Show full text]
  • Structural Aspects of Anatase to Rutile Phase Transition in Titanium Dioxide Powders Elucidated by The
    Chapter 3 Structural Aspects of Anatase to Rutile Phase Transition in Titanium Dioxide Powders Elucidated by the Rietveld Method Alberto Adriano Cavalheiro, Lincoln Carlos Silva de Oliveira and Silvanice Aparecida Lopes dos Santos Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68601 Abstract Titanium dioxide has attracted much attention since a long time ago due to its versatility as advanced material. However, its performance as semiconductor devices is very much dependent on the predominant crystalline phase and defect concentrations, which can be adjusted through the synthesis methods, thermal treatments and doping processes. In this work, an accurate structural characterization of titanium dioxide was used by X-ray diffractometry supported by rietveld refinement and thermal analysis. The insertion of 5 mol% of zirconium silicate was able to stabilize anatase up to 900C, permitting the oxygen vacancies to be significantly eliminated. It was demonstrated also that the changes in the isotropic thermal parameters for oxygen are related to reconstructive transformation necessary to promote the anatase-to-rutile phase transition. Independently of doping process, the crystallization process of anatase phase as a function of temperature increas- ing occurs exclusively due the reduction of lattice microstrain up to 600C. However, above 650C, that crystallization process becomes dependent of the increasing in crystallite size. The anatase crystallite growth event was only possible when the titanium dioxide was doped with zirconium silicate. Otherwise, the rutile phase amount starts to rise continually. Thus, there are optimistic expectations for that new composition to be a new semiconductor matrix for additional doping processes.
    [Show full text]
  • Recent Advances in Tio2-Based Photocatalysts for Reduction of CO2 to Fuels
    nanomaterials Review Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels 1,2, 3, 4 5 Thang Phan Nguyen y, Dang Le Tri Nguyen y , Van-Huy Nguyen , Thu-Ha Le , Dai-Viet N. Vo 6 , Quang Thang Trinh 7 , Sa-Rang Bae 8, Sang Youn Chae 9,* , Soo Young Kim 8,* and Quyet Van Le 3,* 1 Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; [email protected] 2 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam 3 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam; [email protected] 4 Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Bien Hoa 810000, Vietnam; [email protected] 5 Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University–Ho Chi Minh City (VNU–HCM), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City 700000, Vietnam; [email protected] 6 Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; [email protected] 7 Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; [email protected] 8 Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; [email protected] 9 Department of Materials Science, Institute for Surface Science and Corrosion, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany * Correspondence: [email protected] (S.Y.C.); [email protected] (S.Y.K.); [email protected] (Q.V.L.); Tel.: +42-01520-2145321 (S.Y.C.); +82-109-3650-910 (S.Y.K.); +84-344-176-848 (Q.V.L.) These authors contributed equally to this work.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets Permalink https://escholarship.org/uc/item/73h6h1z6 Author Siordia, Andrew F. Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets A thesis submitted in partial satisfaction of the requirements of the degree Master of Science in Materials Science and Engineering by Andrew Francisco Siordia 2016 ABSTRACT OF THESIS Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets by Andrew Francisco Siordia Master of Science in Materials Science and Engineering University of California, Los Angeles, 2016 Professor Bruce S. Dunn, Chair Single layer crystalline materials, often termed two-dimension (2D) materials, have quickly become a popular topic of research interest due to their extraordinary properties. The intrinsic electrical, mechanical, and optical properties of graphene were found to be remarkably distinct from graphite, its bulk counterpart. In conjunction with newfound processing techniques, there is renewed interest in elucidating the structure-property relationships of other 2D materials ii like the transition metal dichalcogenides (TMDCs). The energy storage capability of 2D nanoplatelets of TiS2 and MoS2 are studied here providing a contrast with investigations of corresponding bulk materials in the early 1970s. TiS2 was synthesized into nanoplatelets using a hot injection route which provided a capacity of ~143mAhg-1 from thin film electrodes as determined by cyclic voltammetry measurements. Phase identification using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to complement the electrochemical performance and impurity identification is presented.
    [Show full text]