An Introduction to Game Theory

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Game Theory An Introduction to Game Theory Bruce Hajek Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign December 10, 2018 c 2018 by Bruce Hajek All rights reserved. Permission is hereby given to freely print and circulate copies of these notes so long as the notes are left intact and not reproduced for commercial purposes. Email to [email protected], pointing out errors or hard to understand passages or providing comments, is welcome. Contents 1 Introduction to Normal Form Games 3 1.1 Normal form games with finite action sets . .3 1.2 Cournot model of competition . .9 1.3 Correlated equilibria . 11 1.4 On the existence of a Nash equilibrium . 13 1.5 On the uniqueness of a Nash equilibrium . 15 1.6 Two-player zero sum games . 17 1.6.1 Saddle points and the value of two-player zero sum game . 17 1.7 Appendix: Derivatives, extreme values, and convex optimization . 19 1.7.1 Weierstrass extreme value theorem . 19 1.7.2 Derivatives of functions of several variables . 20 1.7.3 Optimality conditions for convex optimization . 21 2 Evolution as a Game 25 2.1 Evolutionarily stable strategies . 25 2.2 Replicator dynamics . 27 3 Dynamics for Repeated Games 33 3.1 Iterated best response . 33 3.2 Potential games . 34 3.3 Fictitious play . 36 3.4 Regularized fictitious play and ode analysis . 39 3.4.1 A bit of technical background . 39 3.4.2 Regularized fictitious play for one player . 40 3.4.3 Regularized fictitious play for two players . 41 3.5 Prediction with Expert Advice . 43 iii CONTENTS v 3.5.1 Deterministic guarantees . 43 3.5.2 Application to games with finite action space and mixed strategies . 46 3.5.3 Hannan consistent strategies in repeated two-player, zero sum games . 49 3.6 Blackwell's approachability theorem . 51 3.7 Online convex programing and a regret bound (skip in fall 2018) . 56 3.7.1 Application to game theory with finite action space . 59 3.8 Appendix: Large deviations, the Azuma-Hoeffding inequality, and stochastic approximation . 59 4 Sequential (Extensive Form) Games 65 4.1 Perfect information extensive form games . 65 4.2 Imperfect information extensive form games . 69 4.2.1 Definition of extensive form games with imperfect information, and total recall . 69 4.2.2 Sequential equilibria { generalizing subgame perfection to games with imperfect infor- mation . 74 4.3 Games with incomplete information . 79 5 Multistage games with observed actions 83 5.1 Extending backward induction algorithm { one stage deviation condition . 83 5.2 Feasibility theorems for repeated games . 87 6 Mechanism design and theory of auctions 91 6.1 Vickrey-Clarke-Groves (VCG) Mechanisms . 92 6.1.1 Appendix: Strict suboptimality of nontruthful bidding for VCG . 96 6.2 Optimal mechanism design (Myerson (1981)) . 96 6.2.1 Appendix: Envelope theorem . 104 7 Introduction to Cooperative Games 107 7.1 The core of a cooperative game with transfer payments . 107 7.2 Markets with transferable utilities . 113 7.3 The Shapley value . 117 vi CONTENTS Preface Game theory lives at the intersection of social science and mathematics, and makes significant appearances in economics, computer science, operations research, and other fields. It describes what happens when multiple players interact, with possibly different objectives and with different information upon which they take actions. It offers models and language to discuss such situations, and in some cases it suggests algorithms for either specifying the actions a player might take, of for computing possible outcomes of a game. Examples of games surround us in everyday life, in engineering design, in business, and politics. Games arise in population dynamics, in which different species of animals interact. The cells of a growing organism compete for resources. Games are at the center of many sports, such as the game between pitcher and batter in baseball. A large distributed resource such as the internet relies on the interaction of thousands of autonomous players for operation and investment. These notes also touch upon mechanism design, which entails the design of a game, usually with the goal of steering the likely outcome of the game in some favorable direction. Most of the notes are concerned with the branch of game theory involving noncooperative games, in which each player has a separate objective, often conflicting with the objectives of other players. Some portion of the course will focus on cooperative game theory, which is typically concerned with the problem of how to to divide wealth, such as revenue, a surplus of goods, or resources, among a set of players in a fair way, given the contributions of the players in generating the wealth. This is the latest version of these notes, written in Fall 2017 and being periodically updated in Fall 2018 in con- junction with the teaching of ECE 586GT Game Theory, at the University of Illinois at Urbana-Champaign. Problem sets and exams with solutions are posted on the course website: https://courses.engr.illinois. edu/ece586gt/fa2017/ and https://courses.engr.illinois.edu/ece586/sp2013/. The author would be grateful for comments, suggestions, and corrections. {Bruce Hajek 1 2 CONTENTS Chapter 1 Introduction to Normal Form Games The material in this section is basic to many books and courses on game theory. See the monograph [13] for an expanded version with applications to a variety of routing problems in networks. 1.1 Normal form games with finite action sets Among the simplest games to describe are those involving the simultaneous actions of two players. Each player selects an action, and then each player receives a reward determined by the pair of actions taken by the two players. A pure strategy for a player is simply one of the possible actions the player could take, whereas a mixed strategy is a probability distribution over the set of pure strategies. There is no theorem that determines the pair of strategies the two players of a given game will select, and no theorem that can determine a probability distribution of joint selections, unless some assumptions are made about the objectives, rationality, and computational capabilities of the players. Instead, the typical outcome of a game theoretic analysis is to produce a set of strategy pairs that are in some sort of equilibrium. The most celebrated notion of equilibrium is due to Nash; a pair of strategies is a Nash equilibrium if whenever one player uses one of the strategies, the strategy for the other player is an optimal response. There are, however, other notions of equilibrium as well. Given these notions of equilibrium we can then investigate some immediate questions, such as: Does a given game have an equilibrium pair? If so, is it unique? How might the players arrive at a given equilibrium pair? Are there any computational obstacles to overcome? How high the payoffs for an equilibrium pair compared to payoffs for other pairs? A two-player normal form game (also called a strategic form game) is specified by an action space for each player, and a payoff function for each player, such that the payoff is a function of the pair of actions taken by the players. If the action space of each player is finite, then the payoff functions can be specified by matrices. The two payoff matrices can be written in a single matrix, with a pair of numbers for each entry, where the first number is the payoff for the first player, who selects a row of the matrix, and the second number is the payoff of the second player, who selects a column of the matrix. In that way, the players select an entry of the matrix. A rich variety of interactions can be modeled with fairly small action spaces. We shall describe some of the most famous examples. Dozens of others are described on the internet. Example 1.1 (Prisoners' dilemma) 3 4 CHAPTER 1. INTRODUCTION TO NORMAL FORM GAMES There are many similar variations of the prisoners' dilemma game, but one instance of it is given by the following assumptions. Suppose there are two players who committed a crime and are being held on suspicion of committing the crime, and are separately questioned by an investigator. Each player has two possible actions during questioning: • cooperate (C) with the other player, by telling the investigator both players are innocent • don't cooperate (D) with the other player, by telling the investigator the two players committed the crime Suppose a player goes free if and only if the other player cooperates, and suppose a player is awarded points according to the following outcomes. A player receives +1 point for not cooperating (D) with the other player by confessing +1 point if player goes free, i.e. if the other player cooperates (C) -1 point if player does not go free, i.e. if the other player doesn't cooperate (D) For example, if both players cooperate then both players receive one point. If the first player cooperates (C) and the second one doesn't (D), then the payoffs of the players are -1, 2, respectively. The payoffs for all four possible pairs of actions are listed in the following matrix form: Player 2 C (cooperate)D Player 1 C (cooperate) 1,1 -1,2 D 2,-1 0,0 What actions do you think rational players would pick? To be definite, let's suppose each player cares only about maximizing his/her own payoff and doesn't care about the payoff of the other player. Some thought shows that action D maximizes the payoff of one player no matter which action the other player selects.
Recommended publications
  • Repeated Games
    6.254 : Game Theory with Engineering Applications Lecture 15: Repeated Games Asu Ozdaglar MIT April 1, 2010 1 Game Theory: Lecture 15 Introduction Outline Repeated Games (perfect monitoring) The problem of cooperation Finitely-repeated prisoner's dilemma Infinitely-repeated games and cooperation Folk Theorems Reference: Fudenberg and Tirole, Section 5.1. 2 Game Theory: Lecture 15 Introduction Prisoners' Dilemma How to sustain cooperation in the society? Recall the prisoners' dilemma, which is the canonical game for understanding incentives for defecting instead of cooperating. Cooperate Defect Cooperate 1, 1 −1, 2 Defect 2, −1 0, 0 Recall that the strategy profile (D, D) is the unique NE. In fact, D strictly dominates C and thus (D, D) is the dominant equilibrium. In society, we have many situations of this form, but we often observe some amount of cooperation. Why? 3 Game Theory: Lecture 15 Introduction Repeated Games In many strategic situations, players interact repeatedly over time. Perhaps repetition of the same game might foster cooperation. By repeated games, we refer to a situation in which the same stage game (strategic form game) is played at each date for some duration of T periods. Such games are also sometimes called \supergames". We will assume that overall payoff is the sum of discounted payoffs at each stage. Future payoffs are discounted and are thus less valuable (e.g., money and the future is less valuable than money now because of positive interest rates; consumption in the future is less valuable than consumption now because of time preference). We will see in this lecture how repeated play of the same strategic game introduces new (desirable) equilibria by allowing players to condition their actions on the way their opponents played in the previous periods.
    [Show full text]
  • Lecture 4 Rationalizability & Nash Equilibrium Road
    Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i).
    [Show full text]
  • 1 Sequential Games
    1 Sequential Games We call games where players take turns moving “sequential games”. Sequential games consist of the same elements as normal form games –there are players, rules, outcomes, and payo¤s. However, sequential games have the added element that history of play is now important as players can make decisions conditional on what other players have done. Thus, if two people are playing a game of Chess the second mover is able to observe the …rst mover’s initial move prior to making his initial move. While it is possible to represent sequential games using the strategic (or matrix) form representation of the game it is more instructive at …rst to represent sequential games using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a history of play or a path of play. A very basic example of a sequential game is the Entrant-Incumbent game. The game is described as follows: Consider a game where there is an entrant and an incumbent. The entrant moves …rst and the incumbent observes the entrant’sdecision. The entrant can choose to either enter the market or remain out of the market. If the entrant remains out of the market then the game ends and the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses between …ghting entry or accommodating entry. If the incumbent …ghts the entrant receives a payo¤ of 3 while the incumbent receives a payo¤ of 1.
    [Show full text]
  • Equilibrium Refinements
    Equilibrium Refinements Mihai Manea MIT Sequential Equilibrium I In many games information is imperfect and the only subgame is the original game. subgame perfect equilibrium = Nash equilibrium I Play starting at an information set can be analyzed as a separate subgame if we specify players’ beliefs about at which node they are. I Based on the beliefs, we can test whether continuation strategies form a Nash equilibrium. I Sequential equilibrium (Kreps and Wilson 1982): way to derive plausible beliefs at every information set. Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 2 / 38 An Example with Incomplete Information Spence’s (1973) job market signaling game I The worker knows her ability (productivity) and chooses a level of education. I Education is more costly for low ability types. I Firm observes the worker’s education, but not her ability. I The firm decides what wage to offer her. In the spirit of subgame perfection, the optimal wage should depend on the firm’s beliefs about the worker’s ability given the observed education. An equilibrium needs to specify contingent actions and beliefs. Beliefs should follow Bayes’ rule on the equilibrium path. What about off-path beliefs? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 3 / 38 An Example with Imperfect Information Courtesy of The MIT Press. Used with permission. Figure: (L; A) is a subgame perfect equilibrium. Is it plausible that 2 plays A? Mihai Manea (MIT) Equilibrium Refinements April 13, 2016 4 / 38 Assessments and Sequential Rationality Focus on extensive-form games of perfect recall with finitely many nodes. An assessment is a pair (σ; µ) I σ: (behavior) strategy profile I µ = (µ(h) 2 ∆(h))h2H: system of beliefs ui(σjh; µ(h)): i’s payoff when play begins at a node in h randomly selected according to µ(h), and subsequent play specified by σ.
    [Show full text]
  • Notes on Sequential and Repeated Games
    Notes on sequential and repeated games 1 Sequential Move Games Thus far we have examined games in which players make moves simultaneously (or without observing what the other player has done). Using the normal (strategic) form representation of a game we can identify sets of strategies that are best responses to each other (Nash Equilibria). We now focus on sequential games of complete information. We can still use the normal form representation to identify NE but sequential games are richer than that because some players observe other players’decisions before they take action. The fact that some actions are observable may cause some NE of the normal form representation to be inconsistent with what one might think a player would do. Here’sa simple game between an Entrant and an Incumbent. The Entrant moves …rst and the Incumbent observes the Entrant’s action and then gets to make a choice. The Entrant has to decide whether or not he will enter a market or not. Thus, the Entrant’s two strategies are “Enter” or “Stay Out”. If the Entrant chooses “Stay Out” then the game ends. The payo¤s for the Entrant and Incumbent will be 0 and 2 respectively. If the Entrant chooses “Enter” then the Incumbent gets to choose whether or not he will “Fight”or “Accommodate”entry. If the Incumbent chooses “Fight”then the Entrant receives 3 and the Incumbent receives 1. If the Incumbent chooses “Accommodate”then the Entrant receives 2 and the Incumbent receives 1. This game in normal form is Incumbent Fight if Enter Accommodate if Enter .
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • SEQUENTIAL GAMES with PERFECT INFORMATION Example
    SEQUENTIAL GAMES WITH PERFECT INFORMATION Example 4.9 (page 105) Consider the sequential game given in Figure 4.9. We want to apply backward induction to the tree. 0 Vertex B is owned by player two, P2. The payoffs for P2 are 1 and 3, with 3 > 1, so the player picks R . Thus, the payoffs at B become (0, 3). 00 Next, vertex C is also owned by P2 with payoffs 1 and 0. Since 1 > 0, P2 picks L , and the payoffs are (4, 1). Player one, P1, owns A; the choice of L gives a payoff of 0 and R gives a payoff of 4; 4 > 0, so P1 chooses R. The final payoffs are (4, 1). 0 00 We claim that this strategy profile, { R } for P1 and { R ,L } is a Nash equilibrium. Notice that the 0 00 strategy profile gives a choice at each vertex. For the strategy { R ,L } fixed for P2, P1 has a maximal payoff by choosing { R }, ( 0 00 0 00 π1(R, { R ,L }) = 4 π1(R, { R ,L }) = 4 ≥ 0 00 π1(L, { R ,L }) = 0. 0 00 In the same way, for the strategy { R } fixed for P1, P2 has a maximal payoff by choosing { R ,L }, ( 00 0 00 π2(R, {∗,L }) = 1 π2(R, { R ,L }) = 1 ≥ 00 π2(R, {∗,R }) = 0, where ∗ means choose either L0 or R0. Since no change of choice by a player can increase that players own payoff, the strategy profile is called a Nash equilibrium. Notice that the above strategy profile is also a Nash equilibrium on each branch of the game tree, mainly starting at either B or starting at C.
    [Show full text]
  • More Experiments on Game Theory
    More Experiments on Game Theory Syngjoo Choi Spring 2010 Experimental Economics (ECON3020) Game theory 2 Spring2010 1/28 Playing Unpredictably In many situations there is a strategic advantage associated with being unpredictable. Experimental Economics (ECON3020) Game theory 2 Spring2010 2/28 Playing Unpredictably In many situations there is a strategic advantage associated with being unpredictable. Experimental Economics (ECON3020) Game theory 2 Spring2010 2/28 Mixed (or Randomized) Strategy In the penalty kick, Left (L) and Right (R) are the pure strategies of the kicker and the goalkeeper. A mixed strategy refers to a probabilistic mixture over pure strategies in which no single pure strategy is played all the time. e.g., kicking left with half of the time and right with the other half of the time. A penalty kick in a soccer game is one example of games of pure con‡icit, essentially called zero-sum games in which one player’s winning is the other’sloss. Experimental Economics (ECON3020) Game theory 2 Spring2010 3/28 The use of pure strategies will result in a loss. What about each player playing heads half of the time? Matching Pennies Games In a matching pennies game, each player uncovers a penny showing either heads or tails. One player takes both coins if the pennies match; otherwise, the other takes both coins. Left Right Top 1, 1, 1 1 Bottom 1, 1, 1 1 Does there exist a Nash equilibrium involving the use of pure strategies? Experimental Economics (ECON3020) Game theory 2 Spring2010 4/28 Matching Pennies Games In a matching pennies game, each player uncovers a penny showing either heads or tails.
    [Show full text]
  • 8. Maxmin and Minmax Strategies
    CMSC 474, Introduction to Game Theory 8. Maxmin and Minmax Strategies Mohammad T. Hajiaghayi University of Maryland Outline Chapter 2 discussed two solution concepts: Pareto optimality and Nash equilibrium Chapter 3 discusses several more: Maxmin and Minmax Dominant strategies Correlated equilibrium Trembling-hand perfect equilibrium e-Nash equilibrium Evolutionarily stable strategies Worst-Case Expected Utility For agent i, the worst-case expected utility of a strategy si is the minimum over all possible Husband Opera Football combinations of strategies for the other agents: Wife min u s ,s Opera 2, 1 0, 0 s-i i ( i -i ) Football 0, 0 1, 2 Example: Battle of the Sexes Wife’s strategy sw = {(p, Opera), (1 – p, Football)} Husband’s strategy sh = {(q, Opera), (1 – q, Football)} uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1 We can write uw(p,q) For any fixed p, uw(p,q) is linear in q instead of uw(sw , sh ) • e.g., if p = ½, then uw(½,q) = ½ q + ½ 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 • e.g., minq (½ q + ½) is at q = 0 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p) Maxmin Strategies Also called maximin A maxmin strategy for agent i A strategy s1 that makes i’s worst-case expected utility as high as possible: argmaxmin ui (si,s-i ) si s-i This isn’t necessarily unique Often it is mixed Agent i’s maxmin value, or security level, is the maxmin strategy’s worst-case expected utility: maxmin ui (si,s-i ) si s-i For 2 players it simplifies to max min u1s1, s2 s1 s2 Example Wife’s and husband’s strategies
    [Show full text]
  • Scenario Analysis Normal Form Game
    Overview Economics 3030 I. Introduction to Game Theory Chapter 10 II. Simultaneous-Move, One-Shot Games Game Theory: III. Infinitely Repeated Games Inside Oligopoly IV. Finitely Repeated Games V. Multistage Games 1 2 Normal Form Game A Normal Form Game • A Normal Form Game consists of: n Players Player 2 n Strategies or feasible actions n Payoffs Strategy A B C a 12,11 11,12 14,13 b 11,10 10,11 12,12 Player 1 c 10,15 10,13 13,14 3 4 Normal Form Game: Normal Form Game: Scenario Analysis Scenario Analysis • Suppose 1 thinks 2 will choose “A”. • Then 1 should choose “a”. n Player 1’s best response to “A” is “a”. Player 2 Player 2 Strategy A B C a 12,11 11,12 14,13 Strategy A B C b 11,10 10,11 12,12 a 12,11 11,12 14,13 Player 1 11,10 10,11 12,12 c 10,15 10,13 13,14 b Player 1 c 10,15 10,13 13,14 5 6 1 Normal Form Game: Normal Form Game: Scenario Analysis Scenario Analysis • Suppose 1 thinks 2 will choose “B”. • Then 1 should choose “a”. n Player 1’s best response to “B” is “a”. Player 2 Player 2 Strategy A B C Strategy A B C a 12,11 11,12 14,13 a 12,11 11,12 14,13 b 11,10 10,11 12,12 11,10 10,11 12,12 Player 1 b c 10,15 10,13 13,14 Player 1 c 10,15 10,13 13,14 7 8 Normal Form Game Dominant Strategy • Regardless of whether Player 2 chooses A, B, or C, Scenario Analysis Player 1 is better off choosing “a”! • “a” is Player 1’s Dominant Strategy (i.e., the • Similarly, if 1 thinks 2 will choose C… strategy that results in the highest payoff regardless n Player 1’s best response to “C” is “a”.
    [Show full text]
  • Oligopolistic Competition
    Lecture 3: Oligopolistic competition EC 105. Industrial Organization Mattt Shum HSS, California Institute of Technology EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 1 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105.
    [Show full text]
  • Characterizing Solution Concepts in Terms of Common Knowledge Of
    Characterizing Solution Concepts in Terms of Common Knowledge of Rationality Joseph Y. Halpern∗ Computer Science Department Cornell University, U.S.A. e-mail: [email protected] Yoram Moses† Department of Electrical Engineering Technion—Israel Institute of Technology 32000 Haifa, Israel email: [email protected] March 15, 2018 Abstract Characterizations of Nash equilibrium, correlated equilibrium, and rationaliz- ability in terms of common knowledge of rationality are well known (Aumann 1987; arXiv:1605.01236v1 [cs.GT] 4 May 2016 Brandenburger and Dekel 1987). Analogous characterizations of sequential equi- librium, (trembling hand) perfect equilibrium, and quasi-perfect equilibrium in n-player games are obtained here, using results of Halpern (2009, 2013). ∗Supported in part by NSF under grants CTC-0208535, ITR-0325453, and IIS-0534064, by ONR un- der grant N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative (MURI) pro- gram administered by the ONR under grants N00014-01-1-0795 and N00014-04-1-0725, and by AFOSR under grants F49620-02-1-0101 and FA9550-05-1-0055. †The Israel Pollak academic chair at the Technion; work supported in part by Israel Science Foun- dation under grant 1520/11. 1 Introduction Arguably, the major goal of epistemic game theory is to characterize solution concepts epistemically. Characterizations of the solution concepts that are most commonly used in strategic-form games, namely, Nash equilibrium, correlated equilibrium, and rational- izability, in terms of common knowledge of rationality are well known (Aumann 1987; Brandenburger and Dekel 1987). We show how to get analogous characterizations of sequential equilibrium (Kreps and Wilson 1982), (trembling hand) perfect equilibrium (Selten 1975), and quasi-perfect equilibrium (van Damme 1984) for arbitrary n-player games, using results of Halpern (2009, 2013).
    [Show full text]