B. Insar Measured Elevation Change Along Geology Profile BB-BB'

Total Page:16

File Type:pdf, Size:1020Kb

B. Insar Measured Elevation Change Along Geology Profile BB-BB' B. InSAR measured elevation change along geology profile BB-BB’ 50 Rio Grande Interstate 25 40 EXPLANATION August 22, 2005–June 2, 2008 30 July 7, 2008–June 7, 2010 20 millimeters 10 n i , t n e m 0 e c a l p s i -10 -20 EXPLANATION Vertical d Vertical Cross- section Name units or formation -30 Pleistocene and Qu Holocene sediments, undivided Fluvial deposits of -40 Qr the Rio Grande Basaltic lavas of the Qb Albuquerque volcanoes -50 Tvi Paleogene mafic dike 0 5 10 15 20 25 30 35 40 QTc Cochiti Formation Sierra Ladrones QTsa Formation, axial- Distance, in kilometers fluvial member BB BB´ r e Sierra Ladrones p (WEST) (EAST) QTsp Formation, piedmont p Projected top of Mesozoic rocks U 6 20,000 member Tc Ceja Formation 5 (Cretaceous) (Jurassic-T p 15,000 Tca Atrisco Member u Projectedriassic) top o of Paleozoic rocks r 4 e l G To Arroyo Ojito Formation d (Pz) e d F (Mz) i Llano de Albuquerque (LdA) Rio Grande Valley East Heights fault zone 10,000 3 a Tcc Cerro Conejo Formation M (XY) t ALBUQUERQUE n Inner valley Pz VOLCANOES (QB) XY a Tc QTc 5 Miocene sedimentary 2 Tc S - I 2 Qr Rio Grande Ts Tca formations Tc QTsa QTsp QTsa Mz 5,000 To Tca Tz Tca Tsp Pz 1 Ts Eastern basin-margin Tgd Tcc Tis To Mz Tsp piedmont deposits, r 0 Tz XY 0 undivided e w Mz CAÑONCITO FAULT (Cretaceous) o Tcc Ts Tz Zia Formation L (Jurassic-T Pz XY -1 riassic) ? SAN YSIDRO FAULT Tz BARRO FAULT Tis ZIA FAULT Zia Formation with WEST EMBUDO STRAND Ts -5,000 Tis EUBANK BLVD. STRAND Pz CORONADO-ALAMEADA STRAND mammalian fossils -2 PINO FAULT Tis SANDIA FAULT ZONE EAST PARADISE FAULT ZONE no vertical exaggeration ? Tgd Galisteo Formation SAND HILL FAULT SANDIA FAULT ZONE -3 XY Tgd ? Elevation above sea level, -10,000 Tis Tgd Mesozoic sedimentary Mz Tis Elevation above sea level, in feet, Mz -4 ? formations Tgd Paleozoic sedimentary ? Pz in kilometers, no vertical exaggeration -5 formations Pz ? Pz Tgd Modified from Connell (2006) ? Mz geologic cross-section B-B’ . XY Proterzoic crystalline (Cretaceous) Mz -6 (Jurassic-T riassic) Ys Proterzoic Sandia granite -7 Pz ? NOT TO SCALE Figure 10. Interferometric Synthetic Aperture Radar (InSAR) land-surface elevation change along three geologic cross-section profiles: A, AA–AA’; B, BB–BB’; and C, CC–CC’.—Continued.
Recommended publications
  • Guides to Understanding the Aeromagnetic Expression of Faults in Sedimentary Basins: Lessons Learned from the Central Rio Grande Rift, New Mexico
    Guides to understanding the aeromagnetic expression of faults in sedimentary basins: Lessons learned from the central Rio Grande rift, New Mexico V.J.S. Grauch U.S. Geological Survey, MS 964, Federal Center, Denver, Colorado 80225-0046, USA Mark R. Hudson U.S. Geological Survey, MS 980, Federal Center, Denver, Colorado 80225-0046, USA ABSTRACT cho, northwest of Albuquerque, New Mexico (Fig. 2). Linear anomalies are interpreted as faults that offset basin-fi ll sediments based on their High-resolution aeromagnetic data acquired over several basins in consistent correspondence to isolated exposures of mapped faults, follow- the central Rio Grande rift, north-central New Mexico, prominently up investigations at individual sites, and geophysical modeling (Grauch, display low-amplitude (5–15 nT) linear anomalies associated with 2001; Grauch et al., 2001, 2006). faults that offset basin-fi ll sediments. The linear anomalies give an As in many sedimentary basins, mapping faults in the central Rio unparalleled view of concealed faults within the basins that has sig- Grande rift is diffi cult because of the extensive alluvial cover. As a conse- nifi cant implications for future basin studies. These implications pro- quence, geologists have used the linear aeromagnetic anomalies to delin- vide the impetus for understanding the aeromagnetic expression of eate partially concealed faults and denote possible locations of totally faults in greater detail. Lessons learned from the central Rio Grande buried faults on geologic maps (e.g., Connell, 2006) and in fault compila- rift help to understand the utility of aeromagnetic data for examin- tions (Machette et al., 1998; Personius et al., 1999).
    [Show full text]
  • Print Optimized PDF File
    U.S. DEPARTMENT OF THE INTERIOR MISCELLANEOUS FIELD STUDIES MAP MF–2405 U.S. GEOLOGICAL SURVEY Version 1.1 Qesy o 50 o 10 CORRELATION OF MAP AND SUBSURFACE UNITS Basalt cinder and intrusive centers, San Felipe volcanic (1977), lower member of lower unnamed formation of Table 1. Correlation chart for alluvial deposits of the Jemez River 13 Qalo Tbc ULT Qaly field (upper Pliocene)—Vent-related basaltic cinder, Santa Fe Group of Spiegel (1961), upper and middle (upstream is to left), indicated by map unit symbols. Qesy A F spatter, scoria, and dikes. Forms cinder cones, small parts of middle Santa Fe Group units of Personius and [Units in bold type shown on this map. Leaders (--) indicate deposit not mapped in quadrangle] Qalo o Tc Tbc ARTIFICIAL ARROYO EOLIAN COLLUVIUM JEMEZ BEDROCK Tzcc Tcc 10 Qcb shield volcanoes, depressions, and ring dikes and plugs at others (2000), and Navajo Draw Member of Arroyo c Qesy Tb FILL ALLUVIUM DEPOSITS AND LANDSLIDES RIVER A o o eruptive centers; after Kelley and Kudo (1978). Cones Ojito Formation of Connell and others (1999) in Ponderosa Jemez Pueblo Bernalillo NW Santa Ana Qeso o N 9 Qcb ALLUVIUM form an elongate array that trends north-south, in Bernalillo NW quadrangle (Koning and Personius, 2002). quadrangle1 and San quadrangle3 Pueblo A 10 12 o Tc 12o 11 general alignment with numerous normal faults that Mapped as Chamisa Mesa Member of Santa Fe Ysidro quadrangle 2 offset the surface of Santa Ana Mesa (Kelley and Kudo, quadrangles Qaly o Formation by Soister (1952) and as Zia Member of o o12 Qalh Qalh A 10 Qf 15 historic 1978).
    [Show full text]
  • Guidebook Contains Preliminary Findings of a Number of Concurrent Projects Being Worked on by the Trip Leaders
    TH FRIENDS OF THE PLEISTOCENE, ROCKY MOUNTAIN-CELL, 45 FIELD CONFERENCE PLIO-PLEISTOCENE STRATIGRAPHY AND GEOMORPHOLOGY OF THE CENTRAL PART OF THE ALBUQUERQUE BASIN OCTOBER 12-14, 2001 SEAN D. CONNELL New Mexico Bureau of Geology and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106 DAVID W. LOVE New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 JOHN D. SORRELL Tribal Hydrologist, Pueblo of Isleta, P.O. Box 1270, Isleta, NM 87022 J. BRUCE J. HARRISON Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 Open-File Report 454C and D Initial Release: October 11, 2001 New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 NMBGMR OFR454 C & D INTRODUCTION This field-guide accompanies the 45th annual Rocky Mountain Cell of the Friends of the Pleistocene (FOP), held at Isleta Lakes, New Mexico. The Friends of the Pleistocene is an informal gathering of Quaternary geologists, geomorphologists, and pedologists who meet annually in the field. The field guide has been separated into two parts. Part C (open-file report 454C) contains the three-days of road logs and stop descriptions. Part D (open-file report 454D) contains a collection of mini-papers relevant to field-trip stops. This field guide is a companion to open-file report 454A and 454B, which accompanied a field trip for the annual meeting of the Rocky Mountain/South Central Section of the Geological Society of America, held in Albuquerque in late April.
    [Show full text]
  • Preliminary Geologic Map of the Albuquerque 30' X 60' Quadrangle
    Preliminary Geologic Map of the Albuquerque 30’ x 60’ Quadrangle, north-central New Mexico By Paul L. Williams and James C. Cole Open-File Report 2005–1418 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2006 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Williams, Paul L., and Cole, James C., 2006, Preliminary Geologic Map of the Albuquerque 30’ x 60’ quadrangle, north-central New Mexico: U.S. Geological Survey Open-File Report 2005-1418, 64 p., 1 sheet scale 1:100,000. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract.................................................................................................................1 Introduction ...........................................................................................................2 Geography and geomorphology.........................................................................3
    [Show full text]
  • Pliocene and Early Pleistocene) Faunas from New Mexico
    Chapter 12 Mammalian Biochronology of Blancan and Irvingtonian (Pliocene and Early Pleistocene) Faunas from New Mexico GARY S. MORGAN1 AND SPENCER G. LUCAS2 ABSTRACT Signi®cant mammalian faunas of Pliocene (Blancan) and early Pleistocene (early and medial Irvingtonian) age are known from the Rio Grande and Gila River valleys of New Mexico. Fossiliferous exposures of the Santa Fe Group in the Rio Grande Valley, extending from the EspanÄola basin in northern New Mexico to the Mesilla basin in southernmost New Mexico, have produced 21 Blancan and 6 Irvingtonian vertebrate assemblages; three Blancan faunas occur in the Gila River Valley in the Mangas and Duncan basins in southwestern New Mexico. More than half of these faunas contain ®ve or more species of mammals, and many have associated radioisotopic dates and/or magnetostratigraphy, allowing for correlation with the North American land-mammal biochronology. Two diverse early Blancan (4.5±3.6 Ma) faunas are known from New Mexico, the Truth or Consequences Local Fauna (LF) from the Palomas basin and the Buckhorn LF from the Mangas basin. The former contains ®ve species of mammals indicative of the early Blancan: Borophagus cf. B. hilli, Notolagus lepusculus, Neo- toma quadriplicata, Jacobsomys sp., and Odocoileus brachyodontus. Associated magnetostra- tigraphic data suggest correlation with either the Nunivak or Cochiti Subchrons of the Gilbert Chron (4.6±4.2 Ma), which is in accord with the early Blancan age indicated by the mam- malian biochronology. The Truth or Consequences LF is similar in age to the Verde LF from Arizona, and slightly older than the Rexroad 3 and Fox Canyon faunas from Kansas.
    [Show full text]
  • Intro and Background
    A RIVER IN TRANSITION: GEOMORPHIC AND BED SEDIMENT RESPONSE TO COCHITI DAM ON THE MIDDLE RIO GRANDE, BERNALILLO TO ALBUQUERQUE, NEW MEXICO BY RICHARD M. ORTIZ B.S. , EARTH AND PLANETARY SCIENCES, UNIVERSITY OF NEW MEXICO, 2000 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Earth and Planetary Sciences The University of New Mexico Albuquerque, New Mexico December, 2004 DEDICATION I dedicate my thesis to my parents Sam and Jan Ortiz and to my advisor Dr. Grant Meyer. My Mom and Dad provided infinite amounts of love and encouragement which helped pull me through times when I thought this project would never get finished. They put up with numerous moments of frustration and despair. Without their undying love, patience and support I would not be the man I am today. Grant has had undying faith and infinite patience with me during this study. When I started this project my knowledge of Geomorphology was very limited. Grant took a chance and allowed me to study under his guidance. He has taught me many things over the last few years; from the basic fundamentals of fluvial geomorphology and the importance of understanding surficial processes and their effects on local and regional geomorphic settings, to the perfection of a draw stroke and a fly cast. Not only has he been a great mentor, he has been a great friend and colleague. He has always treated me with respect, listened to my interpretations and ideas, and gently guided me in the right direction. It has been a pleasure and an honor to work under the tutelage of such a well respected process geomorphologist.
    [Show full text]
  • Ichnotaxonomy of the Eocene Green River Formation
    Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies By © 2018 Joshua D. Hogue B.S. Old Dominion University, 2013 Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Chair: Dr. Stephen T. Hasiotis Dr. Paul Selden Dr. Georgios Tsoflias Date Defended: May 1, 2018 ii The thesis committee for Joshua D. Hogue certifies that this is the approved version of the following thesis: Ichnotaxonomy of the Eocene Green River Formation, Soldier Summit and Spanish Fork Canyon, Uinta Basin, Utah: Interpreting behaviors, lifestyles, and erecting the Cochlichnus Ichnofacies Chair: Dr. Stephen T. Hasiotis Date Approved: May 1, 2018 iii ABSTRACT The Eocene Green River Formation in the Uinta Basin, Utah, has a diverse ichnofauna. Nineteen ichnogenera and 26 ichnospecies were identified: Acanthichnus cursorius, Alaripeda lofgreni, c.f. Aquatilavipes isp., Aulichnites (A. parkerensis and A. tsouloufeidos isp. nov.), Aviadactyla (c.f. Av. isp. and Av. vialovi), Avipeda phoenix, Cochlichnus (C. anguineus and C. plegmaeidos isp. nov.), Conichnus conichnus, Fuscinapeda texana, Glaciichnium liebegastensis, Glaroseidosichnus ign. nov. gierlowskii isp. nov., Gruipeda (G. fuenzalidae and G. gryponyx), Midorikawapeda ign. nov. semipalmatus isp. nov., Planolites montanus, Presbyorniformipes feduccii, Protovirgularia dichotoma, Sagittichnus linki, Treptichnus (T. bifurcus, T. pedum, and T. vagans), and Tsalavoutichnus ign. nov. (Ts. ericksonii isp. nov. and Ts. leptomonopati isp. nov.). Four ichnocoenoses are represented by the ichnofossils—Cochlichnus, Conichnus, Presbyorniformipes, and Treptichnus—representing dwelling, feeding, grazing, locomotion, predation, pupation, and resting behaviors of organisms in environments at and around the sediment-water-air interface.
    [Show full text]
  • Plio-Pleistocene Stratigraphy, Paleoecology, and Mammalian
    Plio-Pleistocenestratigraphy, paleoecology, andmammalian biochronology,Tijeras Arroyo, Albuquerque area, New Mexico by SpencerG. Luus,Thonas E. Williamson,New Mexico Museum of NaturalHistory, 1801 Mountain Road N.W., Albuquerque, New Mexico, 87104; andJaySobus, College ol HumanEcology, 2100 Marie Mount Hall, University ol Maryland, College Park, Maryland 20742-7531 Abstract Strata assignedto the SierraLadrones Formationof the SantaFe Group in Ti- jeras Arroyo near the Albuquerque In- ternational Airport are more than 75 m thick and consistof sandstones,pumi- ceous sandstones,gravels, and minor claystones.These are deposits of a main- stem (axial)Rio Grande that intertongue eastward with alluvial-fan faciesderived from the Sandia and Manzanita uplifts. Fossil mammals from the Sierri La- drones Formation in Tiieras Arrovo in- dicate it is of Plio-Pleistocene(Blancan- Irvingtonian)age. Blancan mammals are HypolaguscI. H. gidleyi and Equuscum- minsii; lrvingtonian mammals are GIyp- totheriumcf . G. arimme, Equuscf . E sotti, cf. Camelopssp., Mammuthusmeridion- alis. and M imperator.Fossils of these taxa, their taphonomy, and the enclos- ing sedimentssuggest that during the early Pleistocenethe TijerasArroyo area was a semiarid piedmont plain with a nearby flora dominated by open grass- land or short-grassprairie. FIGURE 1-Albuquerque Basin with distribu- tion (after Tedford, 1982) of Santa Fe Group strata(shaded) and key sectionsmentioned in the text: 1, type Ceja Formation; 2, section in Tijeras Arroyo (Figs. 2, 3); 3, type Cochiti For- matron. Alsoin this issue Laramidestratigrapy of the LittleHatchet Mountains p. 9 Galleryof Geology-Killion Canyon p.16 Geographicnames p. 17 1992Mineral Symposium abstracts p.18 1993NMGS Fall Field Conference p.20 Service/News p.21 Upcomingmeetings p.22 1994NMGS Fall Field area in Fig.
    [Show full text]
  • Refinements to the Stratigraphic Nomenclature of the Santa Fe Group, Northwestern Albuquerque Basin, New Mexico
    Refinements to the stratigraphic nomenclature of the Santa Fe Group, northwestern Albuquerque Basin, New Mexico Sean D. Connell, New Mexico Bureau of Geology and Mineral Resources, Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106, [email protected] Abstract face constrains the distribution of component Peak Member for the upper part of the Arroyo depositional belts across much of the basin Ojito Formation; elevate the Ceja Member of Recent geologic mapping refines the strati- and resolves a long-standing problem with the Arroyo Ojito Formation to formation rank graphic nomenclature of the Santa Fe Group stratigraphic correlations within the Albu- and locally divide it into the Atrisco, Santa in the Albuquerque Basin of the Rio Grande querque Basin. Ana Mesa, and Rio Puerco Members. The rift of central New Mexico. Discovery of an Revisions to the Santa Fe Group strati- Pantadeleon Formation has similar composi- unconformity requires modifications to the graphic nomenclature in the northwestern tion to, and occupies the same stratigraphic stratigraphic nomenclature of the Santa Fe Albuquerque Basin are intended to aid in position as, the Ceja Formation and should be Group in the western Albuquerque Basin. future geologic mapping activities and in the abandoned as redundant to the senior term The Rincones paleosurface represents a tec- interpretation of geologic compilations of the Ceja Formation. tonostratigraphic boundary that separates Albuquerque Basin. Use of the term “middle slightly tilted, upper Miocene sediments of red formation” (or member) should be dis- the Arroyo Ojito Formation from overlying, continued because it is ambiguously defined.
    [Show full text]
  • Geologic Map of the Ponderosa Quadrangle, Sandoval County, New Mexico
    PRELIMINARY GEOLOGIC MAP OF THE PONDEROSA 7.5-MINUTE QUADRANGLE, SANDOVAL COUNTY, NEW MEXICO REPORT G. R. Osburn (1), Shari Kelley (2), Michael Rampey (3) Charles Ferguson(4), Kurt Frankel (5), Frank Pazzaglia (5) (1)Earth and Planetary Science Dept, Washington University, St. Louis, MO 63130 (2) Dept. of Earth and Environmental Science, New Mexico Tech, Socorro, NM 87801 (3) Queens’ College, Cambridge University, CB39ET UK (4) Arizona Geological Survey, Tucson, AZ 85701 (5) Dept. of Earth and Environmental Sciences, Lehigh University, 31 Williams, Bethlehem, PA 18015 New Mexico Bureau of Geology and Mineral Resources A Division of the New Mexico Institute of Mining and Technology Open-File Report DM-57b May 2002 Updated January 2009 Topographic Setting The Ponderosa 7.5 minute quadrangle is in the southwestern Jemez Mountains of north-central New Mexico. One of the most notable topographic features in the quadrangle, Cañon de San Diego, was formed by the incision of the south-southwest flowing Jemez River through Pleistocene Bandelier Tuff and Permian redbeds. New Mexico State Highway 4 provides ready access to scenic Cañon de San Diego. Virgin Canyon to the west of Cañon de San Diego is equally scenic, but it is relatively inaccessible. New Mexico Highway 110/Forest Road 10 passes through the village of Ponderosa in the east-central portion of the area. Borrego Mesa is a prominent lava-capped mesa in the southeastern part of the quadrangle. Vallecito Creek flows southward through Paliza Canyon and the broad valley to the west of Borrego Mesa; this creek has cut a steep-sided canyon through resistant sandstone of the Shinarump Formation near the southern edge of quadrangle.
    [Show full text]
  • U.S. Geological Survey Middle Rio Grande Basin Study-Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, February 15-16,2000
    U.S. Geological Survey Middle Rio Grande Basin Study-Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, February 15-16,2000 James C. Cole, editor U.S. Geological Survey Open-File Report 00-488 U.S.Departmentofthe Interior U.S. Geological Survey Denver, Colorado 2001 U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Contents INTRODUCTION James C. Cole, editor........................................................................................................................... 1 GEOLOGIC AND HYDROLOGIC FRAMEWORK A. Contributions of Gravity and Aeromagnetic Studies to Improving the Understanding of Subsurface Hydrogeology, Middle Rio Grande Basin, New Mexico V. J. S. Grauch, David A. Sawyer, G. R. Keller, and Cindy L Gillespie..................................... 3 B. Estimation of Hydrologic Parameters for the ground-water Model of the Middle Rio Grande Basin using Carbon-14 and Water-level Data Ward E. Sanford, LNiel Plummer, Doug P. McAda, Laura M. Bexfield, and Scott K. Anderholm........................................................................... 4 C. Geochemical Characterization of Ground Water Flow in parts of the Santa Fe Group Aquifer System, Middle Rio Grande Basin, New Mexico L Niel Plummer, Laura M. Bexfield, Scott K. Anderholm, Ward E. Sanford, and Eurybiades Busenberg........................................................................ 7 D. Regional Stratigraphic Framework for an Integrated Three-dimensional Geologic Model of the Rio Grande Rift Byron D. Stone, James C. Cole, and David A. Sawyer............................................................ 11 E. Sedimentary, Stratigraphic, and Hydrologic Consequences of Syn-Depositional Faulting in the Rio Grande Rift BryonD.
    [Show full text]
  • EIS-0386-DEIS-02-2007.Pdf
    Draft WWEC PEIS September 2007 DOCUMENT CONTENTS VOLUME I Executive Summary Chapter 1: Why Are Federal Agencies Proposing to Designate Energy Corridors in the West? Chapter 2: What Are the Alternatives Evaluated in This PEIS? Chapter 3: What Are the Potential Environmental Consequences of Corridor Designation and Land Use Plan Amendment? Chapter 4: How Are Cumulative Impacts Evaluated? Chapter 5: What Unavoidable Adverse Impacts Might Be Caused by Corridor Designation and Land Use Plan Amendment? Chapter 6: The Relationship between Local Short-Term Uses of the Environment and Long-Term Productivity Chapter 7: What Irreversible and Irretrievable Commitment of Resources Would Be Involved with Implementation of the Alternatives? Chapter 8: List of Preparers Chapter 9: References Chapter 10: Glossary VOLUME II Appendix A: Proposed Land Use Plan Amendments Appendix B: Summary of Public Scoping Comments for the Programmatic Environmental Impact Statement, Designation of Energy Corridors on Federal Land in the 11 Western States (DOE/FS-0386) Appendix C: Tribal Consultation Appendix D: Federal and State Regulatory Requirements Potentially Applicable When Designating Energy Corridors Appendix E: Energy Transport Technologies and Hypothetical Energy Transport Projects Appendix F: Section 368 Corridor Parameters Appendix G: Sensitive Resource Areas That Would Be Intersected by Proposed West-wide Energy Corridors Appendix H: Geographic Information System Data Appendix I: Summary of WWEC PEIS Webcasts for Corridor Review and Revision, 6/19/06 to 4/24/07
    [Show full text]