Decimal – Sexagesimal Conversion in 2010

Total Page:16

File Type:pdf, Size:1020Kb

Decimal – Sexagesimal Conversion in 2010 Decimal – Sexagesimal Conversion in 2010 We shall give an actual modern day example in which one needs to convert decimal fractions into approximate base 60 terms, at least to two places . Here is a typical entry from the U. S. Geological Survey site http://quake.usgs.gov/recenteqs/Quakes/quakes0.htm describing a minor earthquake in Southern California : map 2.0 2010/03/30 06:58:11 33.785 N 116.155W 4.2 10 km ( 6 mi) NE of Indio, CA Note that the location is given by degrees expressed in decimal terms . Suppose now that you want to locate the center of the earthquake precisely using something like Google Earth. This program has a very high resolution , and one can use it to get an extremely accurate visual representation of where the earthquake took place (easily within 100 meters or yards) . Unfortunately , Google Earth expresses locations by degrees , minutes , and seconds , where the seconds are expressed in decimal terms . Thus one needs to carry out a conversion in order to locate the center of the earthquake using the USGS data together with Google Earth. We shall go through this process for the earthquake listed above . LATITUDE: This is given as 33.785 degrees north . To obtain the number of minutes, we need to multiply 0.785 by 60 and take the integral part of the product . Now the product in question is 47.1 , so the number of minutes is 47. To find the number of seconds , we multiply the fractional part of 47.1 by 60; since this fractional part is 0.1, we obtain a value of 6. Therefore the latitude is 33 degrees , 47 minutes and 6.0 seconds . LONGITUDE: This is given as 116.155 degrees west . To obtain the number of minutes, we need to multiply 0.155 by 60 and take the integral part of the product . Now the product in question is 9.3, so the number of minutes is 9. To find the number of seconds , we multiply the fractional part of 9.3 by 60; since this fractional part is 0.3, we obtain a value of 18. Therefore the latitude is 116 degrees , 9 minutes and 18.0 seconds . .
Recommended publications
  • Nondecimal Positional Systems
    M03_LONG0847_05_AIE_C03.qxd 9/17/07 10:38 AM Page 162 Not for Sale 162 CHAPTER 3 Numeration and Computation 3.2 Nondecimal Positional Systems In the preceding section, we discussed several numeration systems, including the decimal system in common use today. As already mentioned, the decimal system is a positional system based on 10. This is probably so because we have ten fingers and historically, as now, people often counted on their fingers. In the Did You Know box at the end of this section, we will give applications of positional systems that are based on whole numbers other than 10. One very useful application of bases other than ten is as a way to deepen our understanding of number systems, arithmetic in general, and our own decimal system. Although bases other than ten were in the K–5 curriculum in the past, they are not present currently. However, nondecimal positional systems are studied in the “math methods” course that is a part of an elementary education degree and may return to elementary school in the future. We will discuss addition and subtraction in base five in the next section and multiplication in base six in the following one. Base Five Notation For our purposes, perhaps the quickest route to understanding base five notation is to reconsider the abacus of Figure 3.1. This time, however, we allow only 5 beads to be moved forward on each wire. As before, we start with the wire to the students’ right (our left) and move 1 bead forward each time as we count 1, 2, 3, and so on.
    [Show full text]
  • 13054-Duodecimal.Pdf
    Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal to encode Duodecimal Digit Forms in the UCS Author: Karl Pentzlin Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Date: 2013-03-30 1. Introduction The duodecimal system (also called dozenal) is a positional numbering system using 12 as its base, similar to the well-known decimal (base 10) and hexadecimal (base 16) systems. Thus, it needs 12 digits, instead of ten digits like the decimal system. It is used by teachers to explain the decimal system by comparing it to an alternative, by hobbyists (see e.g. fig. 1), and by propagators who claim it being superior to the decimal system (mostly because thirds can be expressed by a finite number of digits in a "duodecimal point" presentation). • Besides mathematical and hobbyist publications, the duodecimal system has appeared as subject in the press (see e.g. [Bellos 2012] in the English newspaper "The Guardian" from 2012-12-12, where the lack of types to represent these digits correctly is explicitly stated). Such examples emphasize the need of the encoding of the digit forms proposed here. While it is common practice to represent the extra six digits needed for the hexadecimal system by the uppercase Latin capital letters A,B.C,D,E,F, there is no such established convention regarding the duodecimal system. Some proponents use the Latin letters T and E as the first letters of the English names of "ten" and "eleven" (which obviously is directly perceivable only for English speakers).
    [Show full text]
  • Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
    Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system.
    [Show full text]
  • Abstract of Counting Systems of Papua New Guinea and Oceania
    Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources.
    [Show full text]
  • 2 1 2 = 30 60 and 1
    Math 153 Spring 2010 R. Schultz SOLUTIONS TO EXERCISES FROM math153exercises01.pdf As usual, \Burton" refers to the Seventh Edition of the course text by Burton (the page numbers for the Sixth Edition may be off slightly). Problems from Burton, p. 28 3. The fraction 1=6 is equal to 10=60 and therefore the sexagesimal expression is 0;10. To find the expansion for 1=9 we need to solve 1=9 = x=60. By elementary algebra this means 2 9x = 60 or x = 6 3 . Thus 6 2 1 6 40 1 x = + = + 60 3 · 60 60 60 · 60 which yields the sexagsimal expression 0; 10; 40 for 1/9. Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12. 1 1 30 To find 1=24 we again write 1=24 = x=60 and solve for x to get x = 2 2 . Now 2 = 60 and therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24 is 0;2,30. 1 One proceeds similarly for 1/40, solving 1=40 = x=60 to get x = 1 2 . Much as in the preceding discussion this yields the form 0;1,30. Finally, the same method leads to the equation 5=12 = x=60, which implies that 5/12 has the sexagesimal form 0;25. 4. We shall only rewrite these in standard base 10 fractional notation. The answers are in the back of Burton. (a) The sexagesimal number 1,23,45 is equal to 1 3600 + 23 60 + 45.
    [Show full text]
  • A Ternary Arithmetic and Logic
    Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. A Ternary Arithmetic and Logic Ion Profeanu which supports radical ontological dualism between the two Abstract—This paper is only a chapter, not very detailed, of eternal principles, Good and Evil, which oppose each other a larger work aimed at developing a theoretical tool to in the course of history, in an endless confrontation. A key investigate first electromagnetic fields but not only that, (an element of Manichean doctrine is the non-omnipotence of imaginative researcher might use the same tool in very unusual the power of God, denying the infinite perfection of divinity areas of research) with the stated aim of providing a new perspective in understanding older or recent research in "free that has they say a dual nature, consisting of two equal but energy". I read somewhere that devices which generate "free opposite sides (Good-Bad). I confess that this kind of energy" works by laws and principles that can not be explained dualism, which I think is harmful, made me to seek another within the framework of classical physics, and that is why they numeral system and another logic by means of which I will are kept far away from public eye. So in the absence of an praise and bring honor owed to God's name; and because adequate theory to explain these phenomena, these devices can God is One Being in three personal dimensions (the Father, not reach the design tables of some plants in order to produce them in greater number.
    [Show full text]
  • Chapter 6 MISCELLANEOUS NUMBER BASES. the QUINARY
    The Number Concept: Its Origin and Development By Levi Leonard Conant Ph. D. Chapter 6 MISCELLANEOUS NUMBER BASES. THE QUINARY SYSTEM. The origin of the quinary mode of counting has been discussed with some fulness in a preceding chapter, and upon that question but little more need be said. It is the first of the natural systems. When the savage has finished his count of the fingers of a single hand, he has reached this natural number base. At this point he ceases to use simple numbers, and begins the process of compounding. By some one of the numerous methods illustrated in earlier chapters, he passes from 5 to 10, using here the fingers of his second hand. He now has two fives; and, just as we say “twenty,” i.e. two tens, he says “two hands,” “the second hand finished,” “all the fingers,” “the fingers of both hands,” “all the fingers come to an end,” or, much more rarely, “one man.” That is, he is, in one of the many ways at his command, saying “two fives.” At 15 he has “three hands” or “one foot”; and at 20 he pauses with “four hands,” “hands and feet,” “both feet,” “all the fingers of hands and feet,” “hands and feet finished,” or, more probably, “one man.” All these modes of expression are strictly natural, and all have been found in the number scales which were, and in many cases still are, in daily use among the uncivilized races of mankind. In its structure the quinary is the simplest, the most primitive, of the natural systems.
    [Show full text]
  • I – Mathematics in Design – SMTA1103
    SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS UNIT – I – Mathematics in Design – SMTA1103 UNIT1- MATHEMATICS IN DESIGN Golden Ratio The ratio of two parts of a line such that the longer part divided by the smaller part is also equal to the whole length divided by the longer part. Results: i) The ratio of the circumference of a circle to its diameter is π . ii) The ratio of the width of a rectangular picture frame to its height is not necessarily equal to he golden ratio, though some artists and architects believe a frame made using the golden ratio makes the most pleasing and beautiful shape.iii) The ratio of two successive numbers of the Fibonacci sequence give an approximate value of the golden ratio,the bigger the pair of Fibonacci Numbers, the closer the approximation. Example1: The Golden Ratio = 1.61803398874989484820... = 1.618 correct to 3 decimal places. If x n are terms of the Fibonacci sequence, then what is the least value of n for which ( x n +1 / x n = 1.618 correct to 3 decimal places. Example2: A rectangle divided into a square and a smaller rectangle. If (x + y) /y = x / y ,find the value of golden ratio. Example3: The Golden Ratio = 1.61803398874989484820... = 1.6180 correct to 4 decimal places. If xn are terms of the Fibonacci sequence, then what is the least value of n for which (x n +1) / x n = 1.618 0 correct to 4 decimal places. Example4: Obtain golden ratio in a line segment. Proportion Proportion is an equation which defines that the two given ratios are equivalent to each other.
    [Show full text]
  • The Counting System of the Incas in General, There Is a Lack of Material on the History of Numbers from the Pre-Columbian Americas
    History of Numbers 1b. I can determine the number represented on an Inca counting board, and a quipu cord. The Counting System of the Incas In general, there is a lack of material on the history of numbers from the pre-Columbian Americas. Most of the information available concentrates on the eastern hemisphere, with Europe as the focus. Why? First, there has been a false assumption that indigenous peoples in the Americas lacked any specialized mathematics. Second, it seems at least some of their ancient mathematics has been intentionally kept secret. And Einally, when Europeans invaded and colonized the Americas, much of that evidence was most likely destroyed. In the 1960's, two researchers attempted to discover what mathematical knowledge was known by the Incas and how they used the Peruvian quipu, a counting system using cords and knots, in their mathematics. These researchers have come to certain beliefs about the quipu that are summarized below: Counting Boards It seems the Incas did not have a complicated system of computation. Whereas other peoples in the region, such as the Mayans, were doing computations related to their rituals and calendars, the Incas seem to have been more concerned with the task of record-keeping. To do this, they used what are called “quipu”(or khipu) to record quantities of items. However, they Eirst often needed to do computations whose results would be recorded on a quipu. To do these computations, they sometimes used a counting board or Yupana (from the Quechua word "yupay": count) made from a slab of wood or stone.
    [Show full text]
  • Babylonian Numerals the Units
    Babylonian numerals the units. For example the decimal 12345 represents 1 104 + 2 103 + 3 102 + 4 10 + 5. Babylonian index History Topics Index If one thinks about it this is perhaps illogical for we read from left to right so when we read the first digit we do not know its value until we have read the complete number to find out how many powers of 10 The Babylonian civilisation in Mesopotamia replaced the Sumerian civilisation and the Akkadian are associated with this first place. The Babylonian sexagesimal positional system places numbers with civilisation. We give a little historical background to these events in our article Babylonian mathematics. the same convention, so the right most position is for the units up to 59, the position one to the left is for Certainly in terms of their number system the Babylonians inherited ideas from the Sumerians and from 60 n where 1 n 59, etc. Now we adopt a notation where we separate the numerals by commas so, the Akkadians. From the number systems of these earlier peoples came the base of 60, that is the for example, 1,57,46,40 represents the sexagesimal number sexagesimal system. Yet neither the Sumerian nor the Akkadian system was a positional system and this advance by the Babylonians was undoubtedly their greatest achievement in terms of developing the 1 603 + 57 602 + 46 60 + 40 number system. Some would argue that it was their biggest achievement in mathematics. which, in decimal notation is 424000. Often when told that the Babylonian number system was base 60 people's first reaction is: what a lot of special number symbols they must have had to learn.
    [Show full text]
  • Decimal Notation in the United States
    Decimal Notation in the United States In the United States, we use the decimal or period (“.”) to represent the difference between whole numbers and partial numbers. We use the comma (“,”) to separate groups of three places on the whole numbers side. This might be different from the way you currently write numbers. For example, the number 1 million: Some non-U.S. Counties: 1.000.000,00 U.S.: 1,000,000.00 It is also very important to know the names for the digit places in decimal notation. Here are the names in English for the United States: Thousandths Trillions Hundred Billions Ten Billions Billions Hundred Millions Ten Millions Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Ones Tenths Hundredths Thousandths Ten Hundred Thousandths Millionths 1 , 2 3 4 , 5 6 7 , 8 9 0 , 1 2 3 . 4 5 6 7 8 9 Other than the “ones” place, the places to the right of the decimal are almost the same as the places to the left of the decimal, but with an additional “th” added at the end. How to Say Common Math Terms in U.S. English Numbers: Big Numbers: In the U.S. we separate big numbers into groups of three of the following types: Ones, Thousands, Millions, Billions, … For example: 1,234,567 has three groups Millions: 1 Thousands: 234 Ones: 567 We say each group as a separate number, followed by the group type. So, we would say: “One million, two hundred and thirty-four thousand, five hundred and sixty-seven” Decimals: When there is a decimal, we say it a few different ways: 0.4 can be expressed as “four tenths,” “zero point four,” or just
    [Show full text]
  • The Sumerian Ternary System and the Concept of Number António José Gonçalves De Freitas Centro De Estudos Humanísticos Universidade Do Minho Portugal
    Paper delivered at 1st CLE Colloquium for Philosophy and Formal Sciences Campinas, 21-23 March 2013 Accepted for publication in the Proceedings of the Conference DRAFT &1 The Sumerian ternary system and the concept of number António José Gonçalves de Freitas Centro de Estudos Humanísticos Universidade do Minho Portugal Abstract It is well known that Sumerians and Babylonians used a numeration system of base 12 and 60. We still have influence of that system in our nowadays counting of the hours of a day, twelve plus twelve, each hour has 60 minute and each minute 60 seconds. Also the circle has 360 degrees. What is not so well known is that the Sumerians in an earlier period used a ternary system of numeration; the first notice about that system is in Thureau- Dangin (1928). Later Diakonoff (1983) described it in good details and recently, Balke (2010) studied the system and described it with more precision. Still the use of this system and the concept of number involved are open questions. I will answer to those problems making a formalization of the system and showing how it could be related to a cosmogonic design. DRAFT &2 1. Numeral systems. DRAFT &3 ��� 1 11 21 31 41 51 � �� ��� �� �� � ��� 2 12 22 32 41 52 � �� ��� �� �� � � �� ��� � 3 13 23 33 42 53 � �� � � � � � �� ��� � 4 14 24 34 43 54 � �� � � � � � �� ��� � 5 15 25 35 44 55 � �� � � � � � �� ��� � 6 16 26 36 45 56 � �� �DRAFT� � � � �� ��� � 7 17 27 37 46 57 � �� � � � � &4 � �� � 8 18 28 38 47 58 � �� �� � � � � �� � � 9 19 29 39 48 59 � �� � � � � 10 20 30 ��� 40 50 � �� � � The main Babylonian and Sumerian counting system was a sexagesimal system.
    [Show full text]