Development of an On-Board Compressed Gas Storage System for Hydrogen Powered Vehicle Applications
Total Page:16
File Type:pdf, Size:1020Kb
Graduate Theses, Dissertations, and Problem Reports 2009 Development of an on-board compressed gas storage system for hydrogen powered vehicle applications Thomas H. Evans West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Evans, Thomas H., "Development of an on-board compressed gas storage system for hydrogen powered vehicle applications" (2009). Graduate Theses, Dissertations, and Problem Reports. 4460. https://researchrepository.wvu.edu/etd/4460 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. DEVELOPMENT OF AN ON-BOARD COMPRESSED GAS STORAGE SYSTEM FOR HYDROGEN POWERED VEHICLE APPLICATIONS Thomas H. Evans Dissertation submitted to the College of Engineering and Mineral Resources at West Virginia University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Samir N. Shoukry, Ph.D., Chair Jacky C. Prucz, Ph.D. Gergis W. William, Ph.D. Mourad Riad, Ph.D. Eduardo M. Sosa, Ph.D. Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2009 Keywords: pressure vessels, compressed gas hydrogen storage, composite materials ABSTRACT DEVELOPMENT OF AN ON-BOARD COMPRESSED GAS STORAGE SYSTEM FOR HYDROGEN POWERED VEHICLE APPLICATIONS Thomas H. Evans The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. Leading edge technologies are currently under development for storing hydrogen safely and efficiently on-board vehicles in the form of either compressed gas (CGH2), cryogenic liquid (LH2), or solid matter (SSH2). The main emphasis of this work is placed on the high pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 35 to 70 MPa for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall. The research conducted for this dissertation reveals that the continuously changing angle orientation and local laminate thickness in the dome regions can be modeled by a unique approach that utilizes suitable transformations of the macromechanical composite properties and the local coordinate system. Accurate representation of the exterior reinforcement allows for detailed analysis of the dome structure as well as the nozzle/valve connection. A metallic insert is utilized to connect the dome structure to the valve system. A comparative study between different insert geometries and locations in the dome has been performed. It shows that an insert extending through the dome geometry increases the resulting stress at the cylinder-dome juncture. The most effective design approach entails an insert to the boss region. TABLE OF CONTENTS Chapter 1............................................................................................................................. 1 1 Introduction................................................................................................................. 1 1.1 Objectives............................................................................................................. 4 Chapter 2............................................................................................................................. 6 2 Literature Review........................................................................................................ 6 2.1 Hydrogen Formation ............................................................................................ 6 2.2 Hydrogen Power................................................................................................... 7 2.3 Hydrogen Storage Systems .................................................................................. 8 2.3.1 Compressed Gas............................................................................................ 8 2.3.2 QUANTUM TriShield Hydrogen Storage Systems ..................................... 9 2.3.3 MAGNA STEYR........................................................................................ 11 2.3.4 Honda FCX ................................................................................................. 13 2.3.5 Daimler Chrysler F-Cell Vehicle................................................................ 14 2.3.6 Liquid Hydrogen Storage............................................................................ 14 2.3.7 Liquid Hydrogen Storage System Design................................................... 16 2.3.8 Hydride Hydrogen Storage ......................................................................... 18 2.4 Manufacturing Methods for a Compressed Gas Storage System....................... 21 2.4.1 Hand Lay-up ............................................................................................... 21 2.4.2 Bag Molding ............................................................................................... 22 2.4.3 Autoclave Processing.................................................................................. 22 2.4.4 Compression Molding................................................................................. 23 2.4.5 Pultrusion .................................................................................................... 23 2.4.6 Resin Transfer Molding .............................................................................. 23 2.4.7 Filament Winding ....................................................................................... 24 2.5 Liner Design and Manufacturing Review .......................................................... 27 2.5.1 Permeation and Embrittlement ................................................................... 27 2.5.2 Manufacturing Processes ............................................................................ 28 2.6 Liner Failure....................................................................................................... 38 2.7 Material Failure Theories................................................................................... 40 2.7.1 Von Mises ................................................................................................... 40 2.8 Macromechanical Failure Theories in Composite Materials ............................. 40 2.8.1 Nomenclature.............................................................................................. 41 2.8.2 Maximum Stress Theory............................................................................. 41 2.8.3 Maximum Strain Theory............................................................................. 42 2.8.4 Tsai-Hill ...................................................................................................... 42 2.8.5 Tsai-Wu....................................................................................................... 43 Chapter 3........................................................................................................................... 45 3 Initial Analysis into Hydrogen Pressure Vessel Configurations............................... 45 3.1 Preliminary Analysis.......................................................................................... 46 3.2 Finite Element Analysis ..................................................................................... 48 3.2.1 Carbon fiber pressure vessel – Orientation One ......................................... 49 3.2.2 Carbon fiber pressure vessel – Orientation Two......................................... 50 3.2.3 Carbon fiber reinforced aluminum pressure vessel – Orientation One....... 51 3.2.4 Carbon fiber reinforced aluminum pressure vessel – Orientation Two...... 53 iii 3.2.5 Results and Discussion ............................................................................... 54 3.2.6 Hydrogen Storage Capacity ........................................................................ 57 Chapter 4........................................................................................................................... 59 4