Context of Ancient Aqueous Environments on Mars from in Situ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantitative Composition and Granulometry of Aeolian Bedforms in Endeavour and Gale Craters Inferred from Visible Near-Infrared Spectra
45th Lunar and Planetary Science Conference (2014) 1431.pdf QUANTITATIVE COMPOSITION AND GRANULOMETRY OF AEOLIAN BEDFORMS IN ENDEAVOUR AND GALE CRATERS INFERRED FROM VISIBLE NEAR-INFRARED SPECTRA. Mathieu G.A. Lapotre1, Bethany L. Ehlmann1,2, Raymond E. Arvidson3. 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 3Department of Earth & Planetary Sciences, Washington University in St. Louis, MO, USA. Introduction: Modern Mars is a wind world. Its ing Spectrometer for Mars (CRISM) visible near- surface hosts a variety of aeolian features, such as line- infrared spectra (VISIR). The goal of this study is to ar, barchan and star dunes, ripples, granule ripples, compare inversions made from orbit to ground truth yardangs and ventifacts [1]. Even though active sand provided by instruments aboard Opportunity at En- transport was observed at the surface [2], it is not clear deavour Crater, Terra Meridiani and Curiosity in Gale whether all of the preserved aeolian bedforms are ac- crater. tive. In particular, transverse aeolian ridges have been We use Hapke’s bidirectional reflectance spectros- suggested to be remnant dunes that formed under past copy theory [6] to invert for optical constants of miner- climatic conditions [3]. als from laboratory spectra [e.g., 7, 8]. These are used Sand transport is largely controlled by the size and to compute single scattering albedos of mineral the density of the grains [4]. Moreover, dunes and rip- endmember components of varying grain sizes. We use ples form in unimodally distributed sand particles from an atmospheric radiative transfer approach, DISORT different instabilities, and the wavelengths of these [9], to correct the CRISM spectra for the effects of the different bedforms do not have the same dependence Martian atmosphere. -
THE SPIDERS of PORTUGAL: SOME ADDITIONS to the CURRENT CHECKLIST (ARANEAE) Gillian Telfer, Robert Bosmans, Antonio Melic & Francisco Rego
ARTÍCULO: THE SPIDERS OF PORTUGAL: SOME ADDITIONS TO THE CURRENT CHECKLIST (ARANEAE) Gillian Telfer, Robert Bosmans, Antonio Melic & Francisco Rego Abstract In the present paper 23 new additions to the current checklist for Portuguese spiders are listed, and localities given. Key words: Araneae, checklist, Portugal. Adiciones al catálogo de arañas de Portugal (Araneae) Resumen Se presentan 23 novedades para la Checklist de arañas de Portugal. ARTÍCULO: Palabras clave: Araneae, checklist, Portugal. The spiders of Portugal: some additions to the current checklist (Araneae) Introduction Gillian Telfer Centro de Ecologia Aplicada Since the works of Bacelar (e.g. 1927a, 1927b, 1928, 1933, 1935, 1936, 1940) and “Prof. Baeta Neves”, Instituto Machado (e.g. 1937, 1941, 1949) in the early 20th century, little attention has been Superior de Agronomia, Tapada paid to the arachnofauna of Portugal. Fortunately research in this Order has da Ajuda, Lisbon, Portugal, [email protected]; increased in the past decade or so, and at present the current number of species of spiders reported in Portugal stands at 660 (Alderweireldt & Bosmans, 2001; Robert Bosmans, Laboratorium voor Ecologie, Bosmans, 1993; Cardoso, unpublished; Ferrández, 1985, 1990). This number, Ledeganckstraat 35, however, is thought to be a severe underestimation of the true figure. It is hoped that 9000 Gent, Belgium the present increased collecting intensity will rectity this. Antonio Melic The spiders presented in this paper were obtained from collections made from Avenida Radio Juventud, 37, various shrubland and forest areas found within the Council of Mafra, in the 50012 Zaragoza, Spain. Estremadura province of north-western Portugal. The localities within the Council Francisco Rego boundaries are identified along with the date of capture and a brief description of Centro de Ecologia Aplicada the main vegetation type of the habitat. -
Meteorites on Mars Observed with the Mars Exploration Rovers C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E06S22, doi:10.1029/2007JE002990, 2008 Meteorites on Mars observed with the Mars Exploration Rovers C. Schro¨der,1 D. S. Rodionov,2,3 T. J. McCoy,4 B. L. Jolliff,5 R. Gellert,6 L. R. Nittler,7 W. H. Farrand,8 J. R. Johnson,9 S. W. Ruff,10 J. W. Ashley,10 D. W. Mittlefehldt,1 K. E. Herkenhoff,9 I. Fleischer,2 A. F. C. Haldemann,11 G. Klingelho¨fer,2 D. W. Ming,1 R. V. Morris,1 P. A. de Souza Jr.,12 S. W. Squyres,13 C. Weitz,14 A. S. Yen,15 J. Zipfel,16 and T. Economou17 Received 14 August 2007; revised 9 November 2007; accepted 21 December 2007; published 18 April 2008. [1] Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. -
What Are Komatiites?
What are komatiites? John Stanley Komatiites are widespread rocks with a spinifex texture (spinifex is a grass, which the texture of komatiites resembles) that occur in ancient shields of 3.7 to 1.8 billion years (Ga) plus an example at Gorgona Island at 88Ma. The type locality is the Komati Formation in the Barberton greenstone belt of South Africa, ultrabasic intrusives and lava flows with up to 25-29% MgO and generally over 18% and an extrusion temperature of 1,600oC. Recent studies reinterpret Barberton komatiites as shallow intrusives derived from hydrous liquids (4-6% H2O), with lower liquidus temperatures (1370-1400°C). The main minerals are olivine (forsterite 90%+, fayalite 10%), pyroxene that is calcic and often chromic (augite), plagioclase feldspar (anorthite 85%, albite 15%), chromite and Fe/Cr mixed oxides. Minor minerals include pargasitic amphibole with >20% MgO, phlogopite mica, baddeleyite, ilmenite and pyrope garnet. First recognised in the 1960s, they compare with modern basalts, none of which have more than 9%MgO and none have a spinifex texture. They provide an insight into: The early volcanic history of the earth; The geochemical and thermal structure of the Archaean mantle; the formation of Fe, Ni and Cu sulphide ore deposits: and the source of diamonds. The nature of some extraterrestrial lava flows on the moon and Mars In the early Hadean, prior to ocean formation, at 4.56-3.80Ga, plate tectonics had not started as everything was molten and anything that solidified sank and converted to eclogite. Oceans formed by 4.40Ga. Evolution of the accreted proto-crust led to the formation of granite and by the late Archaean (about 2.5Ga) plate tectonics started. -
Discovery of Silica-Rich Deposits on Mars by the Spirit Rover
Ancient Aqueous Environments at Endeavour Crater, Mars Authors: R.E. Arvidson1, S.W. Squyres2, J.F. Bell III3, J. G. Catalano1, B.C. Clark4, L.S. Crumpler5, P.A. de Souza Jr.6, A.G. Fairén2, W.H. Farrand4, V.K. Fox1, R. Gellert7, A. Ghosh8, M.P. Golombek9, J.P. Grotzinger10, E. A. Guinness1, K. E. Herkenhoff11, B. L. Jolliff1, A. H. Knoll12, R. Li13, S.M. McLennan14,D. W. Ming15, D.W. Mittlefehldt15, J.M. Moore16, R. V. Morris15, S. L. Murchie17, T.J. Parker9, G. Paulsen18, J.W. Rice19, S.W. Ruff3, M. D. Smith20, M. J. Wolff4 Affiliations: 1 Dept. Earth and Planetary Sci., Washington University in Saint Louis, St. Louis, MO, 63130, USA. 2 Dept. Astronomy, Cornell University, Ithaca, NY, 14853, USA. 3 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA. 4Space Science Institute, Boulder, CO 80301, USA. 5 New Mexico Museum of Natural History & Science, Albuquerque, NM 87104, USA. 6 CSIRO Computational Informatics, Hobart 7001 TAS, Australia. 7 Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada. 8 Tharsis Inc., Gaithersburg MD 20877, USA. 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. 10 Division of Geological and Planetary Sciences, Caltech, Pasadena, CA 91125, USA. 11 U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ 86001, USA. 12 Botanical Museum, Harvard University, Cambridge MA 02138, USA. 13 Dept. of Civil & Env. Eng. & Geodetic Science, Ohio State University, Columbus, OH 43210, USA. 14 Dept. of Geosciences, State University of New York, Stony Brook, NY 11794, USA. -
Acidic Fluids Across Mars: Detections of Magnesium-Nickel Sulfates
ACIDIC FLUIDS ACROSS MARS: DETECTIONS OF MAGNESIUM-NICKEL SULFATES. A. S. Yen1, D. W. Ming2, R. Gellert3, D. W. Mittlefehldt2, E. B. Rampe4, D. T. Vaniman5, L. M. Thompson6, R. V. Morris2, B. C. Clark7, S. J. VanBommel3, R. E. Arvidson8, 1JPL- Caltech ([email protected]), 2NASA-JSC, 3University of Guelph, 4Aerodyne Industries, 5Planetary Science Institute, 6University of New Brunswick, 7Space Science Insti- tute, 7Washington University in St. Louis. Introduction: Calcium, magnesium and ferric iron sulfates have been detected by the instrument suites on the Mars rovers. A subset of the magnesium sulfates show clear associations with nickel. These associations indicate Ni2+ co-precipitation with or substitution for Mg2+ from sulfate-saturated solutions. Nickel is ex- tracted from primary rocks almost exclusively at pH values less than 6, constraining the formation of these Mg-Ni sulfates to mildly to strongly acidic conditions. There is clear evidence for aqueous alteration at the rim of Endeavour Crater (Meridiani Planum), in the Murray formation mudstone (Gale Crater), and near Home Plate (Gusev Crater). The discovery of Mg-Ni sulfates at these locations indicates a history of fluid- rock interactions at low pH. Fig 1: Histogram showing significant concentrations Mars Rovers: The Mars Exploration Rovers of sulfur in APXS analyses by the three Mars rovers (MER), Spirit and Opportunity, landed in January 2004 (mean value: 6.6%). at Gusev Crater and Meridiani Planum, respectively. Spirit traversed over 7.7 km through 2210 sols of sur- face operations, and Opportunity is currently on the degraded rim of Endeavour Crater after 4600 sols and 44 km of traverse. -
Mars Reconnaissance Orbiter and Opportunity Observations Of
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Mars Reconnaissance Orbiter and Opportunity 10.1002/2014JE004686 observations of the Burns formation: Crater Key Point: hopping at Meridiani Planum • Hydrated Mg and Ca sulfate Burns formation minerals mapped with MRO R. E. Arvidson1, J. F. Bell III2, J. G. Catalano1, B. C. Clark3, V. K. Fox1, R. Gellert4, J. P. Grotzinger5, and MER data E. A. Guinness1, K. E. Herkenhoff6, A. H. Knoll7, M. G. A. Lapotre5, S. M. McLennan8, D. W. Ming9, R. V. Morris9, S. L. Murchie10, K. E. Powell1, M. D. Smith11, S. W. Squyres12, M. J. Wolff3, and J. J. Wray13 1 2 Correspondence to: Department of Earth and Planetary Sciences, Washington University in Saint Louis, Missouri, USA, School of Earth and Space R. E. Arvidson, Exploration, Arizona State University, Tempe, Arizona, USA, 3Space Science Institute, Boulder, Colorado, USA, 4Department of [email protected] Physics, University of Guelph, Guelph, Ontario, Canada, 5Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 6U.S. Geological Survey, Astrogeology Science Center, Flagstaff, Arizona, USA, 7 8 Citation: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA, Department Arvidson, R. E., et al. (2015), Mars of Geosciences, Stony Brook University, Stony Brook, New York, USA, 9NASA Johnson Space Center, Houston, Texas, USA, Reconnaissance Orbiter and Opportunity 10Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA, 11NASA Goddard Space Flight Center, observations of the Burns formation: Greenbelt, Maryland, USA, 12Department of Astronomy, Cornell University, Ithaca, New York, USA, 13School of Earth and Crater hopping at Meridiani Planum, J. -
The Degradational History of Endeavour Crater, Mars. J. A
The Degradational History of Endeavour Crater, Mars. J. A. Grant1, T. J. Parker2, L. S. Crumpler3, S. A. Wilson1, M. P. Golombek2, and D. W. Mittlefehldt4, Smithsonian Institution, NASM CEPS, 6th at Independence SW, Washington, DC, 20560 ([email protected]), 2Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, 3New Mexico Museum of Natural History & Science, 1801 Mountain Rd NW, Albuquerque, NM, 87104, 4Astromaterials Research Office, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058. Endeavour crater (2.28°S, 354.77°E) is a Noachian-aged 22 km-diameter impact structure of complex morphology in Meridiani Planum. The degradation state of the crater has been studied using Mars Reconnaissance Orbiter and Opportunity rover data. Exposed rim segments rise ~10 m to ~100 m above the level of the embaying Burns Formation and the crater is 200-500 m deep with the southern interior wall exposing over ~300 m relief. Both pre-impact rocks (Matijevic Formation) and Endeavour impact ejecta (Shoemaker Formation) are present at Cape York, but only the Shoemaker crops out (up to ~140 m) along the rim segment from Murray Ridge to Cape Tribulation. Study of pristine complex craters Bopolu and Tooting, and morphometry of other martian complex craters, enables us to approximate Endeavour’s pristine form. The original rim likely averaged 410 m ±200 m in elevation and a 250-275 m section of ejecta (±50-60 m) would have composed a significant fraction of the rim height. The original crater depth was likely between 1.5 km and 2.2 km. -
The Pancam Instrument for the Exomars Rover
ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. -
Scientific Thought As a Planetary Phenomenon
21st CENTURY SCIENCE & TECHNOLOGY SPRING-SUMMER 2012 www.21stcenturysciencetech.com $10.00 Scientific Thought as A Planetary Phenomenon Vernadsky ‘The Transition from the Biosphere to the Noösphere’ ‘The Evolution of Species and Living Matter’ 21st CENTURY SCIENCE & TECHNOLOGY Vol. 25, Nos. 1, 2 Spring-Summer 2012 Features News GREAT PROJECTS 76 NAWAPA XXI Update INTERVIEW: BRYAN KARNEY 10 The Transition From the Biosphere to the Noösphere 77 NAWAPA: A Bold, Fascinating Vladimir I. Vernadsky Program that Deserves With introduction by translator Bill Jones Consideration! 32 Evolution of Species and Living Matter 82 Three Gorges Dam Proves Its Worth Vladimir I. Vernadsky Translated by Meghan Rouillard SPACE IN MEMORIAM 45 Are Nuclear Processes in Biology Unique? 87 Neil Armstrong: 1930-2012 Ernest Schapiro, MD The Mission and the Man 88 Curiosity Will Open a New 56 ON MIND Chapter in Understanding Mars Shawna Halevy Marsha Freeman 92 Shuttle Opened the Next Space 56 Thinking Without Words Frontier 60 Thinking the Unseen Marsha Freeman BIOLOGY SATIRE 98 The God Particle Cambrian Cannibals 67 (The Secret in the Rabbit Hole) Agnostid Trilobites and the Earliest Known Case of Frederick Harris Arthropod Cannibalism Mark McMenamin, Ph.D. Departments 72 Evolution and Organismic Communication EDITORIAL Jason Ross 2 Scales of Space and Time Jason Ross 5 NEWS BRIEFS VIEWPOINT 7 On Wonder Shawna Halevy BOOKS 94 War Against the Weak, America’s Campaign To Create A Master Race by Edwin Black 97 The Mighty Mars Rovers: The Incredible Adventures of Spirit And Opportunity by Elizabeth Rusch On the Cover: Curiosity studying the Martian regolith. Image: NASA. -
Download Full-Text
SCIENCE ADVANCES | RESEARCH ARTICLE GEOCHEMISTRY Copyright © 2018 The Authors, some Fe-oxide concretions formed by interacting carbonate rights reserved; exclusive licensee and acidic waters on Earth and Mars American Association for the Advancement 1 † 1,2 † 3 4 4 5 4 of Science. No claim to H. Yoshida * , H. Hasegawa * , N. Katsuta , I. Maruyama , S. Sirono , M. Minami , Y. Asahara , original U.S. Government 6 4 7 8 S. Nishimoto , Y. Yamaguchi , N. Ichinnorov , R. Metcalfe Works. Distributed under a Creative Spherical Fe-oxide concretions on Earth, especially in Utah, USA, have been investigated as an analog of hem- Commons Attribution atite spherules found in Meridiani Planum on Mars to support interpretations of water-rock interactions in early NonCommercial Mars. Although several formation mechanisms have been proposed for the Fe-oxide concretions on Earth, it is License 4.0 (CC BY-NC). still unclear whether these mechanisms are viable because a precise formation process and precursor of the concretions are missing. This paper presents evidence that Fe-oxide concretions in Utah and newly found Fe- oxide concretions in Mongolia had spherical calcite concretions as precursors. Different formation stages of calcite and Fe-oxide concretions observed, both in Utah and Mongolia, indicate that calcite concretions initially formed within eolian sandstone strata and were dissolved by infiltrating Fe-rich acidic waters to form spherical FeO(OH) crusts due to pH buffering. The similarity between these Fe-oxide concretions on Earth and the hem- Downloaded from atite spherule occurrences in Meridiani Planum, combined with evidence of acid sulfate water influences on Mars, suggest that the hematite spherules also formed from dissolution of preexisting carbonate spherules possibly formed under a dense carbon dioxide early martian atmosphere. -
I Identification and Characterization of Martian Acid-Sulfate Hydrothermal
Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies by Sarah Rose Black B.A., State University of New York at Buffalo, 2004 M.S., State University of New York at Buffalo, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2018 i This thesis entitled: Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies written by Sarah Rose Black has been approved for the Department of Geological Sciences ______________________________________ Dr. Brian M. Hynek ______________________________________ Dr. Alexis Templeton ______________________________________ Dr. Stephen Mojzsis ______________________________________ Dr. Thomas McCollom ______________________________________ Dr. Raina Gough Date: _________________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Black, Sarah Rose (Ph.D., Geological Sciences) Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation