© 2020 Faria Kalim SATISFYING SERVICE LEVEL OBJECTIVES in STREAM PROCESSING SYSTEMS

Total Page:16

File Type:pdf, Size:1020Kb

© 2020 Faria Kalim SATISFYING SERVICE LEVEL OBJECTIVES in STREAM PROCESSING SYSTEMS © 2020 Faria Kalim SATISFYING SERVICE LEVEL OBJECTIVES IN STREAM PROCESSING SYSTEMS BY FARIA KALIM DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2020 Urbana, Illinois Doctoral Committee: Professor Indranil Gupta, Chair Professor Klara Nahrstedt Assistant Professor Tianyin Xu Dr. Ganesh Ananthanarayanan Abstract An increasing number of real-world applications today consume massive amounts of data in real-time to produce up to date results. These applications include social media sites that show top trends and recent comments, streaming video analytics that identify traffic patterns and movement, and jobs that process ad pipelines. This has led to the proliferation of stream processing systems that process such data to produce real-time results. As these applications must produce results quickly, users often wish to impose performance requirements on the stream processing jobs, in the form of service level objectives (SLOs) that include producing results within a specified deadline or producing results at a certain throughput. For example, an application that identifies traffic accidents can have tight latency SLOs as paramedics may need to be informed, where given a video sequence, results should be produced within a second. A social media site could have a throughput SLO where top trends should be updated with all received input per minute. Satisfying job SLOs is a hard problem that requires tuning various deployment parameters of these jobs. This problem is made more complex by challenges such as 1) job input rates that are highly variable across time e.g., more traffic can be expected during the day than at night, 2) transparent components in the jobs’ deployed structure that the job developer is unaware of, as they only understand the application-level business logic of the job, and 3) different deployment environments per job e.g., on a cloud infrastructure vs. on a local cluster. In order to handle such challenges and ensure that SLOs are always met, developers often over-allocate resources to jobs, thus wasting resources. In this thesis, we show that SLO satisfaction can be achieved by resolving (i.e., preventing or mitigating) bottlenecks in key components of a job’s deployed structure. Bottlenecks occur when tasks in a job do not have sufficient allocation of resources (CPU, memory or disk), or when the job tasks are assigned to machines in a way that does not preserve locality and causes unnecessary message passing over the network, or when there are an insufficient number of tasks to process job input. We have built three systems that tackle the challenges of satisfying SLOs of stream processing jobs that face a combination of these bottlenecks in various environments. We have developed Henge, a system that achieves SLO satisfaction of stream processing jobs deployed on a multi-tenant cluster of resources. As the input rates of jobs change dynamically, Henge makes cluster-level resource allocation decisions to continually meet jobs’ SLOs in spite of limited cluster resources. Second, we have developed Meezan, a system that aims to remove the burden of finding the ideal resource allocation of jobs deployed on commercial cloud platforms, in terms of performance and cost, for new users of stream processing. When a user submits their job ii to Meezan, it provides them with a spectrum of throughput SLOs for their jobs, where the most performant choice is associated with the highest resource usage and consequently cost, and vice versa. Finally, we have built Caladrius in collaboration with Twitter that enables users to model and predict how input rates of jobs may change in the future. This allows Caladrius to preemptively scale a job out when it anticipates high workloads to prevent SLO misses. Henge is built atop Apache Storm [7], while Meezan and Caladrius are integrated with Apache Heron [112]. iii Acknowledgments I would like to thank my advisor, Professor Indranil Gupta, for his unfailing support and guidance. I have benefited enormously from his immense knowledge and constant motivation during the course of my Ph.D. study. He has been a mentor both professionally and personally, and has given me opportunities that I could not have ever had without his help. I am incredibly grateful for the privilege of having been his student. Additionally, I would like to thank my committee members, Prof. Klara Nahrstedt, Prof. Tianyin Xu and Dr. Ganesh Ananthanarayanan, for providing insightful feedback that helped shape my thesis. I have always looked up to Klara as the role model of an impactful female researcher in STEM. Meeting Tianyin was a turning point during grad school: I always found his optimism and energy uplifting, and am going to miss his encouragement outside school. Ganesh’s work has always set the bar for me, for what cutting-edge research in systems and networking should look like, and I have tried to meet it as best as I could. I have also had the chance to meet great collaborators during my journey. Asser Tantawi at IBM Research emphasized the importance of building systems on strong theoretical grounds. The Real-Time Compute team at Twitter (especially Huijun Wu, Ning Wang, Neng Lu and Maosong Fu) gave me great insight into streaming systems and were a massive help with Caladrius. I would like to express my sincere gratitude to Lalith Suresh, who was my internship mentor at VMware Research, and gave me the opportunity to work on incredibly exciting research. I will always be inspired by his kindness towards me, his meticulous approach towards research, and his high standards for system building and emphasis on reproducibility. I have had the privilege to make amazing friends in Urbana-Champaign. I will always be inspired by Farah Hariri and Humna Shahid, who have set an example for what great strength of character and selflessness looks like. I am indebted to Sangeetha Abdu Jyothi for her buoyant positivity, advice and help, in and out of grad school. Sneha Krishna Kumaran and Pooja Malik have been close friends through thick and thin. I am also thankful to Huda Ibeid, who is marvelously personable and broke many barriers for me. I am incredibly grateful to serendipity for giving me the chance to meet these amazing women in grad school and I will treasure their friendship forever. A special thanks to Mainak Ghosh, Rui Yang, Shadi Abdollahian Noghabi, Jayasi Mehar, and Mayank Bhatt for their kindness and support during my lows. I would also like to thank Le Xu, Beomyeol Jeon, Shegufta Ahsan Bakht, Safa Messaoud and Assma Boughoula for all the wonderful times we have spent together. I am grateful to the Computer Science Department at University of Illinois, Urbana Champaign, iv for giving me the opportunity to pursue a doctorate at this amazing institution. Many thanks to the staff of the department, including but not limited to: Viveka Perera Kudaligama, Samantha Smith, Kathy Runck, Kara MacGregor, Mary Beth Kelley, Maggie Metzger Chappell and Samantha Hendon for their help and support at countless times during my Ph.D. process. I am thankful to the National Science Foundation, Microsoft, and Sohaib and Sara Abbasi for funding my work. I will always look up to Sohaib Abbasi as a role model, who generously gave back to his country by establishing a fellowship for Pakistani students pursuing higher education. He is an inspiration and I hope I can demonstrate a generosity equal to his in my career. I would like to extend my gratitude to Dr. Usman Ilyas Dr. Tahir Azim, and Dr. Aamir Shafi, who were my mentors at my undergraduate alma mater, at National University of Science and Technology, Pakistan. My journey would not have started without their support. Finally and most importantly, I would like to thank my family for their unconditional love and support. My parents’ faith in me gives me the courage to do things I could otherwise not even contemplate. They are exemplary people who have fought many difficult battles in their life, have served their country well and have made countless sacrifices for their children. I hope that my efforts make them proud. Umar Kalim is a pillar of support, guidance and empathy, who I will always need. Umairah Kalim has always been a source of warmth, encouragement and strength, and Zubair Khan is the invaluable glue that holds our family together. I dedicate this dissertation to them. v To my family. vi Table of Contents Chapter 1 Introduction .................................... 1 1.1 Thesis Contributions.................................4 1.2 Thesis Organization..................................5 Chapter 2 Henge: Intent-Driven Multi-Tenant Stream Processing.............. 6 2.1 Introduction......................................6 2.2 Contributions.....................................8 2.3 Henge Summary...................................9 2.4 Background...................................... 11 2.5 System Design.................................... 13 2.6 Henge State Machine................................. 15 2.7 Juice: Definition and Algorithm........................... 19 2.8 Implementation.................................... 22 2.9 Evaluation....................................... 22 2.10 Related Work..................................... 37 2.11 Conclusion...................................... 39 Chapter 3 Caladrius: A Performance Modelling Service for Distributed Stream Process- ing Systems......................................... 41 3.1
Recommended publications
  • Network Traffic Profiling and Anomaly Detection for Cyber Security
    Network traffic profiling and anomaly detection for cyber security Laurens D’hooge Student number: 01309688 Supervisors: Prof. dr. ir. Filip De Turck, dr. ir. Tim Wauters Counselors: Prof. dr. Bruno Volckaert, dr. ir. Tim Wauters A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Science in Information Engineering Technology Academic year: 2017-2018 Acknowledgements This thesis is the result of 4 months work and I would like to express my gratitude towards the people who have guided me throughout this process. First and foremost I’d like to thank my thesis advisors prof. dr. Bruno Volckaert and dr. ir. Tim Wauters. By virtue of their knowledge and clear communication, I was able to maintain a clear target. Secondly I would like to thank prof. dr. ir. Filip De Turck for providing me the opportunity to conduct research in this field with the IDLab research group. Special thanks to Andres Felipe Ocampo Palacio and dr. Marleen Denert are in order as well. Mr. Ocampo’s Phd research into big data processing for network traffic and the resulting framework are an integral part of this thesis. Ms. Denert has been the go-to member of the faculty staff for general advice and administrative dealings. The final token of gratitude I’d like to extend to my family and friends for their continued support during this process. Laurens D’hooge Network traffic profiling and anomaly detection for cyber security Laurens D’hooge Supervisor(s): prof. dr. ir. Filip De Turck, dr. ir. Tim Wauters Abstract— This article is a short summary of the research findings of a creation of APT2.
    [Show full text]
  • Optimizing Resource Utilization in Distributed Computing Systems For
    THESE` DE DOCTORAT DE L’ETABLISSEMENT´ UNIVERSITE´ BOURGOGNE FRANCHE-COMTE´ PREPAR´ EE´ A` L’UNIVERSITE´ DE FRANCHE-COMTE´ Ecole´ doctorale n°37 Sciences Pour l’Ingenieur´ et Microtechniques Doctorat d’Informatique par ANTHONY NASSAR Optimizing Resource Utilization in Distributed Computing Systems for Automotive Applications Optimisation de l’utilisation des ressources dans les systemes` informatiques distribues´ pour les applications automobiles These` present´ ee´ et soutenue publiquement le 04-02-2021 a` Belfort, devant le Jury compose´ de : MR CERIN CHRISTOPHE Professeur a` l’Universite´ Sorbonne Paris Nord President´ MR CHBEIR RICHARD Professeur a` l’Universite´ de Pau et des Pays de l’Adour Rapporteur MME BENBERNOU SALIMA Professeur a` l’Universite´ Paris-Descartes Rapporteur MR MOSTEFAOUI AHMED Maˆıtre de conferences´ a` l’Universite´ de Franche-Comte´ Directeur de these` MR DESSABLES FRANC¸ OIS Ingenieur´ chez Groupe PSA Codirecteur de these` DOCTORAL THESIS OF THE UNIVERSITY BOURGOGNE FRANCHE-COMTE´ INSTITUTION PREPARED AT UNIVERSITE´ DE FRANCHE-COMTE´ Doctoral school n°37 Engineering Sciences and Microtechnologies Computer Science Doctorate by ANTHONY NASSAR Optimizing Resource Utilization in Distributed Computing Systems for Automotive Applications Optimisation de l’utilisation des ressources dans les systemes` informatiques distribues´ pour les applications automobiles Thesis presented and publicly defended in Belfort, on 04-02-2021 Composition of the Jury : CERIN CHRISTOPHE Professor at Universite´ Sorbonne Paris Nord President
    [Show full text]
  • Evaluating the Impact of Streaming Systems Design on Application Performance Alessio Pagliari
    Evaluating the impact of streaming systems design on application performance Alessio Pagliari To cite this version: Alessio Pagliari. Evaluating the impact of streaming systems design on application performance. Data Structures and Algorithms [cs.DS]. Université Côte d’Azur, 2021. English. NNT : 2021COAZ4011. tel-03273377 HAL Id: tel-03273377 https://tel.archives-ouvertes.fr/tel-03273377 Submitted on 29 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT Évaluer l'impact de la conception des systèmes de streaming sur la performance des applications Alessio PAGLIARI Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S) Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en Informatique Jean-Marc Pierson, Professeur, Université Paul Sabatier Toulouse 3 d’Université Côte d’Azur Guillaume Pierre, Professeur, Université de Rennes 1 Pietro Michiardi, Professeur, Eurecom Dirigée par : Fabrice Huet / Fabrice Huet, Professeur, Université Côte d’Azur Guillaume Urvoy-Keller, Professeur,
    [Show full text]
  • Apache Samza
    Apache Samza Martin Kleppmann Definition vehicles, or the writes of records to a database. Apache Samza is an open source frame- Stream processing jobs are long- work for distributed processing of high- running processes that continuously volume event streams. Its primary design consume one or more event streams, goal is to support high throughput for a invoking some application logic on wide range of processing patterns, while every event, producing derived output providing operational robustness at the streams, and potentially writing output massive scale required by Internet com- to databases for subsequent querying. panies. Samza achieves this goal through While a batch process or a database a small number of carefully designed ab- query typically reads the state of a stractions: partitioned logs for messag- dataset at one point in time, and then ing, fault-tolerant local state, and cluster- finishes, a stream processor is never based task scheduling. finished: it continually awaits the arrival of new events, and it only shuts down when terminated by an administrator. Many tasks can be naturally ex- Overview pressed as stream processing jobs, for example: Stream processing is playing an increas- • aggregating occurrences of events, ingly important part of the data man- e.g., counting how many times a agement needs of many organizations. particular item has been viewed; Event streams can represent many kinds • computing the rate of certain events, of data, for example, the activity of users e.g., for system diagnostics, report- on a website, the movement of goods or ing, and abuse prevention; 1 2 Martin Kleppmann • enriching events with information the scalability of Samza is directly at- from a database, e.g., extending user tributable to the choice of these founda- click events with information about tional abstractions.
    [Show full text]
  • A Novel Cloud Broker-Based Resource Elasticity Management and Pricing for Big Data Streaming Applications
    A Novel Cloud Broker-based Resource Elasticity Management and Pricing for Big Data Streaming Applications by Olubisi A. Runsewe Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electronic Business School of Electrical Engineering and Computer Science Faculty of Engineering University of Ottawa c Olubisi A. Runsewe, Ottawa, Canada, 2019 Abstract The pervasive availability of streaming data from various sources is driving todays' enterprises to acquire low-latency big data streaming applications (BDSAs) for extracting useful information. In parallel, recent advances in technology have made it easier to collect, process and store these data streams in the cloud. For most enterprises, gaining insights from big data is immensely important for maintaining competitive advantage. However, majority of enterprises have difficulty managing the multitude of BDSAs and the complex issues cloud technologies present, giving rise to the incorporation of cloud service brokers (CSBs). Generally, the main objective of the CSB is to maintain the heterogeneous quality of service (QoS) of BDSAs while minimizing costs. To achieve this goal, the cloud, al- though with many desirable features, exhibits major challenges | resource prediction and resource allocation | for CSBs. First, most stream processing systems allocate a fixed amount of resources at runtime, which can lead to under- or over-provisioning as BDSA demands vary over time. Thus, obtaining optimal trade-off between QoS violation and cost requires accurate demand prediction methodology to prevent waste, degradation or shutdown of processing. Second, coordinating resource allocation and pricing decisions for self-interested BDSAs to achieve fairness and efficiency can be complex.
    [Show full text]
  • Configuring Data Stream Processing
    Numéro National de Thèse : 2019LYSEN050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée par l’École Normale Supérieure de Lyon École Doctorale N◦512 Ecole Doctorale en Informatique et Mathématiques de Lyon Discipline : Informatique Soutenue publiquement le 23/09/2019, par : Alexandre DA SILVA VEITH Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure Mécanismes prenant en compte la qualité de service pour la (re)configuration d’applications de traitement de flux de données sur une infrastructure hautement distribuée Devant le jury composé de : Omer RANA Professeur Université de Cardiff (UK) Rapporteur Patricia STOLF Maître de Conférences Université Paul Sabatier Rapporteure Hélène COULLON Maître de Conférences IMT Atlantique Examinatrice Frédéric DESPREZ Directeur de Recherche Inria Examinateur Guillaume PIERRE Professeur Université Rennes 1 Examinateur Laurent LEFEVRE Chargé de Recherche Inria Directeur Marcos DIAS DE ASSUNCAO Chargé de Recherche Inria Co-encadrant ii Contents Acknowledgments vii French Abstract ix 1 Introduction 1 1.1 Challenges in Data Stream Processing (DSP) Applications Deployment . .3 1.1.1 Challenges in Edge Computing . .4 1.1.2 Challenges in Cloud Computing . .4 1.1.3 Challenges in DSP Operator Placement . .4 1.1.4 Challenges in DSP Application Reconfiguration . .4 1.2 Research Problem and Objectives . .5 1.3 Evaluation Methodology . .5 1.4 Thesis Contribution . .6 1.5 Thesis Organisation . .6 2 State-of-the-art and Positioning 9 2.1 Introduction . .9 2.2 Data Stream Processing Architecture and Elasticity . 10 2.2.1 Online Data Processing Architecture . 10 2.2.2 Data Streams and Models .
    [Show full text]
  • A Comprehensive Solution for Research-Oriented Cloud Computing
    A Comprehensive Solution for Research-Oriented Cloud Computing B Mevlut A. Demir( ), Weslyn Wagner, Divyaansh Dandona, and John J. Prevost The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA {mevlut.demir,jeff.prevost}@utsa.edu, {weslyn.wagner,ubm700}@my.utsa.edu Abstract. Cutting edge research today requires researchers to perform computationally intensive calculations and/or create models and simu- lations using large sums of data in order to reach research-backed con- clusions. As datasets, models, and calculations increase in size and scope they present a computational and analytical challenge to the researcher. Advances in cloud computing and the emergence of big data analytic tools are ideal to aid the researcher in tackling this challenge. Although researchers have been using cloud-based software services to propel their research, many institutions have not considered harnessing the Infras- tructure as a Service model. The reluctance to adopt Infrastructure as a Service in academia can be attributed to many researchers lacking the high degree of technical experience needed to design, procure, and manage custom cloud-based infrastructure. In this paper, we propose a comprehensive solution consisting of a fully independent cloud automa- tion framework and a modular data analytics platform which will allow researchers to create and utilize domain specific cloud solutions irrespec- tive of their technical knowledge, reducing the overall effort and time required to complete research. Keywords: Automation · Cloud computing · HPC Scientific computing · SolaaS 1 Introduction The cloud is an ideal data processing platform because of its modularity, effi- ciency, and many possible configurations. Nodes in the cloud can be dynamically spawned, configured, modified, and destroyed as needed by the application using pre-defined application programming interfaces (API).
    [Show full text]
  • Configuring Data Stream Processing Applications on Highly Distributed Infrastructure Alexandre Da Silva Veith
    Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure Alexandre da Silva Veith To cite this version: Alexandre da Silva Veith. Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure. Distributed, Parallel, and Cluster Com- puting [cs.DC]. Université de Lyon, 2019. English. NNT : 2019LYSEN050. tel-02385744v2 HAL Id: tel-02385744 https://hal.inria.fr/tel-02385744v2 Submitted on 20 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Numéro National de Thèse : 2019LYSEN050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée par l’École Normale Supérieure de Lyon École Doctorale N◦512 Ecole Doctorale en Informatique et Mathématiques de Lyon Discipline : Informatique Soutenue publiquement le 23/09/2019, par : Alexandre DA SILVA VEITH Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure Mécanismes prenant en compte la qualité de service
    [Show full text]
  • A Survey of State Management in Big Data Processing Systems
    A Survey of State Management in Big Data Processing Systems Quoc-Cuong To1 Juan Soto1,2 Volker Markl1,2 1 German Research Center for 2 Technische Universität Berlin Artificial Intelligence (DFKI) FG DIMA, Sekr. EN-7 Raum 728, Alt-Moabit 91c Einsteinufer 17 10559 Berlin, Germany 10587 Berlin, Germany [email protected] [email protected] [email protected] ABSTRACT graphs or trees (in the absence of iterations or shared results). From The concept of state and its applications vary widely across big data this perspective, the analysis results are the roots, operators are the processing systems. This is evident in both the research literature intermediate nodes, and data are the leaves. Each operator node and existing systems, such as Apache Flink, Apache Heron, Apache performs an operation that transforms inputs flowing through it into Samza, Apache Spark, and Apache Storm. Given the pivotal role outputs. Data flows from the leaves through the operator nodes to that state management plays, particularly, for iterative batch and the roots. stream processing, in this survey, we present examples of state as Operators come in two varieties. Stateless operators are an enabler, discuss the alternative approaches used to handle and purely functional and they produce output, solely based on their implement state, capture the many facets of state management, and input. Examples of stateless operators include relational selection, highlight new research directions. Our aim is to provide insight into relational projection without duplicate elimination, or merging two disparate state management techniques, motivate others to pursue inputs. In contrast, stateful operators compute their output on a research in this area, and draw attention to open problems.
    [Show full text]
  • The Evolution of Smart Stream Processing Architecture Enhancing the Kappa Architecture for Stateful Streams
    WHITEPAPER The Evolution of Smart Stream Processing Architecture Enhancing the Kappa Architecture for Stateful Streams Background Real world streaming use cases are pushing the boundaries of traditional data analytics. Up until now, the shift from bounded to unbounded was occurring at a much slower pace. 5G, however, is promising to revolutionize the connectivity of not just people but also things such as industrial machinery, residential appliances, medical devices, utility meters and more. By the year 2021, Gartner estimates that a total of 25.1 billion edge devices will be installed worldwide. With sub-millisecond latency guarantees and over 1MM devices/km2 stipulated in the 5G standard, companies are being forced to operate in a hyper-connected world. The capabilities of 5G will enable a new set of real-time applications that will now leverage the low latency ubiquitous networking to create many new use cases around Industrial & Medical IoT, AR/VR, immersive gaming and more. All this will put a massive load on traditional data management architectures. The primary reason for the break in existing architecture patterns stems from the fact that we are moving from managing and analyzing bounded data sets, to processing and making decisions on unbounded data streams. Typically, bound data has a known ending point and is relatively fixed. An example of bounded data would be subscriber account data at a Communications Service Provider (CSP). Analyzing and acting on bounded datasets is relatively easy. Traditional relational databases can solve most bounded data problems. On the other hand, unbound data is infinite and not always sequential. For example, monitoring temperature and pressure at various points in a manufac- turing facility is unbounded data.
    [Show full text]
  • A Quick and Flexible Stream Processing Application Prototype Generator Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller
    NAMB: A Quick and Flexible Stream Processing Application Prototype Generator Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller To cite this version: Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller. NAMB: A Quick and Flexible Stream Pro- cessing Application Prototype Generator. The 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing, May 2020, Melbourne, Australia. hal-02483008 HAL Id: hal-02483008 https://hal.archives-ouvertes.fr/hal-02483008 Submitted on 18 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NAMB: A Quick and Flexible Stream Processing Application Prototype Generator Alessio Pagliari, Fabrice Huet, Guillaume Urvoy-Keller Universite Cote d’Azur, CNRS, I3S falessio.pagliari, fabrice.huet, [email protected] Abstract—The importance of Big Data is nowadays established, implementation designs may be costly and time-consuming. both in industry and research fields, especially stream processing Current works commonly use test applications as benchmarks for its capability to analyze continuous data streams and provide or mocks of production applications. Most of the available test statistics in real-time. Several data stream processing (DSP) platforms exist like the Storm, Flink, Spark Streaming and applications tend to be bounded to the platform or scenario Heron Apache projects, or industrial products such as Google they are evaluated on.
    [Show full text]
  • DEPENDABLE CLOUD RESOURCES for BIG-DATA BATCH PROCESSING & STREAMING FRAMEWORKS by Bara Abusalah
    DEPENDABLE CLOUD RESOURCES FOR BIG-DATA BATCH PROCESSING & STREAMING FRAMEWORKS by Bara Abusalah A Dissertation Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy School of Electrical and Computer Engineering West Lafayette, Indiana May 2021 THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Prof. Arif Ghafoor, Chair Electrical and Computer Engineering Department Prof. Patrick Eugster Computer Science Department Prof. Samuel Midkiff Electrical and Computer Engineering Department Prof. Walid Aref Computer Science Department Approved by: Prof. Dimitrios Peroulis 2 TABLE OF CONTENTS LIST OF FIGURES .................................... 7 ABSTRACT ........................................ 9 1 INTRODUCTION ................................... 11 1.1 Failures in Cloud Computing & Big Data Applications ............ 12 1.2 Observations/Motivations ............................ 13 Streaming & Batch Frameworks Recovery Time ............ 13 Limitations of Checkpointing ...................... 13 Redundant Work ............................. 14 Byzantine vs Crash Failures ....................... 15 Models of Consistency in Streaming Frameworks ........... 15 Cheaper Hardware & Idle Machines ................... 16 1.3 Objectives based on Observations ........................ 17 1.3.1 Multi Framework Approach ....................... 17 1.3.2 Minimum Recovery Time Possible ................... 18 1.3.3 Flexibility, Customizability & Reusability ............... 20
    [Show full text]