Annual Report & Accounts 2006-2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quantum Biology: an Update and Perspective
quantum reports Review Quantum Biology: An Update and Perspective Youngchan Kim 1,2,3 , Federico Bertagna 1,4, Edeline M. D’Souza 1,2, Derren J. Heyes 5 , Linus O. Johannissen 5 , Eveliny T. Nery 1,2 , Antonio Pantelias 1,2 , Alejandro Sanchez-Pedreño Jimenez 1,2 , Louie Slocombe 1,6 , Michael G. Spencer 1,3 , Jim Al-Khalili 1,6 , Gregory S. Engel 7 , Sam Hay 5 , Suzanne M. Hingley-Wilson 2, Kamalan Jeevaratnam 4, Alex R. Jones 8 , Daniel R. Kattnig 9 , Rebecca Lewis 4 , Marco Sacchi 10 , Nigel S. Scrutton 5 , S. Ravi P. Silva 3 and Johnjoe McFadden 1,2,* 1 Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK; [email protected] (Y.K.); [email protected] (F.B.); e.d’[email protected] (E.M.D.); [email protected] (E.T.N.); [email protected] (A.P.); [email protected] (A.S.-P.J.); [email protected] (L.S.); [email protected] (M.G.S.); [email protected] (J.A.-K.) 2 Department of Microbial and Cellular Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] 3 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK; [email protected] 4 School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; [email protected] (K.J.); [email protected] (R.L.) 5 Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, -
Catalysishub NEWSLETTER
CatalysisHub NEWSLETTER The UK Catalysis Hub has created a thriving and successful network of catalytic scientists who are developing and promoting catalytic science in the UK. The Hub has succeeded in coordinating the community and is contributing to the development of new approaches and techniques in the field. It has provided substantial added value and is now recognised widely both in the UK and internationally. It will provide an excellent base for the future development of this crucial area of science in the UK. “The Hub has demonstrated resilience in the current pandemic with the community coming together to support each other through webinars and training courses and we will continue these in more normal times. Our proposal round was very successful with a large number of high quality proposals submitted and we have funded an excellent portfolio of research. The next few months will hopefully see an easing of the lockdown and an increase in our ability to do research. We hope that all are keeping well and safe and we look forward to meeting in person when we can and discussing catalytic research face to face.” ~ Professor Christopher Hardacre, Director Events Highlights of 2020 online via our website, so they will be a future resource for the whole catalysis community. COVID-19 has had a major impact on scientific network and dissemination due to travel UKCC 2020, 7 - 9 January 2020 restrictions and social distancing making face to face meetings and conferences unfeasible. The UK Catalysis Hub winter conference was held virtually and we worked on a vibrant programme of webinars, scientific discussions and other online events. -
EMBC Annual Report 2007
EMBO | EMBC annual report 2007 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION | EUROPEAN MOLECULAR BIOLOGY CONFERENCE EMBO | EMBC table of contents introduction preface by Hermann Bujard, EMBO 4 preface by Tim Hunt and Christiane Nüsslein-Volhard, EMBO Council 6 preface by Marja Makarow and Isabella Beretta, EMBC 7 past & present timeline 10 brief history 11 EMBO | EMBC | EMBL aims 12 EMBO actions 2007 15 EMBC actions 2007 17 EMBO & EMBC programmes and activities fellowship programme 20 courses & workshops programme 21 young investigator programme 22 installation grants 23 science & society programme 24 electronic information programme 25 EMBO activities The EMBO Journal 28 EMBO reports 29 Molecular Systems Biology 30 journal subject categories 31 national science reviews 32 women in science 33 gold medal 34 award for communication in the life sciences 35 plenary lectures 36 communications 37 European Life Sciences Forum (ELSF) 38 ➔ 2 table of contents appendix EMBC delegates and advisers 42 EMBC scale of contributions 49 EMBO council members 2007 50 EMBO committee members & auditors 2007 51 EMBO council members 2008 52 EMBO committee members & auditors 2008 53 EMBO members elected in 2007 54 advisory editorial boards & senior editors 2007 64 long-term fellowship awards 2007 66 long-term fellowships: statistics 82 long-term fellowships 2007: geographical distribution 84 short-term fellowship awards 2007 86 short-term fellowships: statistics 104 short-term fellowships 2007: geographical distribution 106 young investigators 2007 108 installation -
Science & Policy Meeting Jennifer Lippincott-Schwartz Science in The
SUMMER 2014 ISSUE 27 encounters page 9 Science in the desert EMBO | EMBL Anniversary Science & Policy Meeting pageS 2 – 3 ANNIVERSARY TH page 8 Interview Jennifer E M B O 50 Lippincott-Schwartz H ©NI Membership expansion EMBO News New funding for senior postdoctoral In perspective Georgina Ferry’s enlarges its membership into evolution, researchers. EMBO Advanced Fellowships book tells the story of the growth and ecology and neurosciences on the offer an additional two years of financial expansion of EMBO since 1964. occasion of its 50th anniversary. support to former and current EMBO Fellows. PAGES 4 – 6 PAGE 11 PAGES 16 www.embo.org HIGHLIGHTS FROM THE EMBO|EMBL ANNIVERSARY SCIENCE AND POLICY MEETING transmissible cancer: the Tasmanian devil facial Science meets policy and politics tumour disease and the canine transmissible venereal tumour. After a ceremony to unveil the 2014 marks the 50th anniversary of EMBO, the 45th anniversary of the ScienceTree (see box), an oak tree planted in soil European Molecular Biology Conference (EMBC), the organization of obtained from countries throughout the European member states who fund EMBO, and the 40th anniversary of the European Union to symbolize the importance of European integration, representatives from the govern- Molecular Biology Laboratory (EMBL). EMBO, EMBC, and EMBL recently ments of France, Luxembourg, Malta, Spain combined their efforts to put together a joint event at the EMBL Advanced and Switzerland took part in a panel discussion Training Centre in Heidelberg, Germany, on 2 and 3 July 2014. The moderated by Marja Makarow, Vice President for Research of the Academy of Finland. -
Jarid2 Coordinates Nanog Expression and PCP/Wnt Signaling Required for Efficient ESC Differentiation and Early Embryo Developmen
Article Jarid2 Coordinates Nanog Expression and PCP/Wnt Signaling Required for Efficient ESC Differentiation and Early Embryo Development Graphical Abstract Authors David Landeira, Hakan Bagci, Andrzej R. Malinowski, ..., Thomas Carroll, Matthias Merkenschlager, Amanda G. Fisher Correspondence [email protected] (D.L.), amanda.fi[email protected] (A.G.F.) In Brief Landeira et al. show that Jarid2-null ESCs have reduced Wnt9a/Prickle1/Fzd2 and low b-catenin activity, resulting in altered adhesion, constitutive expression of Nanog, and failure to differentiate. Their experiments identify a non-canonical function for Jarid2 in regulating the balance between ESC self-renewal and differentiation. Highlights d ESCs lacking Jarid2 show constitutive Nanog expression d ESCs lacking Jarid2 have reduced PCP/Wnt signaling d Co-culture of Jarid2-null and WT ESCs restores differentiation capability d Jarid2-null ESCs form more than one ICM upon injection to E3.5 mouse blastocysts Landeira et al., 2015, Cell Reports 12, 573–586 July 28, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.06.060 Cell Reports Article Jarid2 Coordinates Nanog Expression andPCP/WntSignalingRequiredforEfficient ESC Differentiation and Early Embryo Development David Landeira,1,2,5,* Hakan Bagci,1,5 Andrzej R. Malinowski,1,5 Karen E. Brown,1 Jorge Soza-Ried,1 Amelie Feytout,1 Zoe Webster,3 Elodie Ndjetehe,3 Irene Cantone,1 Helena G. Asenjo,2 Neil Brockdorff,4 Thomas Carroll,1 Matthias Merkenschlager,1 and Amanda G. Fisher1,* 1Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK 2Department of Computer Science and A. -
Synthetic Biology
From Molecular Biology to Synthetic Biology, what’s new? Sandra Taylor, Senior Research Technician, BSc (Hons), Mphil, Rsci, MIScT [email protected] (0161) 306 5131 Small beginnings in Norwich, after my first degree • 1987 - First lab job veterinary tests: Bacteriology, post mortems, blood, urine, faeces tests etc. Plant Molecular Genetics 1988 to 1998 – the lab grew from 6 to 16 people and several papers were published on the way that flowering is controlled. 1998 to 2001: Biochemistry Division, School of Biological Sciences, Manchester University – I supported 6 research groups, sharing expertise. Topics from cell division (in toads) to asthma (in horses and people), and cultured human cells. Career Break from 2001 to 2007 • Starting again after 6 years was a challenge but I soon got back up to speed. Technical roles are very varied, never boring, a bit like being a Mum! 2007 to present • I spent 7 years in the Michael Smith Building (Life Sciences) – various roles (cell culture, cloning, yeast two-hybrid) • In 2014 I moved to the MIB – more Chemistry/Biochemistry focussed Nano-scale 3D printing?! Micro-titre plates with 96, 384 or even 1536 sample wells – technology is being developed to “write” strings of DNA into these tiny wells using 3D nano-printing technology. Present Challenges Supporting SYNBIOCHEM • New subject(s) and equipment to learn about • The new SYMBIOCHEM team is 10 people and 4 robots! • IT technology means writing electronic lab notebooks instead of paper ones! • The new team is multidisciplinary so lots to learn but good fun! • This is now the age of writing DNA, as opposed to just reading it Publications (please note publications I contributed prior to 2006 were under my maiden name of Doyle) Structural Basis for Specific Interaction of TGFβ Signaling Regulators SARA/Endofin with HD-PTP. -
Scientists a Step Closer to Developing Renewable Propane 10 April 2015
Scientists a step closer to developing renewable propane 10 April 2015 change. Efforts to find cleaner, more sustainable forms of energy as well as using biotechnology techniques to produce synthetic chemicals are currently being developed at The University of Manchester." Natural metabolic pathways for the renewable biosynthesis of propane do not exist but scientists at the University have developed an alternative microbial biosynthetic pathway to produce renewable propane. The team led by Nigel Scrutton and Dr Patrik Jones from Imperial College, modified existing fermentative butanol pathways using an engineered enzyme variant to redirect the microbial pathway to produce propane as opposed to butanol. The team was able to achieve propane biosynthesis creating a platform for next-generation microbial propane production. Researchers at The University of Manchester have Propane has very good physicochemical properties made a significant breakthrough in the which allow it to be stored and transported in a development of synthetic pathways that will enable compressed liquid form. While under ambient renewable biosynthesis of the gas propane. This conditions it is a clean-burning gas, with existing research is part of a programme of work aimed at global markets and infrastructure for storage, developing the next generation of biofuels. distribution and utilization in a wide range of applications ranging from heating to transport fuel. This study provides new insight and understanding Consequently, propane is an attractive target of the development of next-generation biofuels. In product in research aimed at developing new this latest study, published in the journal renewable alternatives to complement currently Biotechnology for Biofuels, scientists at the used petroleum-derived fuels. -
Proteins: from Chemical to Physiological Mechanism 26 October 2001
Meeting report report Proteins: from Chemical to Physiological Mechanism 26 October 2001 The Molecular Enzymology Group of the Biochemical Society by David Trentham held a special 1-day meeting at the Royal Society on ‘Proteins: (National Institute of Medical from Chemical to Physiological Mechanism’.The aim of the Research, Mill Hill) and Downloaded from http://portlandpress.com/biochemist/article-pdf/24/3/31/3597/bio024030031.pdf by guest on 01 October 2021 meeting was to inform and stimulate discussion on kinetic Michael Greeves approaches to the life sciences by bringing together work on (University of Kent) dynamic aspects of protein function.The meeting also honoured Professor H. (Freddie) Gutfreund, FRS, on his 80th birthday. Professor Gutfreund persuaded the Executive Committee of the Society to found the Molecular Enzymology Group, the first sub-group of the Society. His view of the strategic value in Professor Freddie encouraging like-minded biochemists to interact has done much to Gutfreund during his provide the critical mass necessary for sustaining excellence in the presentation ‘Development various sub-disciplines of biochemistry. of kinetics in biology’. The talks reflected Professor about how proteins function. and his family. The dinner was Gutfreund’s many contributions In particular, he has made major followed by entertaining and to the study of biochemistry and contributions to the development affectionate talks presented biophysics. His early prominence of transient and relaxation kinetic by Nigel Scrutton, the present arose from developing the method- methods including stopped-flow, Chairman of the Molecular Speakers and Chairmen: ology to study fast events on quenched-flow and pressure- Enzymology Group, Hugh Back row (from left to enzymes which are now central to jump techniques. -
Computational Protein (Re)Design (Computationele Eiwit(Her)Engineering)
Faculty of Science and Engineering Profile report: Computational Protein (Re)design (Computationele eiwit(her)engineering) - Discipline: Chemistry - Level: Assistant or Associate Professor - Fte: Full time (1.0) 1. Scientific discipline The professor in Computational Protein (Re)Design integrates advances in computer sciences with clever experimental concepts to redesign biological macromolecules towards new or altered functionalities. The envisioned research group uses computer sciences (computational design, multiscale modeling, machine learning) and combines this with existing expertise in biochemistry (enzymology, protein engineering, drug design) to further our understanding of the molecular processes of life and to expand the potential of enzymes and other biomolecules for biotechnological or biomedical purposes. 2. Vacancy This position is offered at the Faculty of Science and Engineering (FSE) of the University of Groningen and will be embedded in the Groningen Biomolecular Sciences and Biotechnology Institute (GBB). The GBB institute has 12 vibrant research groups, targeting challenging biological questions in the focal areas ‘Molecular Mechanisms of Biological Processes’ and ‘Physiology and Systems Biology’. The position has been approved by the Faculty board, is part of the Dutch Sector Plans in Chemistry, and falls within the framework of ‘Career Paths in Science 4’ (‘Bèta’s in Banen 4’). 3. Selection committee - Prof. Bert Poolman (Professor in biochemistry), chair - Prof. Marco Fraaije (Professor in molecular enzymology) - Prof. Siewert Jan Marrink (Professor in molecular dynamics) - Prof. Shirin Faraji (Adjunct Professor in theoretical and computational chemistry) - Prof. Marleen Kamperman (Professor in polymer chemistry) - Prof. Dirk-Jan Scheffers (Director of Education, GBB) - Prof. Nigel Scrutton (Professor in Biological Chemistry, University of Manchester) - Mrs. Gwen Tjallinks (Student member) Additional (external) advisors: - Prof. -
(MIB) April 2019 Newsletter Recent Grant Success
Manchester Institute of Biotechnology (MIB) April 2019 Newsletter Recent Grant Success The University has been awarded £10million to launch a UK-wide biomanufacturing research hub that could pave the way for easier and quicker ways to make new medicines and sustainable energy solutions. The Future Biomaunfacturiung Research Hub (Future BRH), which starts on 1 April, will be based at the MIB with “spokes” at Imperial College London, the University of Nottingham, University College London, the UK Catalysis Hub, the Industrial Biotechnology Innovation Centre (IBioIC), and the Centre for Process Integration (CPI). Together, they will work with industrial partners on co-created research programmes to drive the wider adoption of sustainable biomanufacturing. The Hub will develop new biotechnologies that will speed up bio-based manufacturing in three key sectors – pharmaceuticals, chemicals and engineering materials. Accelerating the delivery of such technologies, by making the manufacturing processes more commercially viable, means industry partners will be able to meet the societal needs of ‘clean growth’ more efficiently and on more a scalable, global level. The Hub will be led by Nigel Scrutton with involvement from eight UoM co-investigators: Perdita Barran, Anthony Green, Eriko Takano, Nick Turner (Chemistry), Kostas Theodoropoulos (CEAS), Phil Shapira (Business School), Ros Le Feuvre (Director of Operations) and Kirk Malone (Director of Commercialisation). Louise Woods will be the Project Manager for the Future BRH and Lisa Beattie will be the Senior Project Administrator. The £10M funding comes from EPSRC and BBSRC and will be complimented by around £5M of industry funding. You can read more about the Hub at: UoM Press Release & EPSRC Press Release. -
Suffrage Science Contents
Suffrage science Contents Introduction Brenda Maddox and Vivienne Parry on sex and success in science 3 Love Professor Sarah-Jayne Blakemore and Dr Helen Fisher on love and social cognition 6 Life Professor Liz Robertson and Dr Sohaila Rastan on developmental biology and genetics 10 Structure Professor Dame Louise Johnson and Professor Janet Thornton on structural biology 15 Strife Professors Fiona Watt and Mary Collins on cancer and AIDS 19 Suffrage Heirloom Jewellery Designs to commemorate women in science 23 Suffrage Textiles Ribbons referencing the suffrage movement 33 Index of Featured Women Scientists Pioneering female contributions to Life Science 43 Acknowledgements Contributions and partnerships 47 Tracing Suffrage Heirlooms Follow the provenance of 13 pieces of Suffrage Heirloom Jewellery 48 1 A successful career in science is always demanding of intellect “ hard work and resilience; only more so for most women. ” Professor Dame Sally C Davies From top, left to right: (Row 1) Anne McLaren, Barbara McClintock, Beatrice Hahn, Mina Bissell, Brenda Maddox, Dorothy Hodgkin, (Row 2) Brigid Hogan, Christiane Nüsslein-Volhard, Fiona Watt, Gail Martin, Helen Fisher, Françoise Barré-Sinoussi, (Row 3) Hilde Mangold, Jane Goodall, Elizabeth Blackburn, Janet Thornton, Carol Greider, Rosalind Franklin, (Row 4) Kathleen Lonsdale, Liz Robertson, Louise Johnson, Mary Lyon, Mary Collins, Vivienne Parry, (Row 5) Uta Frith, Amanda Fisher, Linda Buck, Sara-Jayne Blakemore, Sohaila Rastan, Zena Werb 2 Introduction To commemorate 100 years of International Women’s Day in 2011, Suffrage Science unites the voices of leading female life scientists Brona McVittie talks to Vivienne Parry and Brenda Maddox about sex and success in science Dorothy Hodgkin remains the only British woman to Brenda Maddox is author of The Dark Lady of DNA, have been awarded a Nobel Prize for science. -
Manchester Institute of Biotechnology
Manchester Institute of Biotechnology Discovery through innovation Manchester Institute of Biotechnology The Manchester Institute of Biotechnology is committed to the pursuit of research excellence, education, knowledge transfer and discovery through innovation whereby a coherent and integrated interdisciplinary research community work towards developing new biotechnologies that will find applications in areas such as human health, the energy economy, food security and the environment. 3 Manchester Institue of Biotechnology Research is at the heart of The University of Our scientists and engineers are using advanced Manchester and the sheer scale, diversity and quantitative methods to explore the relationship quality of our research activity sets us apart. Much between the macro behaviour of biological systems of this research combines expertise from across and the properties of their nanoscale components. disciplines, making the most of the opportunities We are strongly placed to translate this knowledge that our size and breadth of expertise affords. We’re toward biotechnological application in a wide able to combine disciplines and capabilities to meet range of industrial sectors including chemicals, both the challenges of leading-edge research and pharmaceuticals and energy, whilst increasing our the external demands of government, business and fundamental knowledge of biosciences. communities. An extensive programme of technology and The Manchester Institute of Biotechnology (MIB) instrumentation development lies at the heart of was