February 1, 2008 A Survey of Ultraproduct Constructions in General Topology Paul Bankston Department of Mathematics, Statistics and Computer Science Marquette University Milwaukee, WI 53201-1881
[email protected] A.M.S. Subject Classification (1991): 03-02, 03C20, 03C52, 03C68, 54A25, 54B35, 54C10, 54D05, 54D10, 54D30, 54D80, 54E52, 54F15, 54F45, 54F50, 54F65, 54G10 Key Words and Phrases: ultraproduct, ultracoproduct, topological spaces Dedication: To my early mentors and colleagues: B. Banaschewski, G. Bruns, H. J. Keisler, K. Kunen, E. Nelson and M. E. Rudin. 1. Introduction. This survey is intended primarily for two readerships: general topologists who know a little model theory, and model theorists who know a little general topology. Both camps can boast a healthy constituency, and most of this paper should be readily accessible to anyone in either. The ultraproduct construction has a long and distinguished history. While its beginnings go back to the 1930s with K. G¨odel (who was proving his completeness theorem) and T. Skolem (who was building nonstandard models of arithmetic), it was not until 1955, with the publication of the Fundamental Theorem of Ultraproducts, due to J.Lo´s, that the construction was described explicitly, and its importance to first-order logic became apparent. The understanding of the structure and use of arXiv:math/9709203v1 [math.LO] 2 Sep 1997 ultraproducts developed rapidly during the next fifteen years or so, culminating in the Ultrapower Theorem of H. J. Keisler and S. Shelah (UT). (The gist of the theorem is that two relational structures are elementarily equivalent if and only if an ultrapower of one is isomorphic to an ultrapower of the other.