Dopamine D3 Receptor Antagonism Inhibits Cocaine-Seeking and Cocaine-Enhanced Brain Reward in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Dopamine D3 Receptor Antagonism Inhibits Cocaine-Seeking and Cocaine-Enhanced Brain Reward in Rats The Journal of Neuroscience, November 1, 2002, 22(21):9595–9603 Dopamine D3 Receptor Antagonism Inhibits Cocaine-Seeking and Cocaine-Enhanced Brain Reward in Rats Stanislav R. Vorel,1,2 Charles R. Ashby Jr,4 Mousumi Paul,5 Xinhe Liu,3 Robert Hayes,2 Jim J. Hagan,6 Derek N. Middlemiss,6 Geoffrey Stemp,6 and Eliot L. Gardner1,2,3 1Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224, Departments of 2Neuroscience and 3Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, 4Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Saint John’s University, Jamaica, New York 11439, 5Eon Laboratories, Laurelton, New York 11413, and 6Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex CM19 5AW, United Kingdom The dopamine D3 receptor is preferentially localized to the (2) dose-dependently attenuate cocaine-induced conditioned mesocorticolimbic dopaminergic system and has been hypoth- place preference, and (3) dose-dependently attenuate cocaine- esized to play a role in cocaine addiction. To study the involve- triggered reinstatement of cocaine seeking behavior. Thus, D3 ment of the D3 receptor in brain mechanisms and behaviors receptor blockade attenuates both the rewarding effects of commonly assumed to be involved in the addicting properties cocaine and cocaine-induced drug-seeking behavior. These of cocaine, the potent and selective D3 receptor antagonist data suggest an important role for D3 receptors in mediating the trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl] addictive properties of cocaine and suggest that blockade of cyclohexyl]-4-quinolininecarboxamide (SB-277011-A) was ad- dopamine D3 receptors may constitute a new and useful target ministered to laboratory rats, and the following measures were for prospective pharmacotherapies for cocaine addiction. assessed: (1) cocaine-enhanced electrical brain-stimulation re- ward, (2) cocaine-induced conditioned place preference, and Key words: cocaine; addiction; dopamine; mesolimbic; me- (3) cocaine-triggered reinstatement of cocaine seeking behav- socorticolimbic; D3 receptor; D3 antagonist; brain stimulation ior. Systemic injections of SB-277011-A were found to (1) block reward; BSR; self-stimulation; ICSS; conditioned place prefer- enhancement of electrical brain stimulation reward by cocaine, ence; CPP; self-administration; reinstatement; relapse Aberration in brain dopamine (DA) function is hypothesized to genetic- and drug history-induced vulnerability (Nestler, 1993; underlie drug addiction (Wise and Rompre, 1989; Koob, 1992). Gardner, 1999) and in acute withdrawal from addictive drugs Of the five major DA receptor subtypes (Gardner and Ashby, (Parsons et al., 1991; Weiss et al., 1992). Also, recruitment of 2000), the D3 receptor shows preferential localization in the “opponent process” neural mechanisms may occur during re- mesocorticolimbic system (Levant, 1998; Suzuki et al., 1998), has peated drug taking such that mesolimbic reinforcement function a unique pharmacological profile (Emilien et al., 1999), and is diminished, producing a decreased reward “set point” and activates unique presynaptic and postsynaptic signaling systems consequent drug-seeking and drug-taking behavior (Koob et al., (Emilien et al., 1999; Kuzhikandathil and Oxford, 1999) com- 1993). From such evidence, it has been postulated that mesolim- pared with D1 and D2 receptors. In view of its association with bic hypo-DA function may be a fundamental substrate of addic- limbic loci, the D3 receptor is suggested to play a role in emo- tion (Gardner, 1999). The present experiments addressed the tional, motivational, and reinforcement functions, including the effects of selective DA D3 receptor antagonism in animal models reinforcement produced by addictive drugs (Caine and Koob, relevant to addiction, experiments that to date have been ham- 1993; Pilla et al., 1999). Some evidence suggests that D receptor 3 pered by lack of D3-selective compounds. For the present experi- activation inhibits mesocorticolimbic DA function (Gilbert et al., ments, a novel brain-penetrant, highly selective D3 receptor antag- 1995; Lejeune and Millan, 1995) and that D3 receptor inhibition onist was used, trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin- activates the mesocorticolimbic DA system (Nissbrandt et al., 2-yl)ethyl]cyclohexyl]-4-quinolininecarboxamide (SB-277011-A; 1995); however, many of these studies have been confounded by a Reavill et al., 2000; Stemp et al., 2000). SB-277011-A has high lack of selective pharmacological tools. affinity for both human and rat D3 receptors, with 80- to 100-fold Decreased basal mesolimbic DA function in laboratory animals selectivity over D2 receptors and 66 other receptors, enzymes, appears correlated with high vulnerability to drug seeking and and ion channels (Reavill et al., 2000). Also, SB-277011-A readily drug taking (Nestler, 1993; Gardner, 1999) in animals with both enters the brain after systemic administration (Reavill et al., 2000; Stemp et al., 2000). The compound has been shown to lack effects Received April 4, 2002; revised Aug. 9, 2002; accepted Aug. 16, 2002. on spontaneous amphetamine- and phencyclidine-stimulated lo- We thank Matus Knoblich for preliminary training of animals for the cocaine self-administration protocol and Arlene Campos for assistance with the figures. comotor activity and is free from cataleptic effects even at high Correspondence should be addressed to Dr. Charles R. Ashby Jr, Department of doses (Reavill et al., 2000). Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Saint Specifically, the present experiments in rats were undertaken to John’s University, 8000 Utopia Parkway, Jamaica, NY 11439. E-mail: crashby@ ix.netcom.com. determine the effect of acute D3 receptor antagonism on (1) the Copyright © 2002 Society for Neuroscience 0270-6474/02/229595-09$15.00/0 enhancement of electrical brain stimulation reward (BSR) by • 9596 J. Neurosci., November 1, 2002, 22(21):9595–9603 Vorel et al. D3 Blockade Inhibits Cocaine Reward and Relapse cocaine, (2) cocaine-seeking behavior as measured by cocaine- Conditioned place preference experiments induced conditioned place preference (CPP), and (3) cocaine- Apparatus. An automated CPP apparatus was used as described previ- seeking behavior as measured by cocaine-triggered reinstatement ously (Horan et al., 2000). The conditioning chambers had distinctive of operant behavior (lever pressing) previously reinforced by visual and tactile cues, white walls with commercial rodent bedding on intravenous cocaine injections. In addition, the effect of sub- the floor versus white and black checkerboard walls and a smooth Plexiglas floor. The visual and tactile cues were balanced such that no chronic D receptor antagonism on cocaine-induced CPP was 3 side preference was exhibited before conditioning. assessed. Finally, the ability of acute D3 receptor antagonism to Procedure. CPP acquisition and expression were both assessed as produce catalepsy was assessed. described previously (Horan et al., 2000). Acquisition had four phases: acclimation, handling, conditioning, and testing. During days 1–3, ani- MATERIALS AND METHODS mals were acclimated to the animal facility. During handling (days 4–6), animals were transported to the laboratory and handled for 5 min each. Animals During conditioning (days 7–14), animals were exposed to once-daily For the BSR and cocaine-triggered reinstatement experiments, male conditioning sessions. For each conditioning session, animals were in- Long–Evans rats (350–475 gm at time of surgery) were used, housed jected with either vehicle or SB-277011-A (0.3, 1.0, 3.0, or 10.0 mg/kg, individually. For the CPP and catalepsy experiments, male Sprague i.p.) in the home cage, followed 30 min later by cocaine (15.0 mg/kg, i.p.) Dawley rats (200–225 gm at start of drug–cue or food–cue pairings) were or vehicle, and then immediately confined for 30 min in an appropriate used, housed two per cage. The use of the two different strains was cue-specific chamber. During conditioning, cocaine was always paired because of the fact that the work was performed at two different insti- with one cue-specific environment, and vehicle was paired with the other; tutions, each maintaining a different strain as the standard colony stock cocaine or vehicle exposure (and appropriate environmental pairing) animal. Rats were kept on a 12 hr light/dark schedule, with food and alternated from day to day. On the test day (day 15), animals were water available ad libitum except for reinstatement animals during pre- allowed to move freely between both cue-specific chambers for 15 min, liminary food-reinforced operant training and CPP animals in the food- and the amount of time spent in each was recorded. paired studies. Animals were allowed to acclimate to the animal facility Expression studies with acute SB-277011-A or vehicle were divided for 3–5 d before handling. Experiments were performed in accord with into four phases: acclimation, handling, conditioning, and testing. The the National Institutes of Health Guide for the Care and Use of Laboratory acclimation and handling phases were identical to those of acquisition. Animals, in compliance with all applicable state and federal animal The expression conditioning phase differed from that of acquisition in welfare regulations, and were reviewed by appropriate institutional ani- that, during
Recommended publications
  • Brain Stimulation Reward
    ! Brain Stimulation Reward Peter Shizgal Groupe de recherche en neurobiologie comportementale and Department of Psychology Concordia University phone: +1 (514) 848-2424 ext 2191 fax: 1 (514) 848-2817 [email protected] http://csbn.concordia.ca/Faculty/Shizgal/!! Brain Stimulation Reward !Peter Shizgal Abstract In 1953, Olds and Milner discovered that rats would readily learn to work for electrical stimulation of certain brain sites. Their findings inspired a large body of research on the neural basis of reward, motivation, and learning. Unlike consummatory behaviors, which satiate as a result of ingestion of and contact with the goal object, performance for rewarding brain stimulation is remarkably stable and persistent. Pursuit of the stimulation is enhanced by different classes of dependence-inducing drugs, suggesting that common neural mechanisms underlie the rewarding effects of drugs and electrical brain stimulation. Indeed, dopamine- containing neurons in the midbrain are implicated in both phenomena. Major schools of thought that have addressed brain stimulation reward differ with regards to the roles played by hedonic experience and craving, although there is substantial overlap between the different viewpoints. A tradition that arose in the study of machine learning has been brought to bear on the role of dopamine neurons in reward-related learning in animals and on the phenomenon of intracranial self-stimulation. Neuroeconomic perspectives strive to integrate the processing of benefits, costs, and risks into an account of decision making grounded in brain circuitry. Adjudication of the differences between the various viewpoints and progress towards identifying the relevant neural circuitry has been hindered by the lack of specificity inherent in the use of electrical stimulation to study central nervous system function.
    [Show full text]
  • Intraperitoneal Injections of a Dopamine-Receptor Blocking Agent
    Neuroscience Letters, 1 (1975) 179--184 179 © Elsevier/North-Holland, Amsterdam- Printed in The Netherlands DIFFERENTIAL EFFECTS ON SELF.STIMULATION AND MOTOR BEHAVIOUR PRODUCED BY MICROINTRACRANIAL INJECTIONS OF A DOPAMINE-RECEPTOR BLOCKING AGENT F. MORA, A.M. SANGUINETTI, E.T. ROLLS and S.G. SHAW Department of Experimental Psychology, University of Oxford, Oxford (Great Britain) (Received September 8th, 1975) ( Accepted Se ~tember 8th, 1975) SUMMARY Intraperitoneal injections of a dopamine-receptor blocking agent, spiroperidol, equally and severely attenuated self-stimalation in two groups of rats which either performed the motor task of licking a tube or performed the more complex task of pressing a bar in order to obtain stimulation in the lateral hypothalamus. Unilateral microinjections of 9 ~g of spiroperidol into the nucleus accumbens attenuated self-stimulation without producing an appar- ent impairment of motor behaviour. The same injections into the corpus 3triatum produced an impairment of motor behaviour but self-stimulation was almost unaff~ted. The effect of spiroperidol on self-st£mulaticn can therefore be dissociated from the effect on motor behavlour. These results suggest that dopamine receptors are involved in self-stimulation independently of their role in motor behaviour. PhaL-macological and behavioural studi.es suggest that dopamine is involved in brain stimulation reward [ 2,5,16]. Self-stimulation of the lateral hypothal- amus and of other brain areas [ 11 ] is attenuated by the injection of pharma- cological agents which block dopamine receptors [ 10,11,13,15 ]. Since, how- ever, it is known that dopamine plays an important role in motor behaviour [6], the role of motor disturbance in the attenuation of self-stimulation produced by these pharmacological agents is not clear.
    [Show full text]
  • The Role of Dopamine in Intracranial Self-Stimulation of the Ventral Tegmental Area
    The Journal of Neuroscience, December 1987, 7(12): 38883896 The Role of Dopamine in Intracranial Self-Stimulation of the Ventral Tegmental Area H. C. Fibiger, F. G. LePiane, A. Jakubovic, and A. G. Phillips Division of Neurological Sciences, Department of Psychiatry and Department of Psychology, The University of British Columbia, Vancouver, B.C. V6T 2A1, Canada The role of dopaminergic (DA) neurons in brain stimulation Intracranial self-stimulation (1’3) can be obtained from nu- reward produced by electrical stimulation of the ventral teg- meroussites in the central nervoussystem (Phillips, 1984).There mental area (VTA) was investigated in the rat. In the first is considerableevidence that dopaminergic (DA) neurons are experiment, extensive 6-hydroxydopamine lesions of the as- among the neural substratesthat mediate the reinforcing prop- cending fibers of the mesotelencephalic DA projections re- erties of ICS obtained from at least some of these sites. For sulted in significant changes in intracranial self-stimulation example, the robust ICS obtained from electrodesin the ventral (ICS) rate-current intensity functions when the lesion was tegmental area (VTA), a region rich in DA perikarya, is greatly ipsilateral to the stimulating electrode. Similar contralateral reduced after selective lesions of the ascendingprojections of lesions had no effect on these functions, thus ruling out these neurons (Phillips and Fibiger. 1978). Similarly, ICS ob- lesion-induced performance deficits as being responsible tained from electrodesin the lateral hypothalamus is much re- for the decreases in ICS rates across the wide range of duced by lesionsof the VTA (Koob et al., 1978). In the above current intensities that occurred after the ipsilateral lesions.
    [Show full text]
  • Malanga Lab Reveals the Basis of the “Buzz” New Evidence For
    UNC Bowles Center for Alcohol Studies Non-Profit Organization CB# 7178, Thurston-Bowles Building US Postage University of North Carolina at Chapel Hill PAID Chapel Hill, North Carolina 27599-7178 Permit No. 177 Chapel Hill, NC 27599-1800 Center Line Bowles Center for Alcohol Studies School of Medicine, University of North Carolina at Chapel Hill Our mission is to conduct, coordinate, and promote basic and clinical research on the causes, prevention, and treatment of alcoholism and alcoholic disease. Volume 20, Number 3, September 2009 Malanga Lab Reveals the Basis of the “Buzz” Many people drink alcohol for the receive electrical stimulation of the necessary to for animals to maintain “buzz”—those feelings of relaxation, ventral tegmental area, a component of responding to obtain intracranial geniality, and heightened interest that the mesolimbic system and part of the stimulation. Reductions in brain can accompany drinking in moderation. brain’s reward circuitry. It is thought that stimulation reward thresholds reflect In short, mild intoxication is pleasurable intracranial self-stimulation activates the pleasurable activation of the mesolimbic New Evidence for Metabotropic Glutamate Receptors and rewarding. How important is that brain’s reward circuitry to produce reward system, and the lowering of the As Targets for Alcoholism Therapy “buzz” in the development of feelings of pleasure and euphoria in the threshold for brain stimulation reward alcoholism? Is the “buzz” more same way as drugs of abuse. Animals is a means of quantifying the rewarding All drugs of abuse produce distinct interoceptive/subjective Center for Alcohol Studies and the pleasurable to some people than to work in order to have drugs of abuse and pleasurable effects of drugs in effects that are perceived by the individual and can be Department of Psychiatry, and others? Do inter-individual animals.
    [Show full text]
  • Review Brain Reward Circuitry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron, Vol. 36, 229–240, October 10, 2002, Copyright 2002 by Cell Press Brain Reward Circuitry: Review Insights from Unsensed Incentives Roy A. Wise1 as to the trigger zones at which addictive drugs initiate Behavioral Neuroscience Branch their habit-forming actions. The second discusses pos- Intramural Research Program sible explanations for the fact that drug reward and brain National Institute on Drug Abuse stimulation reward establish seemingly more compul- National Institutes of Health sive habits than do the natural pleasures of life. The final Bethesda, Maryland 20892 section illustrates—again, by contrasting sensed and unsensed incentives—the fuzziness of the distinction between the “receipt” of reward and the prediction of The natural incentives that shape behavior reach the reward. central circuitry of motivation trans-synaptically, via the five senses, whereas the laboratory rewards of Anatomy of Drug Reward intracranial stimulation or drug injections activate re- While there is much to learn about which dopamine ward circuitry directly, bypassing peripheral sensory neurons play roles in incentive motivation and reinforce- pathways. The unsensed incentives of brain stimula- ment and there is much more to learn about the afferents tion and intracranial drug injections thus give us tools to and the efferents from those dopamine neurons, a to identify reward circuit elements within the associa- good deal is known about the brain structures and re- tional portions of the CNS. Such studies have impli- ceptor subtypes at which addictive drugs trigger their cated the mesolimbic dopamine system and several habit-forming actions.
    [Show full text]
  • Drug Abuse, Dopamine, and the Brain's Reward System
    RESEARCHUPDATE BUTLER CENTER FOR RESEARCH SEPTEMBER 2015 Research Update is published by the Butler Center for Research to share significant scientific findings from the field of addiction treatment research. Drug Abuse, Dopamine, and the THE HAZELDEN BETTY FORD FOUNDATION EXPERIENCE Treatment at each of the Hazelden Betty Ford Foundation Brain’s Reward System sites is constantly guided and improved by scientific Why do people continue to use alcohol and other drugs chronically even after experiencing innovation. As a result, our treatment plans incorporate serious medical, social, legal, or financial consequences? This is a question that has interested pharmacological treatments with traditional counseling professionals in a wide variety of addiction-related fields for many years. Advances in sessions for patients with high-risk dependence behaviors. neuroscience and biology have allowed scientists to better understand the physical roots of Our recently launched COR-12TM program offers opioid- substance use and dependence, which has led to the contemporary disease model of addiction. dependent patients Twelve Step-based treatment By studying and understanding the biological characteristics of substance dependence, paired with cognitive-behavioral therapy, motivational scientists and physicians are able to develop medical and pharmacological treatments that can interviewing, and opioid agonist and antagonist significantly improve recovery outcomes. medications that help control cravings by gradually reducing the amount of dopamine in the system. Basics of Brain Function and Neurotransmitters In order to carry out all of its necessary functions, from making sure your lungs are breathing QUESTIONS AND CONTROVERSIES to working out a calculus algorithm, the brain uses a complex communication system made up of tree-like cells called neurons.
    [Show full text]
  • The Mesolimbic Dopamine Reward Circuit in Depression Eric J
    The Mesolimbic Dopamine Reward Circuit in Depression Eric J. Nestler and William A. Carlezon, Jr. The neural circuitry that mediates mood under normal and abnormal conditions remains incompletely understood. Most attention in the field has focused on hippocampal and frontal cortical regions for their role in depression and antidepressant action. While these regions no doubt play important roles in these phenomena, there is compelling evidence that other brain regions are also involved. Here we focus on the potential role of the nucleus accumbens (NAc; ventral striatum) and its dopaminergic input from the ventral tegmental area (VTA), which form the mesolimbic dopamine system, in depression. The mesolimbic dopamine system is most often associated with the rewarding effects of food, sex, and drugs of abuse. Given the prominence of anhedonia, reduced motivation, and decreased energy level in most individuals with depression, we propose that the NAc and VTA contribute importantly to the pathophysiology and symptomatology of depression and may even be involved in its etiology. We review recent studies showing that manipulations of key proteins (e.g. CREB, dynorphin, BDNF, MCH, or Clock) within the VTA-NAc circuit of rodents produce unique behavioral phenotypes, some of which are directly relevant to depression. Studies of these and other proteins in the mesolimbic dopamine system have established novel approaches to modeling key symptoms of depression in animals, and could enable the development of antidepressant medications with fundamentally new mechanisms of action. Key Words: Ventral striatum, nucleus accumbens, ventral tegmen- also raises the possibility that different subtypes of depression tal area, CREB, dynorphin, BDNF, MCH, orexin, melanocortin, Clock, may be mediated by pathology localized to different brain areas, NPAS2 which might be responsive to very different types of treatments.
    [Show full text]
  • The Neurobiology of Nicotine Addiction: Bridging the Gap from Molecules to Behaviour
    REVIEWS THE NEUROBIOLOGY OF NICOTINE ADDICTION: BRIDGING THE GAP FROM MOLECULES TO BEHAVIOUR Steven R. Laviolette and Derek van der Kooy Nicotine, the primary psychoactive component of tobacco smoke, produces diverse neurophysiological, motivational and behavioural effects through several brain regions and neurochemical pathways. Recent research in the fields of behavioural pharmacology, genetics and electrophysiology is providing an increasingly integrated picture of how the brain processes the motivational effects of nicotine. The emerging characterization of separate dopamine- and GABA (γ-aminobutyric acid)-dependent neural systems within the ventral tegmental area (VTA), which can mediate the acute aversive and rewarding psychological effects of nicotine, is providing new insights into how functional interactions between these systems might determine vulnerability to nicotine use. The addictive nature of nicotine remains a global health neurotransmitter systems, the potential roles of specific epidemic. Over three million smoking-related deaths neuronal nicotinic acetylcholine receptor (nAChR) are reported annually, worldwide. In the Western world, subtypes and specific neuroanatomical regions that illness related to smoking is believed to be the cause of have been implicated in mediating the addictive prop- 20% of all deaths, making nicotine addiction the single erties of nicotine. In particular, we will review the con- largest cause of preventable mortality1,2.Despite these siderable body of evidence that implicates dopamine grim statistics, tobacco use is increasing in many devel- (DA) and non-DA neuronal substrates in the ventral oping countries3,with smoking-related mortalities tegmental area (VTA) as crucial for the rewarding and predicted to exceed 10 million per year over the coming aversive motivational properties of nicotine.
    [Show full text]
  • Effects of Repeated Nicotine Exposure and Withdrawal in Mice
    Neuropsychopharmacology (2012) 37, 2661–2670 & 2012 American College of Neuropsychopharmacology. All rights reserved 0893-133X/12 www.neuropsychopharmacology.org Reward Sensitization: Effects of Repeated Nicotine Exposure and Withdrawal in Mice Monica RF Hilario1, Jill R Turner1 and Julie A Blendy*,1 1 Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA Tobacco dependence is an addiction with high rates of relapse, resulting in multiple quit attempts in individuals who are trying to stop smoking. How these multiple cycles of smoking and withdrawal contribute to nicotine dependence, long-term alterations in brain reward systems, and nicotine receptor regulation is unknown. Therefore, to evaluate how multiple exposures of nicotine and withdrawal periods modulate rewarding properties of nicotine, we used intracranial self-stimulation to measure alterations in the threshold of brain stimulation reward. In addition, we employed the conditioned place preference (CPP) paradigm to evaluate positive context conditioning following each withdrawal period and measured levels of neuronal nicotinic receptors in cortex, striatum, and hippocampus. We found that repeated nicotine exposure and withdrawal enhanced brain stimulation reward and reward sensitivity to acute injections of nicotine. This increased reward was reflected by enhanced CPP to nicotine. Chronic nicotine is known to up-regulate nAChRs (nicotinic acetylcholine receptors) and we found that this up-regulation was maintained for up to 8 days of withdrawal in the striatum and in the hippocampus, but not in the cortex, of animals exposed to multiple nicotine exposure and withdrawal periods. These results demonstrate that repeated exposures to nicotine, followed by withdrawal, induce a persistent increase in both brain reward function and sensitivity to the hedonic value of nicotine and long-lasting up-regulation of neuronal nicotinic receptors.
    [Show full text]
  • Noradrenaline, Dopamine, and Brain-Stimulation Reward 1
    Pharmacology Biochemistry ancl Behavior, Vol. 2, pp. 735--740. ANKHO International Inc., 1974. Printed in the U.S.A. Noradrenaline, Dopamine, and Brain-stimulation Reward 1 E. T. ROLLS, P. H. KELLY AND S. G. SHAW Department of Experimental Psychology, University of Oxford, OX1 3UD (Received 20 May 1974) ROLLS, E. T., P. H. KELLY AND S. G. SHAW. Noradrenaline, dopamine, and brain-stimulation reward. PHARMAC. BIOCHEM. BEHAV. 2(6) 735-740, 1974. - Attenuation of self-stimulation produced by blockade of noradrenaline receptors (phentolamine) or inhibition of noradrenaline synthesis (disulfiram) was associated with sedation (defined by decreased locomotor activity and decreased rearing) in rats. Attenuation of self-stimulation produced by blockade of dopamine receptors was associated with only minor sedation. Thus when both arousal and self-stimulation are measured, it is found that noradrenaline is less specifically involved in self-stimulation than dopamine. The noradrenergic theory of reward cannot be accepted until it is shown that noradrenaline has an effect on reward aspects of self-stimulation independently of its general effects on behavior measured here by locomotor activity and rearing. Noradrenaline Dopamine Self-stimulation Reward Arousal IT has been suggested that the release of noradrenaline release of noradrenaline mediates reward, and does not from noradrenaline-containing neurons mediates brain- affect self-stimulation only by behavioral side effects. stimulation reward (see [25, 26, 37-44]). Much of the There have been few studies of the effects on brain- evidence for this 'noradrenergic theory of reward' is, we stimulation reward of treatments which alter the activity in believe, weak in two respects (see also [31,32]).
    [Show full text]
  • NIH Public Access Author Manuscript Behav Brain Res
    NIH Public Access Author Manuscript Behav Brain Res. Author manuscript; available in PMC 2013 September 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Behav Brain Res. 2012 September 1; 234(1): 76–81. doi:10.1016/j.bbr.2012.06.012. Mephedrone (4-methylmethcathinone) and intracranial self- stimulation in C57BL/6J mice: comparison to cocaine J. Elliott Robinsona,b,c, Abigail E. Agogliab,c, Eric W. Fisha,c, Michael C. Krousea,c, and C. J. Malanga, M.D., Ph.D.a,b,c a Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA b Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA c Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC USA 1. INTRODUCTION Recreational use of cathinone-derived synthetic stimulants, more commonly known as “bath salts”, has increased in prevalence during the last five years. Of these, mephedrone (4- methylmethcathinone or “meow-meow”) is popular among recreational users, most likely due to its availability and ability to elevate mood and produce euphoria [1]. Mephedrone use is associated with several stimulant-like drug effects, including increased concentration, talkativeness, psychomotor stimulation, reduced appetite, and insomnia [1]. Recent studies have described compulsive drug taking [2], and several deaths have been attributed to mephedrone use [3]. Not surprisingly, several countries, including the United States, have recently banned the production, possession, and sale of mephedrone and other cathinone derivatives [4]. Activation of mesocorticolimbic dopamine circuits is a common effect of drugs of abuse, and these circuits play a critical role in motivated behaviors, drug reinforcement, and drug seeking [5].
    [Show full text]
  • Repeated Electrical Stimulation of Reward-Related Brain Regions Affects Cocaine but Not “Natural” Reinforcement
    The Journal of Neuroscience, December 19, 2007 • 27(51):14179–14189 • 14179 Behavioral/Systems/Cognitive Repeated Electrical Stimulation of Reward-Related Brain Regions Affects Cocaine But Not “Natural” Reinforcement Dino Levy,1* Maytal Shabat-Simon,1,3* Uri Shalev,2 Noam Barnea-Ygael,1 Ayelet Cooper,1 and Abraham Zangen1 1Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel, 2Department of Psychology, Concordia University, Montreal, Quebec, Canada H4B 1R6, and 3Department of Physiology and Pharmacology, Tel-Aviv University, Tel-Aviv 69978, Israel Drug addiction is associated with long-lasting neuronal adaptations including alterations in dopamine and glutamate receptors in the brain reward system. Treatment strategies for cocaine addiction and especially the prevention of craving and relapse are limited, and their effectiveness is still questionable. We hypothesized that repeated stimulation of the brain reward system can induce localized neuronal adaptations that may either potentiate or reduce addictive behaviors. The present study was designed to test how repeated interference with the brain reward system using localized electrical stimulation of the medial forebrain bundle at the lateral hypothala- mus (LH) or the prefrontal cortex (PFC) affects cocaine addiction-associated behaviors and some of the neuronal adaptations induced by repeated exposure to cocaine. Repeated high-frequency stimulation in either site influenced cocaine, but not sucrose reward-related behaviors. Stimulation of the LH reduced cue-induced seeking behavior, whereas stimulation of the PFC reduced both cocaine-seeking behavior and the motivation for its consumption. The behavioral findings were accompanied by glutamate receptor subtype alterations in the nucleus accumbens and the ventral tegmental area, both key structures of the reward system.
    [Show full text]