Pre–Release Training of Juvenile Little Owls Athene Noctua to Avoid Predation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prey Ecology of the Burrowing Owl Athene Cunicularia Cunicularia (Molina, 1782) on the Northern Coast of Santa Catarina, Brazil
Studies on Neotropical Fauna and Environment ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/nnfe20 Prey ecology of the burrowing owl Athene cunicularia cunicularia (Molina, 1782) on the northern coast of Santa Catarina, Brazil Alana Drielle Rocha , J. O. Branco & G. H. C. Barrilli To cite this article: Alana Drielle Rocha , J. O. Branco & G. H. C. Barrilli (2021): Prey ecology of the burrowing owl Athenecuniculariacunicularia (Molina, 1782) on the northern coast of Santa Catarina, Brazil, Studies on Neotropical Fauna and Environment To link to this article: https://doi.org/10.1080/01650521.2020.1867953 Published online: 13 Jan 2021. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=nnfe20 STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT https://doi.org/10.1080/01650521.2020.1867953 ORIGINAL ARTICLE Prey ecology of the burrowing owl Athene cunicularia cunicularia (Molina, 1782) on the northern coast of Santa Catarina, Brazil Alana Drielle Rocha a, J. O. Branco b and G. H. C. Barrilli a aDepartment of Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil; bSchool of the Sea, Science and Technology, Vale do Itajaí University, Itajaí, Brazil ABSTRACT ARTICLE HISTORY We analyzed the diet of Athene cunicularia cunicularia in order to identify and compare prey items Received 14 August 2020 in dune populations in Santa Catarina, Brazil: Interpraias (INT), Praia Brava (BRA), Praia Central Accepted 20 December 2020 (NAV) and Peninsula (BVE). Due to the characteristics of urbanization in these regions, we hypothesized that there would be greater abundance and consumption of urban insect pests KEYWORDS Burrowing owl; dunes; diet; in the areas of BRA, NAV, and INT than in BVE. -
Scopoli, 1769, Nesting at a Distance of Only 40 M Apart
Verslagen en technische gegevens Territorial behaviour and food composition of two pairs of the little owl I Athene noctua Scopoli, 1769, nesting at a distance of only 40 m apart DARIA BACIA Institute for Systematics and Population Biology (Zoological Museum) University of Amsterdam PO Box 94766,1090 GT Amsterdam The Netherlands No. 75, May 1998 ISSN 1385-3279 VERSLAGEN EN TECHNISCHE GEGEVENS Territorial behaviour and food composition of two pairs of the little owl Athene noctua Scopoli, 1769, nesting at a distance of only 40 m apart Daria Bacia Institute for Systematics and Population Biology (Zoological Museum) University of Amsterdam PO Box 94766,1090 GT Amsterdam The Netherlands No. 75, May 1998 ISSN 1385-3279 Index Introduction 1 Study area 3 Methods 4 Results I. Breeding time 5 II. Places of occurrence and directions of movements 7 III. Time of activity 8 IV. Antagonistic behaviour 8 V. Food 9 Discussion I. Territorial behaviour 10 II. Food 11 Conclusions 12 Acknowledgements 13 Literature 14 Map 16 Tables 18 Pictures 20 INTRODUCTION The little owl Athene noctua (Scopoli, 1769) is a small, nocturnal predator, most active from dusk to dawn, with a two-hour break after midnight. There is little or no hunting during daytime, not even when the birds are raising young (Cramp, 1985). Contrary to these observations, the histology of the retina of the little owl was found to be quite similar to that of diurnal birds, and its colour vision has been reported to be as good as ( the song thrush’s Turdus philomelos; Voous, 1988), suggesting that the little owl may be more diurnal than usually expected. -
Hawk-Owls and Allies Genus Ninox Hodgs
Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 264-265. Order STRIGIFORMES: Owls Regarding the following nomina dubia, see under genus Aegotheles Vigors & Horsfield: Strix parvissima Ellman, 1861: Zoologist 19: 7465. Nomen dubium. Strix parvissima Potts, 1871: Trans. N.Z. Inst. 3: 68 – Rangitata River, Canterbury. Nomen dubium. Athene (Strix) parvissima Potts; Potts 1873, Trans. N.Z. Inst. 5: 172. Nomen dubium Family STRIGIDAE Leach: Typical Owls Strigidae Leach, 1819: Eleventh room. In Synopsis Contents British Museum 15th Edition, London: 64 – Type genus Strix Linnaeus, 1758. Subfamily BUBONINAE Vigors: Hawk-owls and Allies Bubonina Vigors, 1825: Zoological Journal 2: 393 – Type genus Bubo Dumeril, 1805. Genus Ninox Hodgson Ninox Hodgson, 1837: Madras Journ. Lit. Sci. 5: 23 – Type species (by original designation) Ninox nipalensis Hodgson = Ninox scutulata lugubris (Tickell). Hieracoglaux Kaup, 1848: Isis von Oken, Heft 41: col. 768 – Type species (by subsequent designation) Falco connivens Latham = Ninox connivens (Latham). As a subgenus of Ninox. Spiloglaux Kaup, 1848: Isis von Oken, Heft 41: col. 768 – Type species (by subsequent designation) Strix boobook Latham = Ninox boobook (Latham). As a subgenus of Ninox. Ieraglaux Kaup, 1852: in Jardine, Contrib. Ornith.: 107 – Type species (by subsequent designation) Falco connivens Latham = Ninox connivens (Latham). Rhabdoglaux Bonaparte, 1854: Revue Mag. Zool. 2 (2): 543 – Type species (by subsequent designation) Athene humeralis Bonaparte = Ninox rufa humeralis (Bonaparte). -
The Summer Diet of the Little Owl &Lpar;<I>Athene Noctua</I>
280 SHORT COMMUNICATIONS VOL. 31, NO. 3 j RaptorRes. 31 (3):280-282 ¸ 1997 The Raptor ResearchFoundation, Inc. THE SUMMERDIET OF THE LITTLE OWL (ATHENENOCTUA) ON THE ISLAND OF ASTIPALAIA(DODECANESE, GREECE) FRANCESCO M. ANGELICI AND LEONARDO EATELLA Dipartimentodi BiologiaAnimale e dell'Uomo,Universitd di Roma "La Sapienza," viale dell'Universitd32, 1-00185Roma, Italy LUCA LUISELLI Dipartimentodi BiologiaAnimale e dell'Uomo, Universitddi Roma "La Sapienza,"via A. Borelli50, 1-00161Roma, Italy FRANCESCO RIGA Istituto Nazionale della Fauna Selvatica, via Ca' Fornacetta 9, 1-40064 Ozzanodell•milia (Bologna),Italy KEY WORDS: Athene noctua; Little Owl; diet;,Dodecanese, alba).We recentlyreported the first recordsof Barn Owls Greece. on the island (Angelici et al. 1992). Owl pelletswere collectedin abandonedbuildings and at Widespreadand easyto studytaxa are ideal modelsfor a few rocky sites.The collectedmaterial was identified in the laboratory.Small mammals and reptileswere identified analysesof life-historydivergence, because they permit by skulland mandibularremains, and arthropodsby chitin- comparisonsthat are not confoundedby genetically-cod- ous exoskeletonremains. We counted,in the most parsi- ed divergencein other morphological,behavioral and moniousway possible, the frequencyof occurrenceof each ecologicaltraits (Luiselli et al. 1996a, 1996b). The prob- prey speciesin the diet. Although it was not possibleto lem, however,is to find specieswhose life history traits identify Crociduraremains to specieslevel, we assumedthey have been adequately studied in different portions of all belonged to C. suaveolens,a species widespread in the their range. In general, Palearcticowls have a great deal Dodecanese islands (Niethammer 1989). of potential in this area becauseseveral aspects of their Statisticalanalyses were performed by a STATISTICA biology such as food habits have been studied in detail (version 4.5, 1993) for WindowsPC package,with a set at 5%. -
Owls.1. Newton, I. 2002. Population Limitation in Holarctic Owls. Pp. 3-29
Owls.1. Newton, I. 2002. Population limitation in Holarctic Owls. Pp. 3-29 in ‘Ecology and conservation of owls’, ed. I. Newton, R. Kavenagh, J. Olsen & I. Taylor. CSIRO Publishing, Collingwood, Australia. POPULATION LIMITATION IN HOLARCTIC OWLS IAN NEWTON Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS, United Kingdom. This paper presents an appraisal of research findings on the population dynamics, reproduction and survival of those Holarctic Owl species that feed on cyclically-fluctuating rodents or lagomorphs. In many regions, voles and lemmings fluctuate on an approximate 3–5 year cycle, but peaks occur in different years in different regions, whereas Snowshoe Hares Lepus americanus fluctuate on an approximate 10-year cycle, but peaks tend to be synchronised across the whole of boreal North America. Owls show two main responses to fluctuations in their prey supply. Resident species stay on their territories continuously, but turn to alternative prey when rodents (or lagomorphs) are scarce. They survive and breed less well in low than high rodent (or lagomorph) years. This produces a lag in response, so that years of high owl densities follow years of high prey densities (examples: Barn Owl Tyto alba, Tawny Owl Strix aluco, Ural Owl S. uralensis). In contrast, preyspecific nomadic species can breed in different areas in different years, wherever prey are plentiful. They thus respond more or less immediately by movement to change in prey-supply, so that their local densities can match the local food-supply at the time, with minimum lag (examples: Short-eared Owl: Asio flammeus, Long-eared Owl A. -
Seasonal Food Habits of Burrowing Owls (Athene Cunicularia) in Human-Altered Landscapes
SEASONAL FOOD HABITS OF BURROWING OWLS (ATHENE CUNICULARIA) IN HUMAN-ALTERED LANDSCAPES A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Biological Sciences by Carie Marie Wingert May 2012 © 2012 Carie Marie Wingert ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Seasonal Food Habits of Burrowing Owls (Athene cunicularia) in Human-altered Landscapes AUTHOR: Carie Marie Wingert DATE SUBMITTED: May 2012 COMMITTEE CHAIR: Dr. John Perrine, Assistant Professor COMMITTEE MEMBER: Dr. Emily Taylor, Associate Professor COMMITTEE MEMBER: Dr. Brian Cypher, Adjunct Professor: CSU- Stanislaus iii ABSTRACT SEASONAL FOOD HABITS OF BURROWING OWLS (ATHENE CUNICULARIA) IN HUMAN-ALTERED LANDSCAPES Carie Marie Wingert In 2004, I initiated a year-long study to investigate the food habits of burrowing owls (Athene cunicularia). Burrowing owls have been found in a variety of human-altered landscapes; however, little is known about burrowing owl food habits in urban landscapes. Burrowing owl food habits during the non-breeding season are also largely undocumented, despite increasing concern over the survival of overwintering burrowing owls. Differences in prey consumption between reproductive and non-reproductive owls during the breeding season have not yet been examined. I collected pellets over a 12 month period at four study sites affected by different levels of human alteration in the southern San Joaquin Valley of California. Data was collected at four study sites representing natural (Wind Wolves), semi-natural (Allensworth Ecological Reserve), agricultural (Friant Kern Canal), and urban (Bakersfield) landscapes. Invertebrates, primarily ground dwelling insects, were the most commonly consumed prey type, found in 96% of all pellets examined. -
Strigiformes) and Lesser Nighthawks (Chodeiles Acutipennis
UNIVERSITY OF CALIFORNIA RIVERSIDE The Evolution of Quiet Flight in Owls (Strigiformes) and Lesser Nighthawks (Chodeiles acutipennis) A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Evolution, Ecology, and Organismal Biology by Krista Le Piane December 2020 Dissertation Committee: Dr. Christopher J. Clark, Chairperson Dr. Erin Wilson Rankin Dr. Khaleel A. Razak Copyright by Krista Le Piane 2020 The Dissertation of Krista Le Piane is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I thank my Oral Exam Committee: Dr. Khaleel A. Razak (chairperson), Dr. Erin Wilson Rankin, Dr. Mark Springer, Dr. Jesse Barber, and Dr. Scott Curie. Thank you to my Dissertation Committee: Dr. Christopher J. Clark (chairperson), Dr. Erin Wilson Rankin, and Dr. Khaleel A. Razak for their encouragement and help with this dissertation. Thank you to my lab mates, past and present: Dr. Sean Wilcox, Dr. Katie Johnson, Ayala Berger, David Rankin, Dr. Nadje Najar, Elisa Henderson, Dr. Brian Meyers Dr. Jenny Hazelhurst, Emily Mistick, Lori Liu, and Lilly Hollingsworth for their friendship and support. I thank the Natural History Museum of Los Angeles County (LACM), the California Academy of Sciences (CAS), Museum of Vertebrate Zoology (MVZ) at UC Berkeley, the American Museum of Natural History (ANMH), and the Natural History Museum (NHM) in Tring for access to specimens used in Chapter 1. I would especially like to thank Kimball Garrett and Allison Shultz for help at LACM. I also thank Ben Williams, Richard Jackson, and Reddit user NorthernJoey for permission to use their photos in Chapter 1. Jessica Tingle contributed R code and advice to Chapter 1 and I would like to thank her for her help. -
Evaluation of the Global Decline in the True Shrikes (Family Laniidae)
228 ShortCommunications and Commentaries [Auk, Vol. 111 The Auk 111(1):228-233, 1994 CONSERVATION COMMENTARY Evaluation of the Global Decline in the True Shrikes (Family Laniidae) REUVEN YOSEF t ArchboldBiological Station, P.O. Box2057, Lake Placid, Florida 33852, USA The first International Shrike Symposiumwas held Shrike was found in 1975, and of the Northern Shrike at the Archbold Biological Station, Lake Placid, Flor- in 1982. In Switzerland, these two specieshave offi- ida, from 11-15 January 1993. The symposium was cially been declared extinct. attended by 71 participants from 23 countries(45% In Sweden, Olsson (1993) and Carlson (1993) have North America, 32%Europe, 21% Asia, and 2% Africa). attributed the decline (over 50% between 1970 and The most exciting participation was that of a strong 1990) of the Red-backed Shrike to the destruction and contingent of ornithologists from eastern Europe. In deterioration of suitable habitats. Olsson (1993) ob- this commentary I present the points stressedat the served a large reduction of pastures in the last two Symposiumand illustrate them with severalexamples decades,and considers the Swedish law requiring as presentedby the authors. planting of unused pastures and fallow lands with The Symposiumwas convened to focus attention conifers as unfavorable for shrikes. He also stated that on, evaluate, and possibly recommend methods to nitrogenousand acid-rainpollutants have influenced reverse the worldwide decline of shrike populations. vegetationcomposition and insectpopulations, both Many of the 30 speciesare declining, or have become of which in turn have affected shrikes negatively. In extinct locally. Studies have focused mainly on the the Swedish Bird Population Monitoring Program, five speciesfound closestto placeswhere ornithol- the numbers of Red-backed Shrikes declined from a ogists live: Northern/Great Grey Shrike (Laniusex- high index of 100 in 1975, to a low of 60 in 1981. -
Phylogenetic Relationships in Owls Based on Nucleotide Sequences of Mitochondrial and Nuclear Marker Genes
Chancellor, R. D. & B.-U. Meyburg eds. 2004 Raptors Worldwide WWGBP/MME Phylogenetic Relationships in Owls based on nucleotide sequences of mitochondrial and nuclear marker genes Michael Wink, Hedi Sauer-Gürth & Marc Fuchs ABSTRACT Together with morphological and vocal characters, nucleotide sequences help to define phylogenetic relationships in owls. Since owls are nocturnal their morphological traits are often very similar a systematic differentiation or speciation event can easily be overlooked. A recent example is Ninox sumbaensis from the island of Sumba. An unknown owl that had been observed there had been assumed to be a member of Otus. DNA data unequivocally showed (Olsen et al. 2002) that it belongs to the genus Ninox. It was named Ninox sumbaensis. About 80 species of the Strigidae and 16 species of Tytonidae have been studied so far in our laboratory and a phylogeny based on cytochrome b data has been published (Wink & Heidrich 1999). We have enlarged our cytochrome b data base and additionally have sequenced a nuclear marker (LDHb intron DNA). Basically, the ncDNA data support the results obtained from mtDNA. INTRODUCTION Since owls are nocturnal their morphological traits ^re often very similar (König et al, 1999) a systematic differentiation or speciation event can easily be overlooked. Together with morphological and vocal characters nucleotide sequences of marker genes help to define phylogenetic relationships in owls. Nucleotide sequences of the mitochondrial cytochrome b gene have already been employed to study the systematics and evolution of diurnal raptors and owls (Griffiths 1997; Mindell 1997; Groombridge et al. 2002, Krucken-hauser et al, 2003, Riesing et al, 2003; from our laboratory: Seibold et al, 1993, 1996; Heidrich & Wink 1994, 1998; Heidrich étal., 1995a,b, 1996; Wink 1995, 1998, 2000; Wink & Seibold 1996; Wink & Sauer-Gürth 2000; Wink et al. -
Survey of Breeding Birds 1. Introduction
Appendix 12.3 Gwent Farmers Community Solar Scheme- Survey of Breeding Birds 1. Introduction 1.1 Survey Context and Aims In March 2015, Smiths Gore commissioned Ecus Ltd to undertake a survey of breeding birds to accompany a planning application for the development of a solar scheme located on agricultural land around Llanwern near Newport, Gwent (centred around Ordnance Survey Grid Reference: ST 33761843). The purpose of the survey of breeding birds was therefore to: describe the assemblage of birds present on the site during the breeding season and assess the importance of the various habitats to breeding species and, provide sufficient information to facilitate an assessment of the impact of the solar farm development on breeding birds that range from high to low conservation status. The level of survey undertaken is described below and is considered sufficient to meet the aims of the project with the level of coverage appropriate to the complexity and size of the site. The survey was not intended to census every individual bird or count and map every breeding territory. Details related to Wildlife & Countryside Act (as amended) Schedule 1 species are provided in a separate Confidential Annex. 1.2 Policy and Legislative Context There is a considerable body of international and UK policy and legislation related to wild bird populations. This is supplemented by additional supportive guidance on the protection and conservation status of those populations and species. The following documents are relevant to this survey: EU Council Directive 79/409/EEC on the Conservation of Wild Birds (the ‘Birds Directive’) 1979; the Severn Estuary is designated as a Special Protection Area (SPA) under the Directive;1 The Convention on Wetlands of International Importance, called the Ramsar Convention; the Severn Estuary is designated as a Ramsar site under this Convention;2 1 Natura 2000 Standard Data Form UK9015022 Severn Estuary Update 2015-12. -
The Rediscovery of the Forest Owlet Athene (Heteroglaux) Blewitti
FORKTAIL 14 (1998): 53-55 The rediscovery of the Forest Owlet Athene (Heteroglaux) blewitti BEN F. KING AND PAMELA C. RASMUSSEN One hundred and thirteen years after the last genuine record, the Forest Owlet Athene blewitti has been rediscovered in low foothills dry-deciduous forest north of Shahada, Maharashtra, India. Two individuals were observed in the same locality from 25–27 November 1997, exhibiting strong diurnality and behaving in a relatively conspicuous, confiding manner. Their identification was verified by extensive videotape and photographs, and these field observations confirm that the Forest Owlet is a readily identified species. The Forest Owlet Athene (Heteroglaux) blewitti is known from just seven specimens, collected from four sites in central India from 1872 to 1884. For the next 113 years there were no genuine records of the species. Several unsuccessful searches for the bird were made in recent years, including by Sálim Ali, S. Dillon Ripley and colleagues. A number of ornithologists considered the species possibly extinct (see Rasmussen and Collar 1998 for historical review). From 13–27 November 1997 we (along with D. F. Abbott) searched for the Forest Owlet in central India in the states of southeastern Madhya Pradesh, westernmost Orissa and northwestern Maharashtra, in forests as near as possible to the sites where it had been collected over a century ago. However, the original collection sites could be located only approximately. See Appendix for details of areas visited. On 25 November we found a single Forest Owlet in Habitat at the rediscovery site at the beginning of the rainy north-western Maharashtra, at 460 m elevation, north season. -
BURROWING OWL (Athene Cunicularia) Jennifer A
II SPECIES ACCOUNTS Andy Birch PDF of Burrowing Owl account from: Shuford, W. D., and Gardali, T., editors. 2008. California Bird Species of Special Concern: A ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California. Studies of Western Birds 1. Western Field Ornithologists, Camarillo, California, and California Department of Fish and Game, Sacramento. Studies of Western Birds No. 1 BURROWING OWL (Athene cunicularia) Jennifer A. Gervais, Daniel K. Rosenberg, and Lyann A. Comrack Criteria Scores Population Trend 10 Range Trend 5 Population Size 5 Range Size 5 Endemism 0 Population Concentration 0 Threats 15 + + Current Breeding Range Historic Breeding Range ? + Recent Extralimital Breeding ? Status Uncertain + County Boundaries Water Bodies Kilometers 100 50 0 100 Current and historic (ca. 1944) breeding range of the Burrowing Owl in California. Numbers have declined at least moderately overall, though they are greatly augmented in the Imperial Valley, and the range has retracted in northeastern California and along the coast. During migration and winter, more widespread in lowland areas of the state and reaches more offshore islands. 218 Studies of Western Birds 1:218–226, 2008 Species Accounts California Bird Species of Special Concern SPECIAL CONCERN PRIORITY but can begin as early as February and extend into December (Rosenberg and Haley 2004, J. A. Currently considered a Bird Species of Special Gervais unpubl. data). Concern (breeding), priority 2. Included on both prior special concern lists (Remsen 1978, 2nd priority; CDFG 1992). HISTORIC RANGE AND ABUNDANCE IN CALIFORNIA GENERAL RANGE AND ABUNDANCE Grinnell and Miller (1944) described the historic Broadly distributed in western North America; range of this owl as throughout most of California also occurs in Florida, Central and South America, and most of its islands, except the coastal coun- Hispaniola, Cuba, the northern Lesser Antilles, and ties north of Marin and mountainous areas.