A Review on Tribo-Mechanical Properties of Micro-And

Total Page:16

File Type:pdf, Size:1020Kb

A Review on Tribo-Mechanical Properties of Micro-And J Polym Eng 2021; 41(5): 339–355 Review Kawaljit Singh Randhawa* and Ashwin D. Patel A review on tribo-mechanical properties of micro- and nanoparticulate-filled nylon composites https://doi.org/10.1515/polyeng-2020-0302 MWNT Multiwalled carbon nanotube Received November 6, 2020; accepted February 20, 2021; PbS Lead sulfide published online March 15, 2021 PEEK Polyether ether ketone PTFE Polytetrafluoroethylene Abstract: Nylon composites are of evolving interest due to SiO2 Silicon dioxide their good strength, toughness, and low coefficient of fric- UHMWPE Ultra-high-molecular-weight polyethylene ZnF Zinc fluoride tion. Various fillers like micro- and nanoparticulates of 2 ZnO Zinc oxide metals and metal compounds were used to enhance the ZnS Zinc sulfide mechanical and tribological properties of nylons for many ZrP Zirconium phosphate years by researchers. In this paper, an overall understanding of composites, filler materials, especially particulate filler materials, application areas of polymer composites, wear of 1 Introduction polymers, and the effect of various fillers on tribo- mechanical properties of nylons have been discussed. The A composite is a material that consists of two or more detailed review is limited to micro- and nanoparticulate chemically different constituents that are combined at a fillers and their influence on the mechanical and tribological macroscopic level and are not soluble in each other to yield a properties of various nylon matrices. useful material. Composite materials have been widely Keywords: friction; mechanical properties; nylon applied in various applications like aeronautical industries, composite; tribological properties; wear. biomechanics, public infrastructure, automobile industries, furniture. Composites have unique advantages over many monolithic materials, such as high strength, high stiffness, Nomenclature longer fatigue life, low density, and adaptability to the intended functions of the structure [1–8]. ABS Acrylonitrile butadiene styrene A few examples of composites are shown in Table 1. Al2O3 Aluminum oxide CaF2 Calcium fluoride There are several benefits of composites mentioned as CaO Calcium oxide follows: COF Coefficient of friction – Light weight: composites can be made light in weight fl CuF Cuprous uoride to replace any heavier material. Their lightness is CuO Copper oxide CuS Copper sulfide important in automobiles and aircraft, for example, GRF Graphite fluoride where less weight means better fuel efficiency. People GRP Glass(fiber) reinforced plastic who design airplanes are greatly concerned with HDPE High-density polyethylene weight since reducing an air craft’s weight reduces the HNT Halloysite nanotubes amount of fuel it needs and increases the speeds it can LDPE Low-density polyethylene reach. MoS Molybdenum sulfide – High strength: composites can be designed stronger. MoS2 Molybdenum disulfide Metals are equally strong in all directions, but composites can be engineered and designed to be *Corresponding author: Kawaljit Singh Randhawa, Mechanical strong in a specific direction. Engineering Department, CSPIT, CHARUSAT University, Changa, – Strength to weight ratio: strength to weight ratio is a Anand 388421, Gujarat, India, ’ E-mail: [email protected]. https://orcid.org/ material s strength to how much it weighs. Some 0000-0002-2944-6714 materials are extraordinarily strong and heavy, such as Ashwin D. Patel, CSPIT, CHARUSAT, Changa 388421, Gujarat, India steel and other metals. Composite materials can be 340 K.S. Randhawa and A.D. Patel: Tribo-mechanical properties of nylon composites designed to be both strong and light. This property is Apart from all these, composites are also used in why composites are used to build airplanes, which consumer goods products, agriculture, computer hard- need a remarkably high strength material at the lowest ware, and many more places. possible weight. A composite can be made to resist Composites can be classified according to the: bending in one direction. – Matrix material used – Corrosion resistance: composites resist damage from – Reinforcing element used, and the weather and harsh chemicals. Composites can be – The orientation of fibers/particles and numbers of used where chemicals are handled or stored. Com- layers. posites can be used in humid areas. It can be used in an open rainy atmosphere. A few examples of available matrix materials are shown in – High-impact strength: composites can be made to Table 3. absorb impacts like the sudden force of a bullet, for Depending on the matrix material used, composites instance, or the blast from an explosion. Because of are classified as thermoplastic/thermoset matrix compos- this property, composites are used in bulletproof vests ite, metal matrix composite, and ceramic matrix and panels, and to shield airplanes, buildings, and composite. military vehicles from explosions. A few general properties of matrix materials are – Low thermal conductivity: composites are good mentioned in Table 4. insulators. They do not easily conduct heat or cold. Following are the functions of matrix materials: They are used in buildings for doors, panels, and – Holds the fillers windows where extra protection is needed from severe – Protects the reinforcing particles/fillers from weather. contamination – Durability: structures made of composites have a long – Helps to maintain the distribution of fillers life and need less maintenance. Composites can replace – Distributes the loads evenly other materials where durability is the main issue. – Enhances some of the properties of the resulting ma- – Nonconductivity: Most of the composites are non- terial and structural component (that filler alone is not conductive, meaning they do not conduct electricity. able to impart) such as tensile strength, impact This property makes them suitable for such items as resistance electrical utility poles and circuit boards in electronics. – Provides a better finish to the final product. If electrical conductivity is needed, it is possible to make – Supports the overall structure. some composites conductive. – Wear resistance Reinforcing elements may be in the form of particles, – Fatigue life flakes, or whiskers. According to that, the following are the – Acoustic insulation classifications of reinforcements: – Attractiveness – Fiber reinforced: in which, length to diameter ratio is – Damping properties: composite materials can be remarkably high (of the order 1000). Continuous fibers engineered to get the desired damping properties. are essentially characterized by one exceptionally long – Temperature resistance. axis with the other two axes either often circular or near-circular. A composite with fiber reinforcement is And composites have many more advantages. Composites called a fibrous composite. can be made to fulfill the requirements of properties that – Particle reinforced: in which particles are used as rein- only one single material cannot fulfill. Current application forcement. These particles do not have any long areas of engineered composites are shown in Table 2. dimensions. Generally, particles have neither preferred orientation nor shape. A composite with particles as Table : Natural and engineered composites. reinforcement is called a particulate composite. – Flake reinforced: flakes are small in length direction Natural composites Manmade/engineered composites compare to continuous fibers. Wood (fibrous composite) Concrete (particulate composite) – Whisker reinforced: whiskers are nearly perfect single Bone (fibrous composite) Plywood (fibrous composite) crystal fiber. Whiskers are short, discontinuous, and fi Granite (particulate composite) Fiberglass (short brous composite) have a polygonal cross-section. K.S. Randhawa and A.D. Patel: Tribo-mechanical properties of nylon composites 341 Table : Application areas of engineered composites. Automotive sector Aerospace sector Sports Transportation Infrastructure Biomedical industry Car body Nose Tennis rackets Railway coaches Dams Artificial legs Brake pads Aircraft, rocket, and missile body Hockey sticks (glass fiber Ships Bridges Dentistry Driveshafts Doors composite) Trucks Artificial joints Fuel tank Struts Bikes Hoods/bonnet Trunnion Boats Spoilers Fuel tanks Golf Satellite frames and other structural parts Antenna (smart materials) Table : Matrix materials. purposes of heat resistance or conduction, corrosion resis- tance, and provide rigidity. Reinforcement can be made to Thermoplastics Thermosets Metals Ceramics perform all or one of these functions as per the requirements. Polypropylene Polyesters Aluminum Carbon Areinforcementthatembellishes the matrix strength must be Polyvinyl chloride (PVC) Epoxies Titanium Silicon stronger and stiffer than the matrix and capable of changing carbide the failure mechanism to the advantage of the composite. Nylon Polyimides Copper Silicon nitride Polyurethane Tin Briefly, it must Poly-ether-ether ketone – Contribute desired properties (PEEK) – Be load-carrying Polyphenylene sulfide (PPS) – Transfer the strength to the matrix. Table : General properties of matrix materials. Figure 1 shows the classification according to the orienta- tion of fibers/particles and the layers. Thermoplastics/ Metals Ceramics thermosets Operating Higher use operating Extremely 1.1 Classifications of particulate fillers temperature range temperature range high-temperature < °C (> °Cupto °C range > °C Various metals and metal compounds are used as the filler and more) (most cases) Lighter Heavier Heavier materials for enhancing the tribo-mechanical
Recommended publications
  • Zns(Ag) Zinc Sulfide Scintillation Material
    ZnS(Ag) ® Zinc Sulfide Scintillation Material Properties – Density [g/cm3] ............................................... 4.09 Silver activated zinc sulfide has a very high scintillation efficiency Cleavage plane ........................... polycrystalline comparable to that of NaI(Tl). It is only available as a polycrystalline Wavelength of emission max. [nm] ........ 450 powder. Lower wavelength cutoff [nm] ................ 330 Refractive index @ emission max .......... 2.36 Photoelectron yield [% of NaI(Tl)] (for γ-rays) ZnS(Ag) has a maximum in the incident α-particles. The broad peak is ................................................................................ 130 scintillation emission spectrum at clearly above the electronic noise. Decay constant [ns] ....................................... 110 450nm. The light conversion efficiency ZnS(Ag) can be used to detect thermal is relatively poor for fast electrons neutrons if a lithium compound which may be an advantage when enriched in 6Li is incorporated. The detecting heavy ionizing particles in a alpha particle and triton from the 6Li relatively intense γ-ray background. (n, α) 3H reaction produce scintilla- Scintillation decay times between tions upon interacting with the several hundreds of ns and 10µs are ZnS(Ag). The figure also shows a reported and phosphorescence of still thermal neutron spectrum. longer duration has been noted. Another use for ZnS(Ag) is for the Thicknesses greater than about 25 detection of fast neutrons. A fast mg/cm2 become unusable because of neutron detector is made by imbed- the opacity of the multicrystalline ding the ZnS(Ag) in a clear hydrog- layer to its own luminescence. enous compound. The neutrons are Its use is limited to thin screens used detected by measuring the recoiling primarily for α-particles or other proton from a neutron proton heavy ion detection.
    [Show full text]
  • Determination of Zinc Sulfide Solubility to High Temperatures
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Determination of Zinc Sulfide Solubility to High Temperatures Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan Published in: Journal of Solution Chemistry Link to article, DOI: 10.1007/s10953-017-0648-1 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Carolina Figueroa Murcia, D., Fosbøl, P. L., Thomsen, K., & Stenby, E. H. (2017). Determination of Zinc Sulfide Solubility to High Temperatures. Journal of Solution Chemistry, 46(9-10), 1805-1817. https://doi.org/10.1007/s10953-017-0648-1 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Determination of Zinc Sulfide Solubility to High Temperatures Diana Carolina Figueroa Murcia1, Philip L. Fosbøl1, Kaj Thomsen1*, Erling H. Stenby2 1Center for Energy Resources Engineering, CERE, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU 2Department of Chemistry, Technical University of Denmark, DTU * Corresponding author: Kaj Thomsen [email protected] Abstract A new experimental set-up and methodology for the measurement of ZnS solubility in aqueous solutions at 40, 60 and 80 ˚C (atmospheric pressure) is presented.
    [Show full text]
  • Chemical Deposition of Zinc Hydroxosulfide Thin Films from Zinc (II) - Ammonia-Thiourea Solutions B
    Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (II) - Ammonia-Thiourea Solutions B. Mokili, M. Froment, D. Lincot To cite this version: B. Mokili, M. Froment, D. Lincot. Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (II) - Ammonia-Thiourea Solutions. J. Phys. IV, 1995, 05 (C3), pp.C3-261-C3-266. 10.1051/jp4:1995324. jpa-00253690 HAL Id: jpa-00253690 https://hal.archives-ouvertes.fr/jpa-00253690 Submitted on 1 Jan 1995 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE lV Colloque C3, supplCment au Journal de Physique 111, Volume 5, avril 1995 Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (11) - Ammonia-Thiourea Solutions B. Mokili, M. Froment* and D. ~incot(1) Laboratoire d'Electrochimie et de Chimie Analytique, Unite' Associke au CNRS, Ecole Nationale Supe'rieure de Chimie de Paris, I I rue Pierre et Marie Curie, 75231 Paris cedex 05, France * UPR 15 du CNRS "Physiquedes Liquides et Electrochimie", Universite' Pierre et Marie Curie, 75252 Paris cedex 05, France Abstract The growth of ZnS films from ammonia solutions using thiourea as a sulfur precursor has been investigated.
    [Show full text]
  • SPI Supplies Division Safety Data Sheet Section
    SPI Supplies Division Safety Data Sheet Structure Probe, Inc. 206 Garfield Ave., West Chester, PA 19381-0656 USA Date Effective: March 8, 2017 Phone: 1-(610)-436-5400 Fax: 1-(610)-436-5755 [email protected] SPI Catalog # 04129-AB SPI-Chem™ TEM Screen http://www.2spi.com Recoating Phosphor Powder Manufacturer's CAGE: 1P573 Section 1.1: Identification Chemical Name/Synonyms ....... Phosphor powder; Zinc Sulfide: Copper Aluminum Activated Product or Trade Name ............. SPI-Chem™ TEM Screen Recoating Phosphor Powder CAS #'s ...................................... 68611-68-7 Chemical Formula ...................... ZnS:Cu,Al Section 1.2: Relevant Uses/Restrictions TEM Screen recoating powder Section 1.3: Supplier of the Safety Data Sheet SPI Supplies Division Structure Probe, Inc. 206 Garfield Ave., West Chester, PA 19381-0656 USA Phone: 1-(610)-436-5400 Fax: 1-(610)-436-5755 [email protected] http://www.2spi.com Manufacturer's CAGE: 1P573 Section 1.4: Emergency telephone number Emergencies Contacting CHEMTREC: 24 Hour Emergency Use Only #'s... Worldwide phone: 1-(703)-741-5970 Toll-free phone: 1-(800)-424-9300 USA + Canada only Section 2: Hazard Identification 2.1 Classification of the substance Not a hazardous substance or mixture. 2.2 Label elements, including precautionary statements Not a hazardous substance or mixture 1 2.3 Other Hazards: None known. Hazardous Material Information System USA Health ........................... 1 Fire Hazard ................... 0 Reactivity ...................... 0 Personal Protection ...... NFPA Rating (estimated) Health ........................... 0 Flammability .................. 0 Reactivity ...................... 0 Section 3: Composition 3.1 Substances: This material contains greater than 99% Zinc Sulfide. No TLV or PEL has been established for Zinc Sulfide. The TLV for particulates not otherwise classified is 10 mg/m3.
    [Show full text]
  • Inorganic Chemistry Test for Zinc Radical
    Chemistry Inorganic Chemistry Test for Zinc Radical General Aim Method Detection of the presence of zinc ion as a base radical in Detection of the presence of zinc as a base radical inorganic salts such as zinc sulfate. using specic chemical reagents. Learning Objectives (ILOs) Dene and dierentiate between members of the third group cations and those of other cation groups. Classify inorganic salts according to their base radicals. Compare between zinc containing salts and other members of the same group in terms of chemical structures, properties and reactions. Identify zinc radicals containing salts experimentally. Select the appropriate reagents to detect the presence of zinc radical. Balance the chemical equations of chemical reactions. Theoretical Background/Context - Zinc (Zn), is a metal whose atomic number is 30 and it is the rst element located in group 12 in the periodic table. Its name is derived from the German word zink. Zinc is similar to magnesium in size and both of them possess only one oxidation state which is +2. Abundance of Zinc in Nature In the Earth’s crust, zinc is the 24th most abundant element in the earth crust and possesses ve isotopes. The most widely abundant zinc ore is sphalerite which is a zinc sulde based ore. It is also commonly known as zinc blende. The largest workable zinc ores lodes are located in the United States of America, Australia and Asia. Zinc metal is obtained through the renement of its ores through their froth otation, roasting, then nal extraction using electricity (electrowinning). Properties and Uses of Zinc - Zinc is a slightly brittle and ductile metal at room temperature possessing a blue silvery appearance.
    [Show full text]
  • Zinc Sulfide-Sulfate Reaction Pressures" (1963)
    Scholars' Mine Masters Theses Student Theses and Dissertations 1963 Zinc sulfide-sulfate eactionr pressures William L. Hallerberg Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Metallurgy Commons Department: Recommended Citation Hallerberg, William L., "Zinc sulfide-sulfate reaction pressures" (1963). Masters Theses. 2810. https://scholarsmine.mst.edu/masters_theses/2810 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. ZINC SULFIDE - SULFATE REACTION PRESSURES by William L. Hallerberg A Thesis Submitted to the Faculty of the University of Missouri School of Mines and Metallurgy in partial fulfillment of the requirements for the Degree of Master of Science in Metallurgical Engineering Rolla, Missouri 1963 Approved by: Advisor ABSTRACT A static manometric method was used to find the equilibrium reaction pressure as a function of temperature for the reaction: 11 ZnS04 + ZnS --> 4 (Zn0*2ZnS04 ) + 4 S02 From the reaction pressures, the standard free energy of the reaction was found to be: AF° = + 51,320 - 36.68 T Using thermodynamic data for ZnS04, ZnS and S02 the standard free energy of formation of the basic salt Zn0*2ZnS04 was found to be: AF° = - 377,000 - 6 5 . 9 T cal/mole in the temperature range 350 to 420° C. Above 420° C. the reaction, 2 ZnS + 3 (ZnO.2ZnSO4 ) --> 11 ZnO + 8 S02 proceeds. ACKNOWLEDGEMENTS The author wishes to express his sincere appreciation to Dr.
    [Show full text]
  • Functionalisation of Colloidal Transition Metal Sulphides Nanocrystals: a Fascinating and Challenging Playground for the Chemist
    crystals Review Functionalisation of Colloidal Transition Metal Sulphides Nanocrystals: A Fascinating and Challenging Playground for the Chemist Silvia Gross 1,2,*, Andrea Vittadini 1,2 and Nicola Dengo 1,2 1 Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, ICMATE-CNR, via Marzolo 1, I-35131 Padova, Italy; [email protected] (A.V.); [email protected] (N.D.) 2 Dipartimento di Scienze Chimiche, Università degli Studi di Padova and INSTM, UdR Padova, via Marzolo 1, I-35131 Padova, Italy * Correspondence: [email protected]; Tel.: +39-049-827-5736 Academic Editor: Roberto Comparelli Received: 27 December 2016; Accepted: 24 March 2017; Published: 14 April 2017 Abstract: Metal sulphides, and in particular transition metal sulphide colloids, are a broad, versatile and exciting class of inorganic compounds which deserve growing interest and attention ascribable to the functional properties that many of them display. With respect to their oxide homologues, however, they are characterised by noticeably different chemical, structural and hence functional features. Their potential applications span several fields, and in many of the foreseen applications (e.g., in bioimaging and related fields), the achievement of stable colloidal suspensions of metal sulphides is highly desirable or either an unavoidable requirement to be met. To this aim, robust functionalisation strategies should be devised, which however are, with respect to metal or metal oxides colloids, much more challenging. This has to be ascribed, inter alia, also to the still limited knowledge of the sulphides surface chemistry, particularly when comparing it to the better established, though multifaceted, oxide surface chemistry.
    [Show full text]
  • Synthesis of Zinc Sulfide Nanocrystals and Fabrication of Nanocrystal
    Materials Transactions, Vol. 45, No. 8 (2004) pp. 2650 to 2652 #2004 The Japan Institute of Metals Synthesis of Zinc Sulfide Nanocrystals and Fabrication of Nanocrystal Superlattice*1 Toshihiro Kuzuya1;*2, Yutaka Tai2, Saeki Yamamuro1, Takehiko Hihara1, Dong Liang Peng1 and Kenji Sumiyama1 1Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan 2National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan We report synthesis of zinc sulfide nanocrystals (NCs) via formation of polymetallic thiolate cages. Nearly monodisperse ZnS NCs with size ranging from 2.2 to 7 nm were obtained by thermolysis of S-Zn-dodecanethiol precursors. The electron diffraction pattern of zinc sulfide NCs indicates that precipitates are wurtzite or mixture of wurtzite and zincblende. TEM observation and UV-vis spectra reveal that the growth rate of ZnS NCs considerably depends on the annealing temperature. UV-vis spectra of ZnS NCs with size smaller than 3 nm show sharp excitonic features and a large blue shift from the bulk material. The photoluminescence spectra exhibit large red shift from the absorption band edges, being attributed to electron-hole recombination by surface traps. The narrow size distribution of ZnS NCs leads to formation of ordered self-assemblies with various well-defined structures, where non-closed-packing structure is predominant. (Received April 28, 2004; Accepted June 30, 2004) Keywords: monodisperse nanocrystals, polymetallic thiolate cage, zinc sulfide, superlattice 1. Introduction semiconductors1,2) and transition metals.7,8) This process can provide nearly monodisperse ZnS NCs with size ranging Transition-metal chalcogenide nanocrystals (NCs) have from 2 to 7 nm.
    [Show full text]
  • (II) Nitrate React to Form Aqueous Zinc Nitrate and Lead Metal. Zinc +
    Chemistry Essentials Writing Equations Worksheet ANSWERS For each situation below, 1) underline the reactants, circle the products, and box symbols 2) write word equations, and 3) write standard (symbolic) equations. 1) Zinc and aqueous lead (II) nitrate react to form aqueous zinc nitrate and lead metal. Zinc + aqueous lead (II) nitrate aqueous zinc nitrate + lead metal. Zn(s) + Pb(NO3)2(aq) Zn(NO3)2(aq) + Pb(s) 2) Aqueous aluminum bromide and chlorine gas react to form aqueous aluminum chloride and bromine gas. Aqueous aluminum bromide + chlorine gas aqueous aluminum chloride + bromine gas. AlBr3(aq) + Cl2(g) AlCl3(aq) + Br2(g) 3) Aqueous sodium phosphate and aqueous calcium chloride react to form solid calcium phosphate and aqueous sodium chloride. Aqueous sodium phosphate + aqueous calcium chloride solid calcium phosphate + aqueous sodium chloride. Na3PO4(aq) + CaCl2(aq) Ca3(PO4)2(s) + NaCl(aq) 4) Potassium metal and chlorine gas combine to form solid potassium chloride. Potassium metal +chlorine gas solid potassium chloride. K(s) + Cl2(g) KCl(s) 5) Aluminum and hydrochloric acid react to form aqueous aluminum chloride and hydrogen gas. Aluminum + hydrochloric acid aqueous aluminum chloride + hydrogen gas Al(s) + HCl(aq) AlCl3(aq) + H2(g) 6) Aqueous calcium hydroxide and phosphoric acid react to form solid calcium phosphate and liquid water. Aqueous calcium hydroxide + phosphoric acid solid calcium phosphate + liquid water. Ca(OH)2(aq) + H3PO4(aq) Ca3(PO4)2(s) + H2O(l) 7) Copper and sulfuric acid react to form aqueous copper (II) sulfate and liquid water and sulfur dioxide gas. Copper + sulfuric acid aqueous copper (II) sulfate + liquid water + sulfur dioxide gas.
    [Show full text]
  • Nomenclature Practice Sheet
    Nomenclature Key C2WS6K By: Dr. Robert Belford 1) aluminum nitride AlN 24) diboron hexafluoride B2F6 2) aluminum carbonate Al2(CO3)3 25) tin (IV) fluoride SnF4 3) aluminum bicarbonate Al(HCO3)3 26) tin (II) fluoride SnF2 4) nitrogen dioxide NO2 27) tin (IV) sulfide SnS2 5) zinc sulfate ZnSO4 28) tin (II) sulfide SnS 6) zinc sulfide ZnS 29) nitrogen trichloride NCl3 7) zinc phosphate Zn3(PO4)2 30) manganese (II) sulfide MnS 8) carbon tetrachloride CCl4 31) manganese (II) sulfate MnSO4 9) sodium hydroxide NaOH 32) manganese (II) phosphate 10) barium hydroxide Ba(OH)2 Mn3(PO4)2 11) titanium (II) cyanide Ti(CN)2 33) manganese (II) nitrate Mn(NO3)2 12) cadmium iodide CdI2 34) vanadium (V) oxide V2O5 13) cadmium acetate Cd(CH3CO2)2 35) molybdenum (VI) sulfide MoS3 14) cadmium bromide CdBr2 36) silver phosphide Ag3P 15) cadmium nitrate Cd(NO3)2 37) mercury (II) oxide HgO 16) cadmium sulfide CdS 38) chromium (III) bromide CrBr3 17) phosphorus pentachloride PCl5 39) chromium (III) nitrate Cr(NO3)3 18) iron (II) sulfide FeS 40) sulfur dichloride SCl2 19) iron (II) sulfate FeSO4 41) magnesium sulfide MgS 20) iron (III) sulfate Fe2(SO4)3 42) magnesium sulfate MgSO4 21) iron (III) nitrate Fe(NO3)3 43) cobalt (III) carbonate Co2(CO3)3 22) magnesium nitride Mg3N2 44) cobalt (III) phosphide CoP 23) magnesium nitrate Mg(NO3)2 Write formulas from the following names: 1) Ni(NO3)3 nickel (III) nitrate 2) NiCl3 nickel (III) chloride Nomenclature Key C2WS6K By: Dr. Robert Belford 3) Mn(OH)2 manganese (II) hydroxide 28) Al(CN)3 aluminum cyanide 4) Hg(CN)2 mercury
    [Show full text]
  • Chemical Word Equations (Key)
    Chemistry: Chemical Word Equations KEY Directions: Write a balanced chemical equation for each of the word equations below. 1. aqueous sodium chloride reacts with aqueous lead (II) nitrate to yield a lead (II) chloride precipitate and aqueous sodium nitrate sodium chloride + lead (II) nitrate lead (II) chloride + sodium nitrate NaCl + Pb(NO3)2 PbCl2 + NaNO3 2 NaCl (aq) + Pb(NO3)2 (aq) PbCl2 (ppt) + 2 NaNO3 (aq) 2. aqueous barium nitrate reacts with sulfuric acid [H2SO4(aq)] to yield a barium sulfate precipitate and nitric acid [HNO3(aq)] barium nitrate + sulfuric acid barium sulfate + nitric acid Ba(NO3)2 + H2SO4 BaSO4 + HNO3 Ba(NO3)2 (aq) + H2SO4(aq) BaSO4 (ppt) + 2 HNO3 (aq) 3. silver nitrate reacts in solution with potassium chromate to yield a silver chromate precipitate and soluble potassium nitrate silver nitrate + potassium chromate silver chromate + potassium nitrate 2 AgNO3 (s) + K2CrO4(aq) Ag2CrO4 (ppt) + 2 KNO3 (aq) 4. solid calcium carbonate reacts with hydrochloric acid [HCl(aq)] to yield aqueous calcium chloride, carbon dioxide gas, and liquid water calcium carbonate + hydrochloric acid calcium chloride + carbon dioxide + water CaCO3 (aq) + 2 HCl(aq) CaCl2 (aq) + H2CO3 (aq) CO2 (g) + H2O (l) 5. aqueous zinc chloride reacts with dihydrogen monosulfide gas to yield a zinc sulfide precipitate and hydrochloric acid zinc chloride + dihydrogen monosulfide zinc sulfide + hydrochloric acid ZnCl2 (aq) + H2S(g) ZnS (ppt) + 2 HCl (aq) 6. magnesium nitrate reacts in solution with potassium hydroxide to yield a magnesium hydroxide precipitate and soluble potassium nitrate magnesium nitrate + potassium hydroxide magnesium hydroxide + potassium nitrate Mg(NO3)2 (s) + 2 KOH (aq) Mg(OH)2 (ppt) + 2 KNO3 (aq) 7.
    [Show full text]
  • Photoassisted Hydrogen Production Using Visible Light and Coprecipitated Zinc Sulfide.Cntdot.Cadmium Sulfide Without a Noble Metal N
    Subscriber access provided by University of Texas Libraries Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide.cntdot.cadmium sulfide without a noble metal N. Kakuta, K. H. Park, M. F. Finlayson, A. Ueno, A. J. Bard, A. Campion, M. A. Fox, S. E. Webber, and J. M. White J. Phys. Chem., 1985, 89 (5), 732-734• DOI: 10.1021/j100251a002 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on February 12, 2009 More About This Article The permalink http://dx.doi.org/10.1021/j100251a002 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 732 J. Phys. Chem. 1985, 89, 132-134 ignored since transitions to them from the So ground state are not entirely inconsistent with experiment. allowed by the symmetry selection rules.23 The best-fit parameters The So potential is relatively flat near the minimum compared for So are V2= -3980.0 cm-' and V4 = -1023.0 cm-I, and those to that of a harmonic oscillator. This shape is required to re- for SI are V2= -2054.9 cm-I and V4 = -1009.2 cm-'. These same produce the negative anharmonicity in the So(a) spacings. The potential parameters were used to calculate the 9PA-dS torsional irregular positive anharmonicity in the Sl(A) spacings requires frequencies which appear in the last column of Table 11.
    [Show full text]