Hydrothermal Carbonization of Lignocellulosic Biomass

Total Page:16

File Type:pdf, Size:1020Kb

Hydrothermal Carbonization of Lignocellulosic Biomass University of Nevada, Reno Upgrading Biomass by Hydrothermal and Chemical Conditioning A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy in Chemical Engineering By Mohammad Toufiqur Reza Dr. Charles J. Coronella/ Dissertation Advisor May, 2013 i Upgrading Biomass by Hydrothermal and Chemical Conditioning Abstract There are two widely known thermal pretreatment technologies, known as hydrothermal carbonization and dry torrefaction. In dry torrefaction, also known as torrefaction or mild pyrolysis, dry solid biomass is treated in an inert gas environment in a temperature range of 200-300oC for more than one hour. In hydrothermal carbonization (HTC), also known as wet torrefaction, biomass is treated with hot compressed subcritical water (200-260oC) for 5 min-8 h. The solid product, HTC biochar, contains about 55-90% of the mass and 80-95% of the fuel value of the original feedstock. The HTC process takes any wet waste biomass and converts it to a homogenized, friable, hydrophobic, and, mass and energy densified HTC biochar similar to lignite coal. Subcritical water, the temperature between 180-280 °C has ionic strength much higher than water under ambient condition. Hemicellulose hydrolysis occurs at temperatures as low as 180 °C, while cellulose hydrolysis starts around 220-230 °C. Many monomers, aldehydes, and intermediates are produced as a result of hydrolysis of biomass. Reactive intermediate species promote chemical reactions such as decarboxylation, dehydration, aromatization, and condensation-polymerization in the presence of subcritical water. As a result of these reactions, complete degradation of hemicellulose and partial degradation of cellulose was observed in the solid phase. Some carbon-rich cross-linked hydrophobic polymers are produced from the cellulose ii hydrolyzed intermediates. Van Soest fiber analysis is incapable of distinguishing those new cellulose-derived polymers from naturally present lignin. Slagging and fouling are two major problems that result from biomass combustion or co-firing with coal, especially for the biomass with high inorganic content. HTC provides biochar with the slagging and fouling indices which will predict slagging and fouling, regardless of the biomass type, primarily due to reduced chlorine content. Hot compressed water leaches both loose soil and a major portion of structural minerals in biomass by degrading its constituents during HTC. Up to 90% of calcium, magnesium, sulfur, phosphorus, and potassium were removed at low temperature HTC (200 °C). All heavy metals were reduced by HTC treatment, which opens the door to use HTC biochar as soil amendment. However, HTC still might not be appropriate for some specific thermochemical and biochemical conversion processes as the remaining ash can inhibit these processes. Many biochemical processes require hemicellulose and cellulose, while HTC degrades them, even at its minimum severity. However, an effective chelating agent like sodium citrate can preserve the organic carbohydrate fractions, while effectively dissolving metals. More than 75% structural and 85% whole ash was reduced by treatment with 0.1 of g sodium citrate per gram of raw dry corn stover at mild conditions. FTIR analysis demonstrated that the main components like lignin, cellulose and hemicellulose were unaffected by sodium citrate chelation. HTC biochar exhibits the glass transition at 140 °C and thus can be used as a binder to make durable pellets from raw biomass or even from torrefied biochar. Although torrefied biochar shows similar energy value and hydrophobicity, it is quite iii different than HTC biochar. Torrefied biochar pellets have poor durability compared to pellets of HTC biochar or even raw biomass pellets. Engineered pellets, the pellets of a mixture of torrefied and HTC biochar, are denser, more hydrophobic and durable than torrefied biochar pellets. HTC biochar was found very effective in making solid bridges among the torrefied biochar. The engineered pellets' durability is increased with increasing HTC biochar fraction. Water in subcritical condition is also effective in conversion of digested sludge. A liquid bio-oil type fuel product was discovered from the hydrothermal treatment of sludge (HTS). The HTS biosolid has higher energy value and ash than raw sludge. Moreover, the dewaterability can be increased greatly by treating waste water sludge with subcritical water. iv Acknowledgments First of all, I would like to express my sincere gratitude to my advisor Dr. Charles J. Coronella, for his continued guidance, discussion, motivation, and support during my research works. It would have been impossible for me to complete this work without his mentoring and moral supports. I would like to express my sincere thanks to the committee members, Dr. Victor R. Vasquez, Dr. Kent Hoekman, Dr. Hongfei Lin, and Dr. Glenn Miller for their valuable comments and suggestions. Special thanks to Ms. Joan G. Lynam, and M. Helal Uddin, the two most helpful persons in University of Nevada Reno (UNR), for their enormous invaluable supports on my research, discussions, and collaborative studies. They have provided a lot of technical suggestions, personal encouragements, emotional and moral supports. It would have been impossible without their supports. My research group Tapas C. Acharjee, Cody Wagner, Mike Matheus, Jason Hastings, Kevin Schmidt, Cody Niggemeyer, Alexander York, David Graves, and Chris Moore need special appreciation for their assistance and creating a joyful environment in the laboratory. Dr. Alan Fuchs research group has been always supportive and accommodating. Thanks to Joko Sustrino and Irawan Paramudiya for their support in analytical measurements. Dr. Qizhen Li is been very generous to me. I used some of her analytical instruments and her valuable advice has been very helpful. v Dr. Subramanyan Ravi‟s lab has been always resourceful and his group is always helpful. Special thanks to Dr. Bratindra Mukharjee, Swagotom Sarker, and York R. Smith for their invaluable support in analytical instrumentation. My parents deserve credit for all my achievements. They have supported me whole heartedly in all my endeavors. Special thanks to Ms. Eriko Mukaibo to support me and stay besides me in all my hard times. She has been my source of inspiration throughout my research. Thanks to my brothers and entire family member for their love and support. Finally, I want to thank the US Department of Energy for their financial support. I gratefully acknowledge meaningful discussions with Larry Felix, and Dr. Wei Yan from the Gas Technology Institute (GTI), Dr. Garold Gresham, and Rachel Emerson from the Idaho National Laboratory (INL). vi Content Abstract i Acknowledgements iv List of Figures xiii List of Tables xvi Chapter 1: Introduction 1 1.1 Biomass as energy source 1 1.2 Energy crisis and administrative strategies of USA 2 1.3 Biomass versus fossil fuel 5 1.4 Lignocellulosic biomass 8 1.4.1 Cell wall structure 9 1.4.2 Chemical structure 10 1.4.2.1 Cellulose 11 1.4.2.2 Hemicellulose 13 1.4.2.3 Lignin 14 1.4.2.4 Water extractives 16 1.5 Conversion routes for fuel production from biomass 16 1.5.1 Conversion of dry biomass 17 1.5.2 Conversion of wet biomass 18 1.6 Benefits of biomass pretreatment 20 1.6.1 Torrefaction 21 1.6.2 Hydrothermal carbonization (HTC) 22 vii 1.7 Properties of subcritical water 25 1.8 Project Objective 27 1.9 Organization of Dissertation 29 1.10 References 32 Chapter 2: Prior studies on HTC 41 2.1 History of HTC development 42 2.2 HTC of various feedstocks 46 2.2.1 Effects of process variables 46 2.2.1.1 Temperature effects on HTC 48 2.2.1.2 SEM images of HTC biochar 52 2.2.1.3 Ultimate analysis 55 2.3 Reaction kinetics of HTC for short reaction time 57 2.3.1 Novel two-chamber kinetic reactor 58 2.3.2 Kinetic results 61 2.3.3 Kinetic model for HTC 64 2.3.4 Kinetic parameters of HTC 66 2.4 Pelletization of HTC biochar 68 2.4.1 Glass transition behavior of HTC biochar 69 2.4.2 Mass and energy density of HTC biochar pellets 71 2.4.3 Mechanical strength of HTC biochar pellets 73 2.3.4 EMC of HTC biochar pellets 77 2.5 References 80 Chapter 3: Reaction Chemistry of Hydrothermal Carbonization 87 viii 3.1 Introduction 88 3.2 Materials and methods 92 3.2.1 Biomass and chemicals 92 3.2.2 Hydrothermal carbonization 92 3.2.3 Fiber analysis 93 3.2.4 Ultimate analysis 93 3.2.5 ATR-FTIR 94 3.2.6 Higher heating value 94 3.2.7 Aqueous sample analysis 95 3.3 Results and Discussion 96 3.3.1 Fiber and ultimate analysis of HTC 96 3.3.2 Reaction mechanisms 98 3.3.2.1 Hydrolysis 100 3.3.2.2 Dehydration 105 3.3.2.3 Decarboxylation 106 3.3.2.4 Condensation- Polymerization 107 3.3.2.5 Aromatization 108 3.4 Conclusions 109 3.5 References 110 Chapter 4: Inorganic Analysis of HTC Biochar 115 4.1 Introduction 116 4.2 Materials and methods 119 4.2.1 Biomass 119 ix 4.2.2 Hydrothermal carbonization 120 4.2.3 Analyses 121 4.2.3.1 ICP-AES analysis 121 4.2.3.2 Higher heating value 121 4.2.3.3 Ash measurement 122 4.2.3.4 Fiber analysis 122 4.2.3.5 SEM-EDX 122 4.3 Results and Discussion 123 4.3.1 Fiber analysis of HTC biochar 123 4.3.2 Mass yield and energy value of HTC biochar 126 4.3.3 Ash yield of HTC biochar 128 4.3.4 Inorganic analysis of HTC biochar 129 4.3.5 Heavy metal analysis of HTC biochar 133 4.3.6 Ash analysis of HTC biochar 135 4.4 Conclusions 137 4.5 References 139 Chapter 5: Chemical Demineralization of Corn Stover 144 5.1 Introduction 145 5.2 Materials and methods 148 5.2.1 Biomass 148 5.2.2 Experimental procedure
Recommended publications
  • Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: a Review
    processes Review Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review Laura Pires da Mata Costa 1 ,Débora Micheline Vaz de Miranda 1, Ana Carolina Couto de Oliveira 2, Luiz Falcon 3, Marina Stella Silva Pimenta 3, Ivan Guilherme Bessa 3,Sílvio Juarez Wouters 3,Márcio Henrique S. Andrade 3 and José Carlos Pinto 1,* 1 Programa de Engenharia Química/COPPE, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP 68502, Rio de Janeiro 21941-972, Brazil; [email protected] (L.P.d.M.C.); [email protected] (D.M.V.d.M.) 2 Escola de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CP 68525, Rio de Janeiro 21941-598, Brazil; [email protected] 3 Braskem S.A., Rua Marumbi, 1400, Campos Elíseos, Duque de Caxias 25221-000, Brazil; [email protected] (L.F.); [email protected] (M.S.S.P.); [email protected] (I.G.B.); [email protected] (S.J.W.); [email protected] (M.H.S.A.) * Correspondence: [email protected]; Tel.: +55-21-3938-8709 Abstract: Plastic production has been increasing at enormous rates. Particularly, the socioenvi- ronmental problems resulting from the linear economy model have been widely discussed, espe- cially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the Citation: Pires da Mata Costa, L.; many production stages have not been discussed thoroughly. Regarding the manufacturing pro- Micheline Vaz de Miranda, D.; Couto cesses, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical de Oliveira, A.C.; Falcon, L.; Stella transformations, explaining why first-generation petrochemical industries are among the top five Silva Pimenta, M.; Guilherme Bessa, most greenhouse gas (GHG)-polluting businesses.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Migration from Creosote-Treated Railway Ties Into Ballast and Adjacent Wetlands
    United States In cooperation Department of with the Agriculture Polycyclic Aromatic United States Forest Service Department of Transportation Hydrocarbon Migration Forest Products Federal Laboratory Highway Administration From Creosote-Treated Research Paper FPL−RP−617 Railway Ties Into Ballast and Adjacent Wetlands Kenneth M. Brooks Abstract from the weathered ties at this time. No significant PAH loss was observed from ties during the second summer. A Occasionally, creosote-treated railroad ties need to be small portion of PAH appeared to move vertically down into replaced, sometimes in sensitive environments such as the ballast to approximately 60 cm. Small amounts of PAH wetlands. To help determine if this is detrimental to the may have migrated from the ballast into adjacent wetlands surrounding environment, more information is needed on during the second summer, but these amounts were not the extent and pattern of creosote, or more specifically poly- statistically significant. These results suggest that it is rea- cyclic aromatic hydrocarbon (PAH), migration from railroad sonable to expect a detectable migration of creosote-derived ties and what effects this would have on the surrounding PAH from newly treated railway ties into supporting ballast environment. This study is a report on PAH level testing during their first exposure to hot summer weather. The PAH done in a simulated wetland mesocosm. Both newly treated rapidly disappeared from the ballast during the fall and and weathered creosote-treated railroad ties were placed in winter following this initial loss. Then statistically insignifi- the simulated wetland. As a control, untreated ties were also cant vertical and horizontal migration of these PAH suggests placed in the mesocosm.
    [Show full text]
  • Characterization of Activated Carbon Produced from Coffee Residues by Chemical and Physical Activation
    Activated carbon Characterization of activated carbon produced from coffee residues by chemical and physical activation JAVIER SÁNCHEZ AZNAR KTH Chemical Science and Engineering Master Thesis in Chemical Engineering Stockholm, Sweden, March 2011 - 1 - Activated carbon List of figures PART 1 Fig 1.1 Representation of the structure of activated carbons (H. Fritzst Oeckli 1990)(47).7 Fig 1.2 The six isotherm types according to IUPAC……………………………………...8 Fig 1.3 Representation of the three types of pores according to the IUPAC………….....14 Fig 1.4 Texture of dust activated carbon………………………………………………...19 Fig 1.5 Texture of granular activated carbon…………………………………………….19 Fig 1.6 Structure of a coffee bean………………………………………………………..23 PART 2 Fig 2.1 Furnace employed for carbonization…………………………………………….31 Fig 2.2 Magnetic stirrer during HCL washing…………………………………………..32 Fig 2.3 Steam activation system…………………………………………………………33 Fig 2.4 ASAP instrument………………………………………………………………...34 PART 3 Fig 3.1 Results of yields for 30%, 40% and 50% samples by chemical activation at different temperatures…………………………………………………………………....38 Fig 3. 2. Results of yields for samples activated by steam at different temperatures……39 Fig 3.3 Results of volatile and ash content by chemical and steam activation…………..40 Fig 3.4 Results of BET surface area (m 2/g)……………………………………………...42 Fig 3. 5 Isotherm of the sample CA_3_500……………………………………………...44 Fig 3.6 Isotherm of the sample CA_3_600……………………………….……………...44 Fig 3.7 Isotherm of the sample CA_3_700……………………………….……………...44 Fig 3.8 Isotherm of the
    [Show full text]
  • Hardwood-Distillation Industry
    HARDWOOD-DISTILLATION INDUSTRY No. 738 Revised February 1956 41. /0111111 110 111111111111111111 t I 1, UNITED STATES DEPARTMENT OF AGRICULTURE FOREST PRODUCTS LABORATORY FOREST SERVICE MADISON 5, WISCONSIN. In Cooperation with the University of Wisconsin 1 HARDWOOD-DISTILLATION INDUSTRY— By EDWARD BEGLINGER, Chemical Engineer 2 Forest Products Laboratory, — Forest Service U. S. Department of Agriculture The major portion of wood distillation products in the United States is obtained from forest and mill residues, chiefly beech, birch, maple, oak, and ash. Marketing of the natural byproducts recovered has been concerned traditionally with outlets for acetic acid, methanol, and charcoal. Large and lower cost production of acetic acid and methanol from other sources has severely curtailed markets formerly available to the distillation in- dustry, and has in turn created operational conditions generally unfavor- able to many of the smaller and more marginal plants. Increased demand for charcoal, which is recovered in the largest amount as a plant product, now provides a compensating factor for more favorable plant operation. The present hardwood-distillation industry includes six byproduct-recovery plants. With the exception of one smaller plant manufacturing primarily a specialty product, all have modern facilities for direct byproduct re- covery. Changing economic conditions during the past 25 years, including such factors as progressively increasing raw material, equipment, and labor costs, and lack of adequate markets for methanol and acetic acid, have caused the number of plants to be reduced from about 50 in the mid- thirties to the 6 now operating. In addition to this group, a few oven plants formerly practicing full recovery have retained the carbonizing equipment and produce only charcoal.
    [Show full text]
  • Bibliography of Wood Distillation
    Bibliography of WoodDistillation T.CL[). Compiled by Gerald A.Walls Arranged by Morrie Craig BibliographY 5 October 1966 For.stProductsResearch FOREST RESEARCHLABORATORY OREGON STATEUNIVERSITY Corvallis PROGRAM AND PURPOSE The Forest Research Laboratoryof the School of Forestry combines a well-equipped laboratory witha staff of forest and wood scientists in program designed to improve the forestresource and promote full uti- lization of forest products. Theextensive research done by the Labora tory is supported by the forest industryand by state and federal funds. The current report results fromstudies in forest products, where wood scientists and technologists,chemists, and engineers are con- cerned with properties, processing,utilization, and marketing of wood and of timber by-products. The PROGRAM of research includes identifying and developing chemicals fromwood, improving pulping of wood and woodresidues, investigating and improving manufacturingtechniques, extending life of wood by treating, developing better methods ofseasoning wood for higher quality and reduced costs, cooperating with forest scientists to determineeffects of growing conditionson wood properties, and evaluating engineering properties ofwood and wood- based materials and structures. The PURPOSE of researchon forest products is to expand markets, create new jobs, and bringmore dollar returns, thus advancing the interests of forestry and forestindustries, by > developing products from residuesand timber now wasted, and > improving treatment and designof present wood products. Table of Contents INTRODUCTION 3 BOOKS 4 ARTICLES AND BULLETINS 5 PATENTS 46 Australia 46 Austria 46 Be1giun 46 Canada 47 Czechoslovakia 47 Denmark 47 France 47 Germany 51 Great Britain 52 India 55 Italy 55 Japan 55 Netherlands 56 Norway 56 Poland 56 Russia 56 Spain 57 Sweden 57 Switzerland 58 United States 59 Bibliography of Wood Distillation INTRODUCTION This bibliography is a revision and extension to1964 of Bibli- ography of Wood Distillation, 1907-1953published in 1955.
    [Show full text]
  • 1343-1351, 2007 © 2007, Insinet Publication
    Journal of Applied Sciences Research, 3(11): 1343-1351, 2007 © 2007, INSInet Publication Effects of H34PO and KOH on Pyrolysis of Bituminous Coal in Preparation of Activated Carbon 11Baba Jibril, Rashid S. Al-Maamari, 2Omar Houache, 1Mousa Al-Aamri and 1AlMutasim Al-Qalhati 1Petroleum and Chemical Engineering Department, Sultan Qaboos University, PO Box 33, Al Khod, PC 123, Muscat, Oman. 2Oman Polypropylene LLC, Sohar Industrial Port Complex, P.O. Box 277, Postal Code 322, Flag Al-Qabail, Sohar, Sultanate of Oman. Abstract: Effects of H34PO and KOH on the degree of pyrolysis of bituminous coal to obtain activated carbon were studied. Different chemicals to coal impregnation ratios - H34PO /coal (0.0 – 4.25) and KOH/coal (0.0 - 3.0) - were carbonized at different temperatures (450, 450 or 600 oC). The respective acid or base addition to the precursor exhibited marked differences in the true densities, SEM micrographs, BET surface areas and pore volumes of the activated carbon. Microporous samples were obtained with average pore diameters in the range of 17.4 to 21.4 Å. Increase in H34PO concentration showed increase in porosity and surface area at all temperatures. Addition of KOH led to higher surface area, more porous structure with wider pore size distributions than that of acid. At high temperatures (550 or 650 oC), the average pore diameters were observed to be less dependent on the nature of the chemical used. Keyword: activated carbon, chemical activation, SEM, surface area, porosity INTRODUCTION could lead to a more microporous structure suitable for gas storage[15]. However, similar post-treatment attempt Coals are favored precursors for preparation of using air gasification exhibited no significant changes activated carbon.
    [Show full text]
  • INVESTIGATION of POLYCYCLIC AROMATIC HYDROCARBONS (Pahs) on DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS
    INVESTIGATION OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) ON DRY FLUE GAS DESULFURIZATION (FGD) BY-PRODUCTS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ping Sun, M.S. ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Linda Weavers, Adviser Professor Harold Walker Professor Patrick Hatcher Adviser Professor Yu-Ping Chin Civil Engineering Graduate Program ABSTRACT The primary goal of this research was to examine polycyclic aromatic hydrocarbons (PAHs) on dry FGD by-products to determine environmentally safe reuse options of this material. Due to the lack of information on the analytical procedures for measuring PAHs on FGD by-products, our initial work focused on analytical method development. Comparison of the traditional Soxhlet extraction, automatic Soxhlet extraction, and ultrasonic extraction was conducted to optimize the extraction of PAHs from lime spray dryer (LSD) ash (a common dry FGD by-product). Due to the short extraction time, ultrasonic extraction was further optimized by testing different organic solvents. Ultrasonic extraction with toluene as the solvent turned out to be a fast and efficient method to extract PAHs from LSD ash. The possible reactions of PAHs under standard ultrasonic extraction conditions were then studied to address concern over the possible degradation of PAHs by ultrasound. By sonicating model PAHs including naphthalene, phenanthrene and pyrene in organic solutions, extraction parameters including solvent type, solute concentration, and sonication time on reactions of PAHs were examined. A hexane: acetone (1:1 V/V) ii mixture resulted in less PAH degradation than a dichloromethane (DCM): acetone (1:1 V/V) mixture.
    [Show full text]
  • Indirect Drying and Coking Characteristics of Coking Coal with Soda Residue Additive
    energies Article Indirect Drying and Coking Characteristics of Coking Coal with Soda Residue Additive Ze Zhang and Shuting Zhang * School of Environment Science and Engineering, Tianjin University, Tianjin 300350, China; [email protected] * Correspondence: [email protected]; Tel.: +86-150-7687-5579 Abstract: To improve indirect drying efficiency, the effect of soda residue on the drying characteristics of coking coal were studied using a self-made indirect drying system. A tube furnace was used in the dry distillation of coal samples with soda residue, and the coke properties were analyzed. The results indicated that the soda residue has a significant influence on the increase in the heating rate of coal samples in the temperature distribution range of 90 to 110 ◦C. With the addition of 2%, 5%, and 10% soda residue, the drying rates increased by 11.5%, 25.3%, and 37.3%, respectively at 110 ◦C. The results of dry distillation show that addition of 2%, 5% and 10% soda residue decreases the carbon loss quantity by 4.67, 4.99, and 8.82 g, respectively. The mechanical strength of coke samples satisfies the industrial conditions when the soda residue ratio ranges from 2% to 5%. Soda residue can improve the active point of coke dissolution reaction and inhibit coke internal solution. Economically, coking coal samples mixed with soda residue have an obvious energy saving advantage in the drying process. Energy saving analysis found that it can reduce cost input by 20% than that of the normal drying method. Keywords: coking coal; soda residue; indirect drying; coking characteristics; benefits Citation: Zhang, Z.; Zhang, S.
    [Show full text]
  • Modern Technology of Dry Distillation of Wood
    Modern technology of dry distillation of wood Michał LEWANDOWSKI, Eugeniusz MILCHERT – Institute of Chemical Organic Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin Please cite as: CHEMIK 2011, 65, 12, 1301-1306 Nowadays the process of dry (destructive) distillation of wood is Wood gas from dry distillation contains (%wt.): CO2 40-55, carried out in a periodical (batch) or continuous manner. In the former CO 26-35, CH4 3-10, C2H4 2, H2 1-4. It is often used for steam case steel (mobile) retort furnaces are used, while in the latter case, generation for captive use at the distillation plant or in nearby facilities, science • technique retorts included in automated plants. In both cases temperature during or directly as fuel for heating the retort. The mean heating value the process is gradually increased from 200°C to 600°C, with limited of the gas is 8.4-12.6 MJ/m3. This gas under war conditions was used admission of air. The products of the processes taking place include, for driving internal combustion engines. in addition to charcoal, a distillate comprising gases and vapours. Liquid distillates, upon collection and settling in tanks, separate The gaseous components include carbon dioxide, carbon monoxide, and form a settled tar layer and a water solution called pyroligneous hydrogen, methane and ethylene. Vapours contain mainly methanol, acid, the latter containing acetic acid, methanol, acetone, methyl acetic acid, acetone, formic acid, propionic aldehyde and acid. They acetate and tar components. After vacuum distillation in multiple- also contain components that condense to form wood tar.
    [Show full text]
  • Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass
    Journal of C Carbon Research Article Activated Carbons Derived from High-Temperature Pyrolysis of Lignocellulosic Biomass Cristian I. Contescu 1,* , Shiba P. Adhikari 1 , Nidia C. Gallego 1,*, Neal D. Evans 2 and Bryan E. Biss 2 1 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; [email protected] 2 Proton Power, Inc., Lenoir City, TN 37771, USA; [email protected] (N.D.E.); [email protected] (B.E.B.) * Correspondence: [email protected] (C.I.C.); [email protected] (N.C.G.); Tel.: +1-865-241-3318 (C.I.C.); +1-865-241-9459 (N.C.G.) Received: 17 August 2018; Accepted: 10 September 2018; Published: 12 September 2018 Abstract: Biomass pyrolysis to produce biofuel and hydrogen yields large amounts of charred byproducts with low commercial value. A study was conducted to evaluate their potential for being converted into higher value activated carbons by a low-cost process. Six chars derived from various ◦ lignocellulosic precursors were activated in CO2 at 800 C to 30–35% weight loss, and their surface area and porosity were characterized by nitrogen adsorption at 77 K. It was found that, in similar activation conditions, the surface area of the activated carbons correlates with the activation energy of the oxidation reaction by CO2, which in turn varies inversely with the carbon yield after thermolysis in nitrogen at 1000 ◦C. Since lignin is the most thermally-stable component of lignocellulosic biomass, these results demonstrate, indirectly, that robust, lignin-rich vegetal precursors are to be preferred to produce higher quality activated carbons.
    [Show full text]
  • Hydrothermal Carbonization of Municipal Waste Streams
    ARTICLE pubs.acs.org/est Hydrothermal Carbonization of Municipal Waste Streams ,† ‡ § † || Nicole D. Berge,*^ Kyoung S. Ro, Jingdong Mao, Joseph R. V. Flora, Mark A. Chappell, and Sunyoung Bae † Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, South Carolina 29208, United States ‡ USDA-ARS Coastal Plains Soil, Water, and Plant Research Center, 2611 West Lucas Street, Florence, South Carolina 29501, United States §Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, Virginia 23529, United States Environmental) Laboratory, U.S. Army Corps of Engineers, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180, United States ^ Department of Chemistry, Seoul Women’s University, 139-774 126 Gongreung-Dong, Nowon-Gu, Seoul, Korea bS Supporting Information ABSTRACT: Hydrothermal carbonization (HTC) is a novel thermal conver- sion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass such as wood, with an emphasis on nanostructure generation. There has been little work exploring the carbonization of complex waste streams or of utilizing HTC as a sustainable waste management technique. The objectives of this study were to evaluate the environmental implications associated with the carbonization of representative municipal waste streams (including gas and liquid products), to evaluate the physical, chemical, and thermal properties of the produced hydrochar, and to determine carbonization energetics associated with each waste stream. Results from batch carbonization experiments indicate 49À75% of the initially present carbon is retained within the char, while 20À37% and 2À11% of the carbon is transferred to the liquid- and gas-phases, respectively.
    [Show full text]
  • Characterization of Chemically and Physically Activated Carbons From
    energies Article Characterization of Chemically and Physically Activated Carbons from Lignocellulosic Ethanol Lignin-Rich Stream via Hydrothermal Carbonization and Slow Pyrolysis Pretreatment Edoardo Miliotti 1 , Luca Rosi 1,2 , Lorenzo Bettucci 1, Giulia Lotti 1, Andrea Maria Rizzo 1 and David Chiaramonti 1,3,* 1 Renewable Energy Consortium for Research and Demonstration—RE-CORD, Viale Kennedy 182, Scarperia, 50038 Florence, Italy; [email protected] (E.M.); luca.rosi@unifi.it (L.R.); [email protected] (L.B.); [email protected] (G.L.); [email protected] (A.M.R.) 2 Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy 3 “Galileo Ferraris” Energy Department, Polytechnic of Turin, Corso Duca Degli Abruzzi 24, I-10129 Torino, Italy * Correspondence: [email protected] Received: 24 June 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: The aim of the present work is to investigate the possibility of producing activated carbons from the residual lignin stream of lignocellulosic ethanol biorefineries, as this represents an optimal opportunity to exploit a residual and renewable material in the perspective of sustainable bioeconomy, increasing biorefinery incomes by producing value-added bioproducts in conjunction with biofuels. Activated carbons (ACs) were produced via chemical (KOH) and physical (CO2) activation. Char samples were obtained by slow pyrolysis (SP) and hydrothermal carbonization (HTC). Several HTC experiments were carried out by varying residence time (0.5–3 h) and reaction temperature (200–270 ◦C), in order to evaluate their influence on the product yield and on the morphological characteristics of the hydrochar (specific surface area, total pore volume and pore size distribution).
    [Show full text]