Experiences in Operation of Various Electric-Arc Furnaces Under

Total Page:16

File Type:pdf, Size:1020Kb

Experiences in Operation of Various Electric-Arc Furnaces Under Experiences in operation of various electric-arcfurnaces under resistance control A. L. Moolman, M. S. Rennie,P. Brereton-Stiles. Mintek, P/Bag X3015, Randburg, 2125, South Africa, Tel. +27 11 709-4111 ABSTRACT advanced power control algorithm by compensating for imbalanced loads Mintek has been involved in research and through the out-of-step (differential) development on submerged-arc furnaces operation of the furnace transformers. for more than 30 years. During this time Implementations on inherently unstable Mintek has studied various aspects of operations, typically the production of ferro-alloy production including the ferro-chrome with a high percentage of operation of DC-Arc furnaces, process fines present in the feed, have resulted in a metallurgy 'and the optimisation of dramatic improvement in production and submerged-arc furnaces. utilisation of available energy. To this day the submerged-arc furnace Mintek has also extended the concept of remains the predominant vessel used in resistance control to other applications ferro-alloy production. Through close besides the production of ferro-alloys. collaboration with the ferro-alloy industry world-wide, Mintek has applied its This paper will examme Mintek's patented resistance control system experience in optimising various processes (Minstral) to over 50 submerged-arc using resistance and power control. furnaces producing a wide range of ferro­ alloys. 1. INTRODUCTION The concept of resistance control has lead The majority of ferroalloys are still to a total paradigm shift in the control of produced in three-phase submerged-arc ferro-alloy furnaces from traditional furnaces. The reasons are that the high current and impedance control, and temperatures and reducing conditions derivations thereof. The correct resistance required are not easily created by other setpoint plays an important role in means. For economic reasons, larger optimising furnace performance. This is furnaces, with bigger electrodes and especially important in silicon and transformers have been built. These ferrosilicon production, where the C3 furnaces have longer time constants, lower factor played an important role in setting power factors and are generally much current set points. more difficult to operate and control than their smaller cousins. Maintaining power Mintek has studied a number of processes input and electrode penetration on these in order to establish criteria for selecting large furnaces is not a simple task that the an optimum resistance. Each process has operator can do efficiently with the a certain range of typical resistances in traditional measurements of current, which it operates. The optimal resistance voltage and power. for each operation depends on a number of factors, predominantly the size and 2. RESISTANCE BASED CONTROL composition of raw materials, feed recipe, and any pre-processing (pellitization, pre­ Mintek developed and commercialised a reduction) performed on the raw materials. resistance controller based on primary electrical measurements to solve some of Power control has become an increasingly the problems of maintaining electrode important aspect of furnace optimisation. penetration based on current control or Mintek has developed and implemented an voltage measurements. This controller has 103 been used on a number of different sized 3. THE DESIGN AND OPERATION furnaces and processes. The question that OFFERROALLOYFURNACES always arises is what the optimal 1 resistance for a specific furnace and Many years ago F. V. Andrea developed process is. The answer depends on a the idea that the electrode periphery number of factors - the type of process, resistance was a constant for each different furnace size, electrode diameter, type and ferroalloy process. W.M. Kelly2 called it size of the raw materials - and usually the "k" factor and presented a set of curves needs to be determined for each individual of the "k" factor versus electrode power operation. density, which were typical of the operation at that time. Andrea further When one looks at the operating developed the concept that the heat that resistances at different power levels of could be dissipated from the surface of a different processes, one sees some very graphite electrode would limit the current distinct trends. Resistance was plotted carrying capacity. Thus we have two against power for 26 different relationships that are as applicable today ferrochrome, ferromanganese-silicide and as they were then: ferrosilicon operations. It was found that for ferrochrome production, there were R oc 1/D two distinct modes of operation. Linear 312 regression equations were calculated for I oc D each process and the results are given in 2 Table 1 and plotted in Figure 1. The R For Soderberg electrodes, the maximum value (as defined in Excel) is a measure of operating current is approximately: the variance of the prediction. There are no R2 values less than 0.7, showing I= 55D312 reasonable linearity. where I is in kA and D is in meters. By Process Resistance equation selecting a reference resistance point, one FeCr +fines -0.042MW + 3.8 0.72 can calculate resistances and powers for a FeCr -0.021MW + 2.0 0.70 range of electrode diameters. FeSi -0 .024MW + 1.7 0.85 3 FeMnSi -0.015MW + 1.2 0.71 J. Westley also looked at the operation of Table 1. Linear resistance predictions large number furnaces, in particular silicon and ferrosilicon furnaces. He found that good operation corresponded to the relationship: R vs MN for FeCr, FeMnSi, FeSi 213 I= C3 P 3.5 E ..c: 3 0 - where I is in kA and P is in MW. One can 2.5 - E -- use !his relationship to plot resistance ai 2 (..) - against power and compare these different c: Ill 1.5 predictions with the regression line for .... .. .!!! ferrosilicon production derived from the I/) Q) 0.5 operational data. 0::: 0 0 10 20 30 40 Table 2 gives the calculated linear regression equations for the data plotted in Furnace power, MW Figure 2. Although neither the C3 nor the - Linear (FeMnSi) -- Linear (FeCr) theoretical relationships are linear, the -- Linear (FeCr (no fines)) - - · Linear (FeSi) linear regression line differs little from the Figure 1. Typical resistance operation prediction over the range of operation. 10· Process FeSi Resistance equation R2 in seconds, leading to control problems as Theoretical -0.025MW + 3.8 0.96 will be discussed subsequently. C 3 -0.016MW + 1.5 0.97 furnaces require high Table 2. Linear predictions for FeSi Ferrosilicon intensity arcs to reach the temperatures required for silicon production. As a R vs MW for FeSI production result, the electrodes are positioned close to the metal bath and small changes in tip 1.4 position can result in large changes in 1.3 resistance. But that is not really the E 1.2 • the porosity of the ..c: problem. Maintaining 0 1.1 within the E bed and the carbon balance ci 1 furnace is much more difficult. Short and 0.9 long term changes in resistivity and electrode penetration result from the crater 0.8 15 20 25 30 35 40 around each electrode growing and collapsing, silicon monoxide jets tunneling Furnace power, MW through the burden, and slag or silicon • R C3 • R theo carbide fluctuations. The interaction effect - - - ·Linear (R CJ) - - Linear (R theo) --Linear (R-FeSi) compounds the problems that these fluctuations present for conventional Figure 2. Actual and predicted FeSi current controllers, and results in resistances excessive electrode movement. Even resistance controllers need some Any of these regression lines could be constraints on their movement. used to specify the transformers for ferrosilicon production at a required power Because of the low vapour pressure of level. The actual operating resistance manganese, ferromanganese production depends very much on the type and sizing requires minimal arcing. Thus almost all of the reductant. Charcoal, coke and coal the conduction is through the low will all have different operating resistivity slag resulting in the low characteristics. The choice of reductant is operating resistances shown in figure 1. usually determined by availability and Since the interaction between the electrode price. currents increases as the power factor decreases (and the power factor is less 4. OPERATING RESISTANCES than 0.7 on all these furnaces), resistance control is essential on most manganese The operating resistance graphs clearly furnaces. But resistance control alone will show that there are distinct operating not solve the penetration problem. modes for each type of process. These Ferromanganse-silicide needs a coke bed modes vary from totally resistive to maintain the silicon grade. This bed conduction to total arcing. Investigations 4 grows and decreases along with the carbon on a ferrochromium furnace using lumpy balance and will change the electrode ores and briquettes showed that 15 to 30% penetration. Arcing can and does occur of the resistance was generated in the arc sometimes and this will also affect the zone immediately beneath the electrode. penetration. Economic considerations have necessitated the use of increased quantities 5. MAINTAINING ELECTRODE of fine chromite ore. This has had a PENETRATION AND POWER INPUT destabilising and cooling effect on the arc producing the very high resistances that Ferrochromium production provides a are common today. Unfortunately, classic example of the problems individual electrodes can switch from a experienced on large high power furnaces. high arcing mode to a low resistive mode The objective is to maintain both electrode penetration and power input. But each 105 electrode will behave individually and Fortunately, most large furnaces have depending on the arcing conditions, will individual tap changers on three separate experience changes in resistance of several transformers. It is thus possible to lower hundred percent under extreme conditions. the voltage on one or more transformers to Moving an electrode in to compensate is remain within the protection limits, while not a problem if you know its resistance. If minimising the power loss.
Recommended publications
  • Magnesium Ferrosilicon Alloy and Use Thereof in Manufacture of Nodular Cast Iron
    :uropaisches Patentamt 0 1 08 1 07 $ QJll Europeaniuropean Patent Office ® Publication number: B 1 Office)ffice europeen des brevets g) EUROPEAN PATENT SPECIFICATION §) Date of publication of patent specification: 13.01.88 (g) int. CI.4: C 22 C 33/08 |j) Application number: 83901516.1 Date of filing: 28.03.83 ® International application number: PCT/US83/00428 @ International publication number: WO 83/03848 10.11.83 Gazette 83/26 g) MAGNESIUM FERROSILICON ALLOY AND USE THEREOF IN MANUFACTURE OF NODULAR CAST IRON. (§) Priority: 21.04.82 US 370185 (73) Proprietor: SKW ALLOYS INC. 3801 Highland Avenue Niagara Falls New York 14305 (US) (§) Date of publication of application: 16.05.84 Bulletin 84/20 ® Inventor: DREMANN, Charles Earl Buckwalter Road (§) Publication of the grant of the patent: Phoenixville, PA 19460 (US) 13.01.88 Bulletin 88/02 @ Representative: Hale, Stephen Geoffrey et al ® Designated Contracting States: J.Y. & G.W. Johnson Furnival House 14/18 High DE FR GB Holborn London WC1V 6DE (GB) (58) References cited: FR-A-2443 510 GB-A-746406 GB-A- 885 896 GB-A-1 273 319 CD US-A-2 762 705 US-A-2873188 US-A-3 537 842 O US-A-3 703 922 US-A-4004 630 US-A-4224 069 00 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall CL be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been LU paid.
    [Show full text]
  • Ferroalloy Quality for Electric Steelmaking with Nonmetallic Inclusion Control
    Electrometallurgy UDC 669.168/.785:539.219.1 Ferroalloy Quality for Electric Steelmaking with Nonmetallic Inclusion Control 1 2 2 Gasik M. I. , Panchenko A. I. , Sal`nikov A. S. 1National Metallurgical Academy of Ukraine 4 Gagarin Ave., Dnipropetrovsk, 49600, Ukraine 2JSC “Dneprospetsstal” 81Yuzhnoe Shosse, Zaporizhzhya, 69008, Ukraine Data about quality of ferroalloys used for electric steelmaking and alloys with special properties controlled by specified nonmetallic inclusions according to GOST 801-78 and ASTM E-45 (method A) are generalized and analyzed. Results of investigation of matrix and proeutectoid phases in the structure of industrial carbonaceous ferrochromium with application of electron microscopy and electron probe microanalysis as the main alloying ferroalloy at roller-bearing steel ШХ15СГ-В smelting are presented. Keywords: FERROALLOYS, STANDARDS, MICROSTRUCTURE, MATRIX AND PROEUTECTOID PHASES, NONFERROUS IMPURITY METALS, CARBONACEOUS FERROCHROMIUM, ELECTRON MICROSCOPY, ELECTRON PROBE MICROANALYSIS, NONMETALLIC SILICATE AND SPINDEL INCLUSIONS Introduction Large-scale development and further implementation of electric arc furnaces of large The complex of strength, plastic, anticorrosive unit capacity with electric steel smelting of mass and other properties of alloyed electric steel and application with equipping shops by ladle-furnaces special purpose alloys is defined in many respects and vacuum vessels unedged attention of steel by proeutectoid precipitated phases of endogenetic producers to the important issue of using high origin (oxides, nitrides, sulfides, phosphides) and quality ferroalloys. It is necessary to mention that also impurity non-ferrous metals in the structure of there are companies producing ferroalloys with the rolled (cast) metal. During formation and use of secondary raw materials along with development of electric furnace steelmaking ferroalloy production plants.
    [Show full text]
  • Development of Ni-Free Mn-Stabilised Maraging Steels Using Fe2siti Precipitates
    This is a repository copy of Development of Ni-free Mn-stabilised maraging steels using Fe2SiTi precipitates. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/146857/ Version: Accepted Version Article: Knowles, A.J., Gong, P., Rahman, K.M. et al. (3 more authors) (2019) Development of Ni-free Mn-stabilised maraging steels using Fe2SiTi precipitates. Acta Materialia. ISSN 1359-6454 https://doi.org/10.1016/j.actamat.2019.05.034 Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Accepted Manuscript Development of Ni-free Mn-stabilised maraging steels using Fe2SiTi precipitates Alexander.J. Knowles, Peng Gong, Khandaker.M. Rahman, W.Mark Rainforth, David Dye, Enrique.I. Galindo-Nava PII: S1359-6454(19)30318-0 DOI: https://doi.org/10.1016/j.actamat.2019.05.034 Reference: AM 15306 To appear in: Acta Materialia Received Date: 24 January 2019 Revised Date: 8 May 2019 Accepted Date: 16 May 2019 Please cite this article as: A.J Knowles, P.
    [Show full text]
  • EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019 1
    Category Title NFR 2.C.2 Ferroalloys production SNAP 040302 Ferroalloys ISIC Version Guidebook 2019 Coordinator Jeroen Kuenen EMEP/EEA air pollutant emission inventory guidebook 2019 1 2.C.2 Ferroalloys production Contents 1 Overview .......................................................................................................... 3 2 Description of sources .................................................................................... 3 2.1 Process description ...................................................................................................................... 3 2.2 Techniques .................................................................................................................................... 3 2.3 Emissions and controls ............................................................................................................... 4 3 Methods............................................................................................................ 6 3.1 Choice of method ......................................................................................................................... 6 3.2 Tier 1 default approach ............................................................................................................... 6 3.3 Tier 2 technology-specific approach .......................................................................................... 7 3.4 Tier 3 emission modelling and use of facility data ................................................................... 8 4 Data
    [Show full text]
  • Critical Evaluation and Thermodynamic Modeling of High Alloy Fe-Mn-Al-Si-C-P System
    Critical Evaluation and Thermodynamic Modeling of High Alloy Fe-Mn-Al-Si-C-P System Zhimin You Department of Mining and Materials Engineering McGill University, Montreal, Quebec, Canada August 2020 A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Doctorate of Philosophy ©Zhimin You, 2020 Dedication To my parents, my brother, and my sister in China Tables of Content Abstract .......................................................................................................................................... 6 Résumé ........................................................................................................................................... 8 Acknowledgements ..................................................................................................................... 10 Preface and Contributions of Authors ...................................................................................... 12 List of Figures .............................................................................................................................. 14 List of Tables ............................................................................................................................... 20 List of Abbreviations and Symbols ........................................................................................... 22 Chapter 1: Introduction ............................................................................................................. 26 1.1 Background ........................................................................................................................
    [Show full text]
  • Obtainment of Sorbitol on Ferroalloy Promoted Nickel Catalysts Kedelbaev BS*, Korazbekova KU and Kudasova DE M
    cie al S nce ri s Kedelbaev et al., J Material Sci Eng 2016, 5:2 te & a E DOI: 10.4172/2169-0022.1000224 M n f g i o n l e a e n r r i n u g o Journal of Material Science & Engineering J ISSN: 2169-0022 Research Article Article OpenOpen Access Access Obtainment of Sorbitol on Ferroalloy Promoted Nickel Catalysts Kedelbaev BS*, Korazbekova KU and Kudasova DE M. Auezov South Kazakhstan State University, Kazakhstan Abstract The systematic study of the activity of the catalyst suspended with ferroalloys additives in catalytic hydrogenation of glucose over a wide variation of process parameters is given in this article. Since nickel catalysts were studied sufficiently, we limited to the data of the phase composition and structure; specific surface of alloys and catalysts based on aluminum-nickel alloys, modified ferroalloys. Results of the study of phase, chemical, particle size distribution and structure of nickel alloys and catalysts have shown that modifying metals affect to the ratio of NiAl3/Ni2Al3 in the alloys, crush crystals, increase catalyst particle size, surface area and large size pore volume and simultaneously increase the micro- and supermicro pore ratio. Highly active, stable and selective catalysts based on nickel for the sorbitol synthesis process was developed. Keywords: Catalysts; Nickel; Autoclave; Hydrogenation; Glucose; As a result of the exothermic reaction, the melting temperature was Sorbitol; Physico-chemical properties; Ferroalloys; Kinetics raised to 1700-1800°С, stirring by the induction field was lasted 3-5 min. The alloy was air-cooled in the graphite molds and was crushed to Introduction grains of 0.25 mm.
    [Show full text]
  • Charcoal As an Alternative Reductant in Ferroalloy Production: a Review
    processes Review Charcoal as an Alternative Reductant in Ferroalloy Production: A Review Gerrit Ralf Surup 1,*, Anna Trubetskaya 2 and Merete Tangstad 1 1 Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway; [email protected] 2 Department of Chemical Sciences, University of Limerick, V94 T9PX Castletroy, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +47-934-73-184 Received: 12 October 2020; Accepted: 3 November 2020; Published: 9 November 2020 Abstract: This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of challenges related to energy efficient charcoal production and formation of emissions in classical kiln technologies are discussed to underline the potential of bio-based reductant usage in ferroalloy reduction process. Keywords: charcoal; pyrolysis; bio-based reductant; ferroalloy industry; kiln 1.
    [Show full text]
  • Strategic Materials: Technologies to Reduce U.S. Import Vulnerability
    Strategic Materials: Technologies To Reduce U.S. Import Vulnerability May 1985 NTIS order #PB86-115367 Recommended Citation: Strategic Materials: Technologies to Reduce U.S. Import Vulnerability (Washington, DC: U.S. Congress, Office of Technology Assessment, OTA-ITE-248, May 1985). Library of Congress Catalog Card Number 84-601153 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402 Foreword This report presents the findings of OTA’s assessment of Strategic Materials: Technologies to Reduce U.S. Import Vulnerability. The study was requested by the House Committee on Science and Technology and the Senate Committee on Commerce, Science, and Transportation. The United States imports well over $1 billion worth of chromium, cobalt, man- ganese, and platinum group metals annually. Many of the uses of these metals are essential to the industrial economy and the national defense. The United States imports virtually all of its requirements for these metals; their production is highly concentrated in two regions of the world: the Soviet Union and southern Africa. The potential for interruption of supplies from these sources has heightened con- gressional interest in alternatives to continued import dependence, This study assesses the technical alternatives to continued reliance on south- ern Africa and the U.S.S.R, for strategic metals. Promising opportunities for do- mestic and diversified foreign production and for conservation and substitution are identified for each metal. Technical, economic, and institutional barriers to the implementation of the alternatives are reviewed and governmental options to overcome those barriers are identified and analyzed. We are grateful for the assistance of the project advisory panel, workshop par- ticipants, contractors, and the advice of many government agencies in the United States and Canada.
    [Show full text]
  • 1. Introduction Ferrosilicon Smelting Is a Continuous Process Carried out In
    Arch. Metall. Mater., Vol. 61 (2016), No 1, p. 265–270 DOI: 10.1515/amm-2016-0050 B. MACHULEC*,#, W. BIALIK** COMPARISON THE PHYSICO-CHEMICAL MODEL OF FERROSILICON SMELTING PROCESS WITH RESULTS OBSERVATIONS OF THE PROCESS UNDER THE INDUSTRIAL CONDITIONS Based on the minimum Gibbs Free Enthalpy algorithm (FEM), model of the ferrosilicon smelting process has been presented. It is a system of two closed isothermal reactors: an upper one with a lower temperature T1, and a lower one with a higher temperature T2. Between the reactors and the environment as well as between the reactors inside the system, a periodical exchange of mass occurs at the moments when the equilibrium state is reached. The condensed products of chemical reactions move from the top to the bottom, and the gas phase components move in the opposite direction. It can be assumed that in the model, the Reactor 1 corresponds to the charge zone of submerged arc furnace where heat is released as a result of resistive heating, and the Reactor 2 corresponds to the zones of the furnace where heat is produced by electric arc. Using the model, a series of calculations was performed for the Fe-Si-O-C system and was determined the influence of temperatures T1, T2 on the process. The calculation results show a good agreement model with the real ferrosilicon process. It allows for the determination of the effects of temperature conditions in charge zones and arc zones of the ferrosilicon furnace on the carbothermic silica reduction process. This allows for an explanation of many characteristic states in the ferrosilicon smelting process.
    [Show full text]
  • Recent Ferroalloy Studies at Istanbul Technical University Onuralp Yucel1, Mehmet Bugdayci2, and Ahmet Turan2
    NIOKR-2018 Theoretical and practical conference with international participation and School KnE Materials Science for young scientists «FERROALLOYS: Development prospects of metallurgy and machine building based on completed Research and Development» Volume 2019 Conference Paper Recent Ferroalloy Studies at Istanbul Technical University Onuralp Yucel1, Mehmet Bugdayci2, and Ahmet Turan2 1Metallurgical and Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey 2Chemical and Process Engineering Department, Faculty of Engineering, Yalova University, 77200, Yalova, Turkey Abstract The present report is the summary of the experimental studies on the production of ferroalloys and iron-based alloys, which have been conducted in the laboratories of Macro to Nano Research Team (MtNT, Yücel’s Group) at Istanbul Technical University (ITU, Turkey) – Metallurgical and Materials Engineering Department in the last decade. Ferromolybdenum, ferrochromium, ferronickel, and iron-based alloys with alloying elements (Mo, Ni, Cr, etc.) were produced through different reduction processes Corresponding Author: (metallothermic and carbothermic) starting from different reactant materials such as Onuralp Yucel mill scale, hematite, magnetite, NiO, Cr2O3, chromic acid, and MoO3. The effects of [email protected] different stoichiometric amounts of reactants and reductant powders were investigated for the production of unalloyed Fe. While, different amounts of metal oxide ratios and Received: 5 February 2019 their effects on metal recoveries, compositions, and microstructure of final alloys were Accepted: 6 March 2019 Published: 17 March 2019 studied during Fe-based alloys production, raw materials and produced alloys and slags were characterized by using chemical analysis methods (AAS, ICP), X-ray diffraction Publishing services provided by spectrometry (XRD), X-ray fluorescence spectrometry (XRF), and scanning electron Knowledge E microscopy (SEM/EDS) techniques.
    [Show full text]
  • Reduce Ductile Iron Processing Costs Through The
    Nodulizing and Inoculation Approaches for Year 2000 and Beyond - Part 1 by Dr. R. L. (Rod) Naro ASI International, Ltd. – July 30, 2001 Original Paper presented June 15, 2000 DIS Meeting, Wichita, Kansas Abstract: Nodu-Bloc, a new iron-magnesium briquette, offers ductile iron foundries a powerful alloy that can be used to replace traditional magnesium ferrosilicon (MgFeSi) as well as other magnesium containing master-alloys. Controlled laboratory tests show that Nodu-Bloc can replace up to 50 weight percent of MgFeSi. Field trials with Nodu-Bloc confirm these results and show that Nodu-Bloc replacement of MgFeSi can provide significant cost savings. Foundries converting to Nodu-Bloc will experience reduced melting costs because less MgFeSi is consumed, less steel and pig iron is required in the charge and far greater levels of foundry returns can be utilized. Foundries can easily save up to $10 or more per ton on molten ductile iron processing costs by incorporating Nodu-Bloc technology. Introduction: Since the commercialization of ductile iron in 1948, foundries have used numerous methods to introduce magnesium into molten cast iron. Figure 1 lists some of the approaches and techniques used over the years. Although some of these processes gained a brief following, and some have even been used successfully, most have fallen out of favor because of numerous shortcomings. Today, the majority of ductile iron castings made throughout the world are produced using ladle-metallurgy practices with MgFeSi alloys. It is estimated that MgFeSi alloys are used in 65 percent of all ductile irons produced worldwide. In the United States, MgFeSi alloys account for an estimated 75 percent of ductile iron production.
    [Show full text]
  • Mgfesi Alloys Psi English.Pdf
    Product Safety Information 1. Identification of the Product and Supplier Product name: Elkem MgFeSi Alloys Elmag®, Lamet® and Remag® Nodularisers, CompactMag® Alloy Product application: Additive to liquid metal in foundries for production of cast iron. Address/Phone No.: Elkem AS Foundry Products P.O. Box 334 Skøyen, N-0213 Oslo, Norway Telephone: + 47 22 45 01 00 Telefax: + 47 22 45 01 11 http://www.foundry.elkem.com [email protected] REACH registration numbers: 01-2119485286-28-0033 (FeSi) 01-2119537203-49-0046 (Mg) REACH and CLP helpdesk: http://echa.europa.eu/support/helpdesks/ Emergency Phone No.: https://poisoncentres.echa.europa.eu/home 2. Hazards Identification Classification: The product does not meet the criteria for hazard classification in accordance with Regulation (EC) No 1272/2008 (CLP) and the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 6th revision. Hazard pictogram: N/A (not applicable) Signal word: N/A (not applicable) Hazard statements: N/A (not applicable) Precautionary statements: N/A (not applicable) Flammable and noxious gases may be formed in contact with moisture, acids or bases. See section 10 and 11. Dust from the product if suspended in air may under certain conditions cause dust explosions. See section 10. © COPYRIGHT ELKEM AS 2017 103/PSI/ENG Page 1 of 7 Rev. 04, 2017-10-16 3. Composition/Information on Ingredients Synonyms/Trade names: Ferrosilicon magnesium, Magnesium alloy. CAS No. Ferrosilicon: 8049-17-0 CAS No. Magnesium: 7439-95-4 REACH registrations: Elkem MgFeSi is a mixture of FeSi and Mg and has for hazard classification purposes been assessed as an entity in accordance with CLP.
    [Show full text]