Biological Mechanisms of Uranium Transformation Catalyzed by Geobacter Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Biological Mechanisms of Uranium Transformation Catalyzed by Geobacter Bacteria BIOLOGICAL MECHANISMS OF URANIUM TRANSFORMATION CATALYZED BY GEOBACTER BACTERIA By Dena L. Cologgi A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Microbiology and Molecular Genetics 2012 ABSTRACT BIOLOGICAL MECHANISMS OF URANIUM TRANSFORMATION CATALYZED BY GEOBACTER BACTERIA By Dena L. Cologgi An insufficient knowledge of the biological mechanisms of contaminant transformation often limits the performance of in situ subsurface bioremediation and long-term stewardship strategies. The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of U(VI) from groundwater. However, the biological mechanism behind this reaction has remained elusive. Because Fe(III) oxide reduction requires the expression of conductive pili in Geobacter, we also evaluated their contribution to uranium reduction. In chapter 2 of my dissertation I demonstrate a previously unrecognized role for Geobacter pili in the extracellular reduction of uranium and its essential function as a catalytic and protective cellular mechanism. The expression of pili by Geobacter also promotes cell aggregation and biofilm formation. Recent work has shown that Geobacter cells transition from planktonic to biofilm physiologies during the active phase of U reduction in the subsurface. Despite these findings, the contribution of Geobacter biofilms to uranium removal and reduction has not been investigated. In chapter 3 of my dissertation I demonstrate that multilayer biofilms are able to reduce and tolerate substantially more U than planktonic cells for prolonged periods of time, making them an attractive option for the development of permeable biobarriers for U bioremediation. I also demonstrate the role of pili as a primary U reductase in the biofilm. To gain further insight into how biofilms transform U, in chapter 4 of my dissertation I screened a library of transposon-insertion mutants and identified mutants with biofilm defects. This study confirmed the role of Geobacter pili in biofilm formation, and identified other genes encoding cell envelope and electron transport components that had not previously been implicated in biofilm development. These molecular markers can be used to predict and monitor the physiological state of Geobacter bacteria during the in situ bioremediation of U. Previous work, including the prior chapters of my dissertation, has highlighted the importance of the cell envelope and its components for the survival of Geobacter in the subsurface. However, little is known regarding the regulation of the cell envelope. Thus, I investigated the role of the Geobacter’s ECF sigma factor, RpoE. In the last chapter of my dissertation, I show that RpoE is required for response to cell envelope stress, as well as the regulation of Geobacter’s extracellular electron transfer pathways. This highlights the functional specialization that RpoE has undergone to control the adaptive responses that enable Geobacter bacteria to survive in the environment, and links my findings to the physiology of Geobacter in the subsurface. DEDICATION This dissertation is dedicated to my family. Thank you for staying rational when I wasn’t, and believing in me when I didn’t. I am so fortunate to have you in so many ways. I am incredibly thankful that being in Michigan has given me the opportunity to know my family in New York and become a part of their lives, especially during this past year. Thank you for all of your love, guidance and support. iv ACKNOWLEDGEMENTS I would first like to acknowledge my mentor, Dr. Gemma Reguera, who has been there for me throughout this process and taught me more than I can describe. Thank you for taking a tremendous risk and entrusting your first lab to two very enthusiastic (but even more inexperienced and naive!) first-year rotation students. I am proud to have been a part of that beginning. I also need to extend a huge thank you to Allison Speers who has been with me since day one when we started the transposon mutagenesis together during our rotation. I don’t think I would have survived grad school without you, Allison – literally! I will always owe you for accompanying me to Argonne and ensuring I didn’t do something horrible (hitting the big red button, locking myself in the hutch, blowing up the synchrotron...) during those late-night sample changes performed in a nearly non-functional, sleep-deprived state. I would also like to thank the other individuals who contributed directly to the work presented in my dissertation. Blair Bullard worked side-by-side with me on many of the biofilm experiments, and was instrumental in obtaining anything and everything needed for my research! Two amazing undergrad students, Annie Otwell and John Rotondo worked with me on the transposon mutagenesis project. Annie and John, you made my first experiences mentoring both easy and fun; I was very lucky to have you. No one else in the world would have so calmly tolerated my ups and downs, or endured so well the endless colony picking, plate transfers, and rarely-successful sequencing attempts. I would also like to acknowledge Sanela Lampa-Pastirk, who developed the pili isolation protocol used in chapter 2. Sanela welcomed v me into her family and provided significant support for me, both emotionally as well as scientifically, throughout this process. I would like to thank our collaborator, Shelly Kelly (EXAFS analysis) not only for her scientific contributions, but also for taking the time to train (and in general put up with) Allison and me so we could play a more active role in our trips to Argonne. And special thanks for being such a wonderful hostess and humoring us in our non-scientific adventures including the search for albino deer, the tricycle rides, and the hunt for the coffee cart! I’d also like to acknowledge the rest of the Sector 20 staff at Argonne National Lab for all of their help and patience Acknowledgement must also go to the other members of the Reguera Lab who may not have been directly involved in my research, but have had a huge impact nonetheless. First, to my long-term lab-mates Jenna Young, Becky Steidl, and Mike Manzella, along with Allison and Sanela -- what can I say? I can’t imagine a lab without you. You have truly been like family. Thank you so much for your humor, support and loyalty. I would never have survived without you. I would also like to thank Bryan Schindler, Jihwan Hwang, Ana Lara, and Catherine Silva. Though they were in our lab only a short time, I am very thankful for both their scientific input and conversations about life. I have to especially thank Ana for keeping me company during those depressing late night battles with the KPA! I would also like to acknowledge our dishwashers and media-makers (Marvin, Max, Derek, Mike2, Mellissa, Karl, Katie, Alex and Eric). Without them our lab couldn’t function. The last in this category is Kwi Kim, who has relentlessly kept me on track and made sure that I didn’t forget what’s important in life. Other people who have been integral to the success of my grad school career include my committee members, Dr. Rob Britton, Dr. Terry Marsh, and Dr. Lee Kroos, who have been vi very patient and supportive throughout this process. I would also like to acknowledge several individuals who assisted with some of the technical aspects of my research including Matthew Marshall (PNNL), Evgenya Shelobolina (University of Wisconsin-Madison) and Kazem Kashefi, who provided some of the protocols crucial to my work, as well as Weimin Chen (and Sanela and Igor) who helped me master the KPA. I would also like to extend a huge thank you to the amazing people at the Center for Advanced Microscopy (Alicia Pastor, XouDong Fan, Melinda Frame, Carole and Stanley Flegler) who have gone out of their way to be helpful, and were always understanding when I was running very late! As Alicia (who I also need to thank for being such a great friend and neighbor!) once so eloquently put it, “this is the Center for Advanced Microscopy, where all your dreams come true!” I have been fortunate enough to have been funded throughout my Ph.D. by agencies such as the National Institute of Environmental Health Science’s Superfund program (R01 ES017052-03), the Office of Science (BER), U.S. Department of Energy (DOE) (DE-SC0000795), the College of Natural Science at Michigan State University (Hensley fellowship), and the Biogeochemistry Environmental Research Initiative at Michigan State University (research fellowship). PNC/XSD facilities and research at the APS are supported by the US DOE-BES, a Major Resources Support grant from NSERC, the University of Washington, Simon Fraser University and the APS. The APS is an Office of Science User Facility operated for the U.S. DOE’s Office of Science by Argonne National Laboratory and supported by the U.S. DOE under contract No. DE-AC02-06CH11357. vii I, of course, also have to acknowledge the other MMG grad students who have been with me over the years. I am incredibly grateful for your camaraderie, companionship, support and scientific advice, and I wish you all the best. Lastly, I would like to thank my family, to whom this dissertation is dedicated. viii TABLE OF CONTENTS LIST OF TABLES .......................................................................................................... xii LIST OF FIGURES ....................................................................................................... xiii KEY TO SYMBOLS
Recommended publications
  • Design, Analysis and Application of Synthetic Microbial Consortia Xiaoqiang Jia, Chang Liu, Hao Song, Mingzhu Ding, Jin Du, Qian Ma, Yingjin Yuan *
    ARTICLE IN PRESS Synthetic and Systems Biotechnology ■■ (2016) ■■–■■ Contents lists available at ScienceDirect Synthetic and Systems Biotechnology journal homepage: keaipublishing.com/synbio Design, analysis and application of synthetic microbial consortia Xiaoqiang Jia, Chang Liu, Hao Song, Mingzhu Ding, Jin Du, Qian Ma, Yingjin Yuan * Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China ARTICLE INFO ABSTRACT Article history: The rapid development of synthetic biology has conferred almost perfect modification on single cells, Received 17 May 2015 and provided methodological support for synthesizing microbial consortia, which have a much wider Received in revised form 28 January 2016 application potential than synthetic single cells. Co-cultivating multiple cell populations with rational Accepted 12 February 2016 strategies based on interacting relationships within natural microbial consortia provides theoretical as Available online well as experimental support for the successful obtaining of synthetic microbial consortia, promoting it into extensive research on both industrial applications in plenty of areas and also better understanding Keywords: of natural microbial consortia. According to their composition complexity, synthetic microbial consor- Synthetic microbial consortium Single/two/multiple species tia are summarized in three aspects in this review and are discussed in principles of design and construction, insights and methods for analysis, and applications in energy, healthcare, etc. © 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).
    [Show full text]
  • Biofilm Engineering Approaches for Improving the Performance Of
    REVIEW published: 05 July 2018 doi: 10.3389/fenrg.2018.00063 Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems Maria Joseph Angelaalincy 1, Rathinam Navanietha Krishnaraj 2, Ganeshan Shakambari 1, Balasubramaniem Ashokkumar 3, Shanmugam Kathiresan 4 and Perumal Varalakshmi 1* 1 Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India, 2 Department of Chemical and Biological Engineering, Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States, 3 Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India, 4 Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India Microbial fuel cells (MFCs) are emerging as a promising future technology for a wide range Edited by: Abudukeremu Kadier, of applications in addition to sustainable electricity generation. Electroactive (EA) biofilms National University of Malaysia, produced by microorganisms are the key players in the bioelectrochemical systems Malaysia involving microorganism mediated electrocatalytic reactions. Therefore, genetically Reviewed by: modifying the organism for increased production of EA biofilms and improving the extra G. Velvizhi, Indian Institute of Chemical electron transfer (EET) mechanisms may attribute to increase in current density of a MFC Technology (CSIR), India and an increased COD removal in wastewater treatment plant coupled MFC systems. Özlem Onay, Anadolu University, Turkey Extracellular polysaccharides (EPS) produced by the organisms attribute to both biofilm *Correspondence: formation and electron transfer. Although cell surface modification, media optimization Perumal Varalakshmi and operation parameters validation are established as enhancement strategies for a fuel [email protected] cell performance, engineering the vital genes involved in electroactive biofilm formation Specialty section: is the future hope.
    [Show full text]
  • Geobacter Strains Expressing Poorly Conductive Pili Reveal
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Microbiology Department Faculty Publication Microbiology Series 2018 Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms Toshiyuki Ueki University of Massachusetts Amherst Kelly P. Nevin University of Massachusetts Amherst Amelia-Elena Rotaru University of Southern Denmark Li-Ying Wang University of Massachusetts Amherst Joy E. Ward University of Massachusetts Amherst See next page for additional authors Follow this and additional works at: https://scholarworks.umass.edu/micro_faculty_pubs Recommended Citation Ueki, Toshiyuki; Nevin, Kelly P.; Rotaru, Amelia-Elena; Wang, Li-Ying; Ward, Joy E.; Woodard, Trevor L.; and Lovley, Derek R., "Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms" (2018). mBio. 319. http://dx.doi.org/10.1128/mBio.01273-18 This Article is brought to you for free and open access by the Microbiology at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Microbiology Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Authors Toshiyuki Ueki, Kelly P. Nevin, Amelia-Elena Rotaru, Li-Ying Wang, Joy E. Ward, Trevor L. Woodard, and Derek R. Lovley This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/micro_faculty_pubs/319 RESEARCH ARTICLE crossm Geobacter Strains
    [Show full text]
  • Carbon Fiber Electrode As an Electron Acceptor for a Microbial Fuel Cell Using Geobacter
    Cantaurus, Vol. 15, 24-26, May 2007 © McPherson College Division of Science and Technology Carbon Fiber Electrode as an Electron Acceptor for a Microbial Fuel Cell Using Geobacter Alicia R Schoen ABSTRACT Microbial fuel cells use bacteria to produce electricity. A dual-chambered microbial fuel cell was used to harness electricity from Geobacter, with carbon fiber as the electrode. The peak current measured was 10.7 mA on the first day, and fell to zero within 5 days. This result is comparable to a similar experiment using the carbon fiber electrode with a different bacteria, but less than typical results from Geobacter when different electrodes were used. Keywords: microbial fuel cell, Geobacter INTRODUCTION Microbial fuel cells (MFCs) are devices that use Scanning electron microscope images show bacteria as the catalysts to oxidize organic and Geobacter growing directly on the surface of a inorganic matter and generate current. Electrons graphite electrode and nearly covering it. This would produced by the bacteria from these substrates are suggest the electrode’s utility as an electron acceptor transferred to the anode (negative terminal) and flow in the bacteria’s metabolic cycle. Other organisms to the cathode (positive terminal) linked by a have shown the ability to transfer electrons, but conductive material containing a resistor, or operated Geobacter has thus far produced the highest current. under a load (i.e., producing electricity that runs a It has recently been discovered that Geobacter is device) (Logan 2006). able to perform this mediator-less transfer with the The proposed uses of MFCs are many. Min and use of nanowires.
    [Show full text]
  • Electron Transfer Through the Outer Membrane of Geobacter Sulfurreducens a DISSERTATION SUBMITTED to the FACULTY of the UNIVE
    Electron transfer through the outer membrane of Geobacter sulfurreducens A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Fernanda Jiménez Otero IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR IN PHILOSOPHY Dr. Daniel R. Bond May, 2018 Fernanda Jiménez Otero, 2018, © Acknowledgements This dissertation and the degree I have gained with it, would not have been possible without the help and support from an invaluable group of people. The training I received from Chi Ho Chan and Caleb Levar continues to be essential in the way I approach scientific endeavors. The quality of genetic studies and rigor in microbiology techniques they taught me is a standard I hope to meet throughout my career. Daniel Bond has been much more than I ever expected from an advisor. I have not only gained scientific knowledge from him, but I will take with me the example of what a great mentor represents. His enthusiasm for science is only rivaled by his commitment to past and present members of his laboratory. I am extremely honored to be able to count myself in that group, and I will do my best to represent him proudly in future endeavors. Throughout these five years, Jeff Gralnick has given me numerous opportunities to explore all aspects of a scientific career. Not only is Chapter 2 a result of his vision, but I feel less intimidated by a career in science as a result of his mentoring and support. The faculty members in my committee- Carrie Wilmot, Brandy Toner, and Larry Wackett, have made sure I am well prepared for i every step through graduate school.
    [Show full text]
  • Principles for Designing Synthetic Microbial Communities
    Available online at www.sciencedirect.com ScienceDirect Principles for designing synthetic microbial communities 1,2 1,2 1 Nathan I Johns , Tomasz Blazejewski , Antonio LC Gomes 1,3 and Harris H Wang Advances in synthetic biology to build microbes with defined applications that involve complex substrates may require and controllable properties are enabling new approaches to the use of multiple pathways and processes, which may be design and program multispecies communities. This emerging difficult or impossible to execute efficiently using single field of synthetic ecology will be important for many areas of strains. These and other complex applications may be biotechnology, bioenergy and bioremediation. This endeavor best tackled by cohorts of different microbes, each pro- draws upon knowledge from synthetic biology, systems grammed with specialized sub-functions that synergize biology, microbial ecology and evolution. Fully realizing the towards an overall population-level function. This fact is potential of this discipline requires the development of new evident in natural systems where single species do not strategies to control the intercellular interactions, occupy all niches in an environment, but rather multiple spatiotemporal coordination, robustness, stability and species coexist and perform complementary roles, creat- biocontainment of synthetic microbial communities. Here, we ing intricate ecological networks [4]. review recent experimental, analytical and computational advances to study and build multi-species microbial With a greater understanding of natural microbial inter- communities with defined functions and behavior for various actions, dynamics, and ecology, we are poised to expand applications. We also highlight outstanding challenges and microbial engineering to mixed consortia in order to future directions to advance this field.
    [Show full text]
  • Disentangling the Syntrophic Electron Transfer Mechanisms of Candidatus Geobacter Eutrophica Through Electrochemical Stimulation
    www.nature.com/scientificreports OPEN Disentangling the syntrophic electron transfer mechanisms of Candidatus geobacter eutrophica through electrochemical stimulation and machine learning Heyang Yuan1,2*, Xuehao Wang1, Tzu‑Yu Lin1, Jinha Kim1 & Wen‑Tso Liu1* Interspecies hydrogen transfer (IHT) and direct interspecies electron transfer (DIET) are two syntrophy models for methanogenesis. Their relative importance in methanogenic environments is still unclear. Our recent discovery of a novel species Candidatus Geobacter eutrophica with the genetic potential of IHT and DIET may serve as a model species to address this knowledge gap. To experimentally demonstrate its DIET ability, we performed electrochemical enrichment of Ca. G. eutrophica‑dominating communities under 0 and 0.4 V vs. Ag/AgCl based on the presumption that DIET and extracellular electron transfer (EET) share similar metabolic pathways. After three batches of enrichment, Geobacter OTU650, which was phylogenetically close to Ca. G. eutrophica, was outcompeted in the control but remained abundant and active under electrochemical stimulation, indicating Ca. G. eutrophica’s EET ability. The high‑quality draft genome further showed high phylogenomic similarity with Ca. G. eutrophica, and the genes encoding outer membrane cytochromes and enzymes for hydrogen metabolism were actively expressed. A Bayesian network was trained with the genes encoding enzymes for alcohol metabolism, hydrogen metabolism, EET, and methanogenesis from dominant fermentative bacteria, Geobacter, and Methanobacterium. Methane production could not be accurately predicted when the genes for IHT were in silico knocked out, inferring its more important role in methanogenesis. The genomics‑enabled machine learning modeling approach can provide predictive insights into the importance of IHT and DIET. Anaerobic digestion is widely used to convert high-strength waste streams to biogas.
    [Show full text]
  • To Multi-Cell Level Charge Transport in Geobacter Sulfurreducens DL-1
    ARTICLE Received 10 May 2013 | Accepted 10 Oct 2013 | Published 8 Nov 2013 DOI: 10.1038/ncomms3751 Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1 Xiaocheng Jiang1,*, Jinsong Hu2,*, Emily R. Petersen3, Lisa A. Fitzgerald4, Charles S. Jackan1, Alexander M. Lieber1, Bradley R. Ringeisen4, Charles M. Lieber1,5 & Justin C. Biffinger4 Microbial fuel cells, in which living microorganisms convert chemical energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate the fundamental limits and factors determining maximum power output from a microbial fuel cell. Quantized stepwise current outputs of 92(±33) and 196(±20) fA are generated from microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current recording reveals that the current steps are directly correlated with the contact of one or two cells with the electrodes. This work establishes the amount of current generated by an individual Geobacter cell in the absence of a biofilm and highlights the potential upper limit of microbial fuel cell performance for Geobacter in thin biofilms. 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. 2 CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. 3 Nova Research, Inc., 1900 Elkin Street, Suite 230, Alexandria, Virginia 22308, USA. 4 Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, USA. 5 School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA.
    [Show full text]
  • Global Transcriptional Analysis of Geobacter Sulfurreducens Under Palladium Reducing Conditions Reveals New Key Cytochromes Invo
    bioRxiv preprint doi: https://doi.org/10.1101/319194; this version posted May 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing 2 conditions reveals new key cytochromes involved 3 4 Alberto Hernández-Eligio,a† Aurora M. Pat-Espadas,b,d† Leticia Vega-Alvarado,c Manuel 5 Huerta-Amparán,a Francisco J. Cervantes,b# Katy Juáreza* 6 7 aDepartamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad 8 Nacional Autónoma de México, Cuernavaca, Morelos, Mexico. 9 bDivisión de Ciencias Ambientales, Instituto Potosino de Investigación Científica y 10 Tecnológica (IPICYT), San Luis Potosí, SLP, Mexico. 11 cInstituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, 12 Ciudad Universitaria, Ciudad de México, Mexico. 13 dInstituto de Geología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, 14 Mexico 15 †CONACYT 16 #Address correspondence to Francisco J Cervantes: [email protected]. 17 *Address correspondence to Katy Juárez: [email protected]. 18 19 Running Head: Pd(II) reduction mechanism in Geobacter sulfurreducens 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/319194; this version posted May 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron 26 donor; however, the biochemical and genetic mechanisms involved in this process have not 27 been described.
    [Show full text]
  • Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria
    Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria A Major Qualifying Report Submitted to the Faculty of Worcester Polytechnic Institute In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science By: __________________________ Courtney McCann Date Approved: _______________________ Professor José M. Argüello Biochemistry WPI Project Advisor 1 Abstract Copper homeostasis is achieved in bacteria through a combination of copper chaperones and transporting and chelating proteins. Bioinformatic analyses were used to identify which of these proteins are present in Deltaproteobacteria. The genetic environment of the bacteria is affected by its lifestyle, as those that live in higher concentrations of copper have more of these proteins. Two major transport proteins, CopA and CusC, were found to cluster together frequently in the genomes and appear integral to copper homeostasis in Deltaproteobacteria. 2 Acknowledgements I would like to thank Professor José Argüello for giving me the opportunity to work in his lab and do some incredible research with some equally incredible scientists. I need to give all of my thanks to my supervisor, Dr. Teresita Padilla-Benavides, for having me as her student and teaching me not only lab techniques, but also how to be scientist. I would also like to thank Dr. Georgina Hernández-Montes and Dr. Brenda Valderrama from the Insituto de Biotecnología at Universidad Nacional Autónoma de México (IBT-UNAM), Campus Morelos for hosting me and giving me the opportunity to work in their lab. I would like to thank Sarju Patel, Evren Kocabas, and Jessica Collins, whom I’ve worked alongside in the lab. I owe so much to these people, and their support and guidance has and will be invaluable to me as I move forward in my education and career.
    [Show full text]
  • Microbial Fuel Cell Is Emerging As a Versatile Technology: a Review on Its Possible Applications, Challenges and Strategies to Improve the Performances
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2017 Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances Ravinder Kumar Universiti Malaysia Pahang Lakhveer Singh Universiti Malaysia Pahang A W. Zularisam Universiti Malaysia Pahang Faisal I. Hai University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Kumar, Ravinder; Singh, Lakhveer; Zularisam, A W.; and Hai, Faisal I., "Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 294. https://ro.uow.edu.au/eispapers1/294 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances Abstract Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of themultidimensional applications of this eco-friendly technology. The technology depends on the electroactive bacteria,popularly known as exoelectrogens, to simultaneously produce electric power and treat wastewater. Electrodemodifications with nanomaterials such as gold nanoparticles and iron oxide nanoparticles or pretreatment methods suchas sonication and autoclave sterilization have shown promising results in enhancing MFC performance for electricitygeneration and wastewater treatment.
    [Show full text]
  • Comparative Analysis of Type IV Pilin in Desulfuromonadales
    ORIGINAL RESEARCH published: 21 December 2016 doi: 10.3389/fmicb.2016.02080 Comparative Analysis of Type IV Pilin in Desulfuromonadales Chuanjun Shu, Ke Xiao, Qin Yan and Xiao Sun * State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China During anaerobic respiration, the bacteria Geobacter sulfurreducens can transfer electrons to extracellular electron accepters through its pilus. G. sulfurreducens pili have been reported to have metallic-like conductivity that is similar to doped organic semiconductors. To study the characteristics and origin of conductive pilin proteins found in the pilus structure, their genetic, structural, and phylogenetic properties were analyzed. The genetic relationships, and conserved structures and sequences that were obtained were used to predict the evolution of the pilins. Homologous genes that encode conductive pilin were found using PilFind and Cluster. Sequence characteristics and protein tertiary structures were analyzed with MAFFT and QUARK, respectively. The origin of conductive pilins was explored by building a phylogenetic tree. Truncation is a characteristic of conductive pilin. The structures of truncated pilins and their accompanying proteins were found to be similar to the N-terminal and C-terminal ends Edited by: of full-length pilins respectively. The emergence of the truncated pilins can probably be Marina G. Kalyuzhanaya, ascribed to the evolutionary pressure of their extracellular electron transporting function. San Diego State University, USA Genes encoding truncated pilins and proteins similar to the C-terminal of full-length pilins, Reviewed by: Fengfeng Zhou, which contain a group of consecutive anti-parallel beta-sheets, are adjacent in bacterial Shenzhen Institutes of Advanced genomes.
    [Show full text]