Microbial Energizers: Fuel Cells That Keep on Going

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Energizers: Fuel Cells That Keep on Going Microbial Energizers: Fuel Cells That Keep on Going Microbes that produce electricity by oxidizing organic compounds in biomass may someday power useful electronic devices Derek R. Lovley as this happened to you? You have ganisms with the ability to oxidize organic com- a layover between flights, would pounds to carbon dioxide while transferring like to use your computer and cell electrons to electrodes with extraordinarily high H phone, but both sets of batteries efficiencies. Electricigens make it possible to are drained and the nearby electri- convert renewable biomass and organic wastes cal outlets are being used. What if you could directly into electricity without combusting the instead recharge your electronic devices with a fuel, which wastes substantial amounts of en- little sugar from the nearby coffee stand? With ergy as heat. Efforts to eliminate the inefficien- help from electricity-producing microorgan- cies of combustion are behind the recent interest isms, known as electricigens, some day you in hydrogen fuel cells, which oxidize hydrogen might have new options for ignoring the current and reduce oxygen to water while producing “grid” by generating electricity in an alternative, electricity in a controlled chemical reaction. environmentally friendly manner. With electricigens, however, it becomes pos- Electricigens are recently discovered microor- sible to make microbial fuel cells, which offer potential advantages over hydrogen fuel cells. For example, hydrogen fuel cells re- quire a very pure source of a highly explo- Summary sive gas that is difficult to store and distrib- • Electricigenic microorganisms such as ute. Furthermore, hydrogen is derived Geobacter and Rhodoferax efficiently oxidize mainly from fossil fuel rather than renew- organic compounds to carbon dioxide while able sources. In contrast, the energy sources directly transferring electrons to electrodes. for microbial fuel cells are renewable organ- • Electricigen-based microbial fuel cells mark a ics, including some that are dirt cheap. paradigm shift because these cells completely oxidize organic fuels while directly transferring electrons to electrodes without mediators. Geobacteraceae Producing • Although microbial fuel cells are unlikely to produce enough electricity to contribute to the Electricity in Mud national power grid in the short-term, the cells Several years ago, Leonard Tender of the may prove feasible in some specific instances such as covering the local energy needs for pro- Naval Research Laboratories in Washing- Derek R. Lovley is cessing food wastes. ton, D.C., and Clare Reimers of Oregon Distinguished Uni- • Optimizing microbial fuel cells will entail devel- State University in Corvallis developed sys- versity Professor oping a better understanding of how electron tems in which electricigens produce electric- and Director of En- transfers occur along the outer surfaces of elec- ity from mud! When a slab of graphite (the vironmental Bio- tricigens; key challenges include increasing an- anode) is buried in anaerobic marine sedi- technology at the ode surface areas and increasing electricigen ments and then connected to another piece University of Mas- respiration rates. of graphite (the cathode) that is suspended sachusetts, Am- in the overlying aerobic water, electricity herst. Volume 1, Number 7, 2006 / Microbe Y 323 F I G U R E 1 Sediment fuel cell. (A) Prior to deployment in salt marsh sediments on Nantucket Island, Mass. (B) Diagram of sediment fuel cell reactions. (C) Deployed sediment fuel cells. (Photos courtesy of Kelly Nevin, University of Massachusetts-Amherst.) flows between them (Fig. 1). Although this ar- Which Geobacteraceae prove to be prevalent rangement typically produces meager electrical in such samples depends on the specific environ- currents, they are adequate for running analytic ment being tested. For example, if electrodes are monitoring devices similar to those that investi- placed in marine sediments, Desulfuromonas gators place in remote locations such as the species predominate, whereas if the electrodes ocean bottom. are placed in freshwater sediments, Geobacter How do such sediment fuel cells produce elec- species predominate. Although Geobacter and tricity? The simple answer is, with microbes. Desulfuromonas species have similar physiolo- Dawn Holmes, working with Daniel Bond in gies, Desulfuromonas prefer marine salinity, my laboratory, scraped the anode surface with while Geobacter favor freshwater. a razor blade, extracted DNA from those A hallmark of Geobacteraceae is their ability scrapings, and determined what species were to transfer electrons onto extracellular electron present based on their 16S rRNA genes. The acceptors. For example, Geobacter and Desul- surprising result is that such anodes are highly furomonas species support growth by coupling enriched with microorganisms in the family the oxidation of organic compounds to the re- Geobacteraceae. When similar pieces of graph- duction of Fe(III) or Mn(IV) oxides. Further- ite are incubated in sediments but not connected more, these microorganisms can transfer elec- to a cathode in overlying water, there is no such trons to other metals and to the quinone enrichment. moieties of humic substances, which are so large 324 Y Microbe / Volume 1, Number 7, 2006 that they must be reduced outside bac- F I G U R E 2 terial cells. Reducing Fe(III) oxides is an important means for degrading organic matter in aquatic sediments, submerged soils, and subsurface environments. Mo- Calculator –! –! lecular analyses of such environments re- 8 e 8 e veal that, in general, Geobacteraceae are the predominant Fe(III)-reducing micro- organisms in zones in which Fe(III) re- e–! duction is important. 8 Holmes and Bond found that Outlet 2 CO2! 2 O2! O in Geobacteraceae can also use electrodes +! +! 2 + 8 H! + 8 H! as extracellular electron acceptors. Geobacter 8 e–! Both Desulfuromonas and Geobacter –! +! 8 e 8 H species can grow by oxidizing organic ! compounds to carbon dioxide, with Fuel in Outlet electrodes serving as the sole electron Acetate! 4 H2O (C H O )! acceptor. Moreover, more than 95% of 2 4 2 + 2 H2O the electrons derived from oxidizing such organic matter can be recovered as electricity. In sediment fuel cells, Geobacteraceae oxidize organic com- Anode chamber Cathode chamber pounds but, instead of transferring elec- Cation-selective! trons to Fe(III) or Mn(IV), their natural membrane electron acceptors, they transfer elec- Schematic of Geobacter-powered microbial fuel cell. trons onto electrodes (Fig. 1). The elec- trons flow through the electrical circuit to the cathode, where they react with oxygen to form water. would go to the electricigenic microbe via aero- bic respiration. However, the electricigens still recover some energy from electron transfer to Self-Perpetuating, Highly Efficient, the electrode. This energy recovery is very im- Geobacter-Based Microbial Fuel Cells portant because the energy that the electricigens The sediment fuel cell can be recreated with pure conserve allows them to maintain viability and cultures of Geobacter (Fig. 2). The anaerobic to produce electricity as long as fuel is provided. anode chamber contains organic fuel and a Nearly a century ago, M. C. Potter at the graphite electrode. The cathode chamber has a University of Durham in England measured similar electrode and is aerobic. Geobacter electrical currents when electrodes were placed transfers electrons released from oxidized or- in microbial cultures. In this and other studies ganic matter onto the anode. The electrons flow carried out throughout much of the 20th cen- from the anode to the cathode. The two cham- tury, microbes generated electricity by produc- bers are separated by a cation-selective mem- ing soluble, reduced compounds that could react brane that permits the protons that are released abiotically with electrode surfaces. In initial from oxidized organic matter to migrate to the studies these were natural reduced end products cathode side, where they combine with electrons of fermentation or anaerobic respiration such as and oxygen to form water. hydrogen, sulfide, alcohols, or ammonia. How- The cation-selective membrane limits oxygen ever, many of these reduced products react only diffusion to the anode chamber, preventing slowly with electrodes, and other end products, Geobacter from oxidizing the organic fuels with such as organic acids, do not appreciably react the direct reduction of oxygen. By inserting an with electrodes at all. Adding soluble electron electrical circuit within the flow of electrons to acceptors, known as electron shuttles or media- oxygen, energy can be harvested that otherwise tors, enhances current production in such sys- Volume 1, Number 7, 2006 / Microbe Y 325 F I G U R E 3 Geobacter-Based Fuel Cells Mark a Paradigm Shift Although a few years ago fuel cell ex- perts thought that direct electrochemi- cal contact between microorganisms and electrodes was virtually impossible, this mechanism appears to be how Geo- bacteraceae carry out electron transfer to electrodes. Thus, the use of Geo- bacteraceae in microbially based fuel cells marks a paridigm shift. They com- pletely oxidize organic fuels to carbon dioxide while directly transferring elec- trons to electrodes without mediators. There has been no known evolutionary pressure on microorganisms to produce electricity. Therefore, it is hypothesized that Geobacter cells transfer electrons to electrodes via the same mechanisms that they use when reducing extracellu-
Recommended publications
  • Design, Analysis and Application of Synthetic Microbial Consortia Xiaoqiang Jia, Chang Liu, Hao Song, Mingzhu Ding, Jin Du, Qian Ma, Yingjin Yuan *
    ARTICLE IN PRESS Synthetic and Systems Biotechnology ■■ (2016) ■■–■■ Contents lists available at ScienceDirect Synthetic and Systems Biotechnology journal homepage: keaipublishing.com/synbio Design, analysis and application of synthetic microbial consortia Xiaoqiang Jia, Chang Liu, Hao Song, Mingzhu Ding, Jin Du, Qian Ma, Yingjin Yuan * Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China ARTICLE INFO ABSTRACT Article history: The rapid development of synthetic biology has conferred almost perfect modification on single cells, Received 17 May 2015 and provided methodological support for synthesizing microbial consortia, which have a much wider Received in revised form 28 January 2016 application potential than synthetic single cells. Co-cultivating multiple cell populations with rational Accepted 12 February 2016 strategies based on interacting relationships within natural microbial consortia provides theoretical as Available online well as experimental support for the successful obtaining of synthetic microbial consortia, promoting it into extensive research on both industrial applications in plenty of areas and also better understanding Keywords: of natural microbial consortia. According to their composition complexity, synthetic microbial consor- Synthetic microbial consortium Single/two/multiple species tia are summarized in three aspects in this review and are discussed in principles of design and construction, insights and methods for analysis, and applications in energy, healthcare, etc. © 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).
    [Show full text]
  • Biofilm Engineering Approaches for Improving the Performance Of
    REVIEW published: 05 July 2018 doi: 10.3389/fenrg.2018.00063 Biofilm Engineering Approaches for Improving the Performance of Microbial Fuel Cells and Bioelectrochemical Systems Maria Joseph Angelaalincy 1, Rathinam Navanietha Krishnaraj 2, Ganeshan Shakambari 1, Balasubramaniem Ashokkumar 3, Shanmugam Kathiresan 4 and Perumal Varalakshmi 1* 1 Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India, 2 Department of Chemical and Biological Engineering, Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States, 3 Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India, 4 Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India Microbial fuel cells (MFCs) are emerging as a promising future technology for a wide range Edited by: Abudukeremu Kadier, of applications in addition to sustainable electricity generation. Electroactive (EA) biofilms National University of Malaysia, produced by microorganisms are the key players in the bioelectrochemical systems Malaysia involving microorganism mediated electrocatalytic reactions. Therefore, genetically Reviewed by: modifying the organism for increased production of EA biofilms and improving the extra G. Velvizhi, Indian Institute of Chemical electron transfer (EET) mechanisms may attribute to increase in current density of a MFC Technology (CSIR), India and an increased COD removal in wastewater treatment plant coupled MFC systems. Özlem Onay, Anadolu University, Turkey Extracellular polysaccharides (EPS) produced by the organisms attribute to both biofilm *Correspondence: formation and electron transfer. Although cell surface modification, media optimization Perumal Varalakshmi and operation parameters validation are established as enhancement strategies for a fuel [email protected] cell performance, engineering the vital genes involved in electroactive biofilm formation Specialty section: is the future hope.
    [Show full text]
  • Geobacter Strains Expressing Poorly Conductive Pili Reveal
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Microbiology Department Faculty Publication Microbiology Series 2018 Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms Toshiyuki Ueki University of Massachusetts Amherst Kelly P. Nevin University of Massachusetts Amherst Amelia-Elena Rotaru University of Southern Denmark Li-Ying Wang University of Massachusetts Amherst Joy E. Ward University of Massachusetts Amherst See next page for additional authors Follow this and additional works at: https://scholarworks.umass.edu/micro_faculty_pubs Recommended Citation Ueki, Toshiyuki; Nevin, Kelly P.; Rotaru, Amelia-Elena; Wang, Li-Ying; Ward, Joy E.; Woodard, Trevor L.; and Lovley, Derek R., "Geobacter Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms" (2018). mBio. 319. http://dx.doi.org/10.1128/mBio.01273-18 This Article is brought to you for free and open access by the Microbiology at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Microbiology Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Authors Toshiyuki Ueki, Kelly P. Nevin, Amelia-Elena Rotaru, Li-Ying Wang, Joy E. Ward, Trevor L. Woodard, and Derek R. Lovley This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/micro_faculty_pubs/319 RESEARCH ARTICLE crossm Geobacter Strains
    [Show full text]
  • Carbon Fiber Electrode As an Electron Acceptor for a Microbial Fuel Cell Using Geobacter
    Cantaurus, Vol. 15, 24-26, May 2007 © McPherson College Division of Science and Technology Carbon Fiber Electrode as an Electron Acceptor for a Microbial Fuel Cell Using Geobacter Alicia R Schoen ABSTRACT Microbial fuel cells use bacteria to produce electricity. A dual-chambered microbial fuel cell was used to harness electricity from Geobacter, with carbon fiber as the electrode. The peak current measured was 10.7 mA on the first day, and fell to zero within 5 days. This result is comparable to a similar experiment using the carbon fiber electrode with a different bacteria, but less than typical results from Geobacter when different electrodes were used. Keywords: microbial fuel cell, Geobacter INTRODUCTION Microbial fuel cells (MFCs) are devices that use Scanning electron microscope images show bacteria as the catalysts to oxidize organic and Geobacter growing directly on the surface of a inorganic matter and generate current. Electrons graphite electrode and nearly covering it. This would produced by the bacteria from these substrates are suggest the electrode’s utility as an electron acceptor transferred to the anode (negative terminal) and flow in the bacteria’s metabolic cycle. Other organisms to the cathode (positive terminal) linked by a have shown the ability to transfer electrons, but conductive material containing a resistor, or operated Geobacter has thus far produced the highest current. under a load (i.e., producing electricity that runs a It has recently been discovered that Geobacter is device) (Logan 2006). able to perform this mediator-less transfer with the The proposed uses of MFCs are many. Min and use of nanowires.
    [Show full text]
  • Electron Transfer Through the Outer Membrane of Geobacter Sulfurreducens a DISSERTATION SUBMITTED to the FACULTY of the UNIVE
    Electron transfer through the outer membrane of Geobacter sulfurreducens A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Fernanda Jiménez Otero IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR IN PHILOSOPHY Dr. Daniel R. Bond May, 2018 Fernanda Jiménez Otero, 2018, © Acknowledgements This dissertation and the degree I have gained with it, would not have been possible without the help and support from an invaluable group of people. The training I received from Chi Ho Chan and Caleb Levar continues to be essential in the way I approach scientific endeavors. The quality of genetic studies and rigor in microbiology techniques they taught me is a standard I hope to meet throughout my career. Daniel Bond has been much more than I ever expected from an advisor. I have not only gained scientific knowledge from him, but I will take with me the example of what a great mentor represents. His enthusiasm for science is only rivaled by his commitment to past and present members of his laboratory. I am extremely honored to be able to count myself in that group, and I will do my best to represent him proudly in future endeavors. Throughout these five years, Jeff Gralnick has given me numerous opportunities to explore all aspects of a scientific career. Not only is Chapter 2 a result of his vision, but I feel less intimidated by a career in science as a result of his mentoring and support. The faculty members in my committee- Carrie Wilmot, Brandy Toner, and Larry Wackett, have made sure I am well prepared for i every step through graduate school.
    [Show full text]
  • Principles for Designing Synthetic Microbial Communities
    Available online at www.sciencedirect.com ScienceDirect Principles for designing synthetic microbial communities 1,2 1,2 1 Nathan I Johns , Tomasz Blazejewski , Antonio LC Gomes 1,3 and Harris H Wang Advances in synthetic biology to build microbes with defined applications that involve complex substrates may require and controllable properties are enabling new approaches to the use of multiple pathways and processes, which may be design and program multispecies communities. This emerging difficult or impossible to execute efficiently using single field of synthetic ecology will be important for many areas of strains. These and other complex applications may be biotechnology, bioenergy and bioremediation. This endeavor best tackled by cohorts of different microbes, each pro- draws upon knowledge from synthetic biology, systems grammed with specialized sub-functions that synergize biology, microbial ecology and evolution. Fully realizing the towards an overall population-level function. This fact is potential of this discipline requires the development of new evident in natural systems where single species do not strategies to control the intercellular interactions, occupy all niches in an environment, but rather multiple spatiotemporal coordination, robustness, stability and species coexist and perform complementary roles, creat- biocontainment of synthetic microbial communities. Here, we ing intricate ecological networks [4]. review recent experimental, analytical and computational advances to study and build multi-species microbial With a greater understanding of natural microbial inter- communities with defined functions and behavior for various actions, dynamics, and ecology, we are poised to expand applications. We also highlight outstanding challenges and microbial engineering to mixed consortia in order to future directions to advance this field.
    [Show full text]
  • Disentangling the Syntrophic Electron Transfer Mechanisms of Candidatus Geobacter Eutrophica Through Electrochemical Stimulation
    www.nature.com/scientificreports OPEN Disentangling the syntrophic electron transfer mechanisms of Candidatus geobacter eutrophica through electrochemical stimulation and machine learning Heyang Yuan1,2*, Xuehao Wang1, Tzu‑Yu Lin1, Jinha Kim1 & Wen‑Tso Liu1* Interspecies hydrogen transfer (IHT) and direct interspecies electron transfer (DIET) are two syntrophy models for methanogenesis. Their relative importance in methanogenic environments is still unclear. Our recent discovery of a novel species Candidatus Geobacter eutrophica with the genetic potential of IHT and DIET may serve as a model species to address this knowledge gap. To experimentally demonstrate its DIET ability, we performed electrochemical enrichment of Ca. G. eutrophica‑dominating communities under 0 and 0.4 V vs. Ag/AgCl based on the presumption that DIET and extracellular electron transfer (EET) share similar metabolic pathways. After three batches of enrichment, Geobacter OTU650, which was phylogenetically close to Ca. G. eutrophica, was outcompeted in the control but remained abundant and active under electrochemical stimulation, indicating Ca. G. eutrophica’s EET ability. The high‑quality draft genome further showed high phylogenomic similarity with Ca. G. eutrophica, and the genes encoding outer membrane cytochromes and enzymes for hydrogen metabolism were actively expressed. A Bayesian network was trained with the genes encoding enzymes for alcohol metabolism, hydrogen metabolism, EET, and methanogenesis from dominant fermentative bacteria, Geobacter, and Methanobacterium. Methane production could not be accurately predicted when the genes for IHT were in silico knocked out, inferring its more important role in methanogenesis. The genomics‑enabled machine learning modeling approach can provide predictive insights into the importance of IHT and DIET. Anaerobic digestion is widely used to convert high-strength waste streams to biogas.
    [Show full text]
  • To Multi-Cell Level Charge Transport in Geobacter Sulfurreducens DL-1
    ARTICLE Received 10 May 2013 | Accepted 10 Oct 2013 | Published 8 Nov 2013 DOI: 10.1038/ncomms3751 Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1 Xiaocheng Jiang1,*, Jinsong Hu2,*, Emily R. Petersen3, Lisa A. Fitzgerald4, Charles S. Jackan1, Alexander M. Lieber1, Bradley R. Ringeisen4, Charles M. Lieber1,5 & Justin C. Biffinger4 Microbial fuel cells, in which living microorganisms convert chemical energy into electricity, represent a potentially sustainable energy technology for the future. Here we report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to elucidate the fundamental limits and factors determining maximum power output from a microbial fuel cell. Quantized stepwise current outputs of 92(±33) and 196(±20) fA are generated from microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current recording reveals that the current steps are directly correlated with the contact of one or two cells with the electrodes. This work establishes the amount of current generated by an individual Geobacter cell in the absence of a biofilm and highlights the potential upper limit of microbial fuel cell performance for Geobacter in thin biofilms. 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. 2 CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. 3 Nova Research, Inc., 1900 Elkin Street, Suite 230, Alexandria, Virginia 22308, USA. 4 Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, District of Columbia 20375, USA. 5 School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA.
    [Show full text]
  • Global Transcriptional Analysis of Geobacter Sulfurreducens Under Palladium Reducing Conditions Reveals New Key Cytochromes Invo
    bioRxiv preprint doi: https://doi.org/10.1101/319194; this version posted May 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Global transcriptional analysis of Geobacter sulfurreducens under palladium reducing 2 conditions reveals new key cytochromes involved 3 4 Alberto Hernández-Eligio,a† Aurora M. Pat-Espadas,b,d† Leticia Vega-Alvarado,c Manuel 5 Huerta-Amparán,a Francisco J. Cervantes,b# Katy Juáreza* 6 7 aDepartamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad 8 Nacional Autónoma de México, Cuernavaca, Morelos, Mexico. 9 bDivisión de Ciencias Ambientales, Instituto Potosino de Investigación Científica y 10 Tecnológica (IPICYT), San Luis Potosí, SLP, Mexico. 11 cInstituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, 12 Ciudad Universitaria, Ciudad de México, Mexico. 13 dInstituto de Geología, Universidad Nacional Autónoma de México, Hermosillo, Sonora, 14 Mexico 15 †CONACYT 16 #Address correspondence to Francisco J Cervantes: [email protected]. 17 *Address correspondence to Katy Juárez: [email protected]. 18 19 Running Head: Pd(II) reduction mechanism in Geobacter sulfurreducens 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/319194; this version posted May 10, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Geobacter sulfurreducens is capable of reducing Pd(II) to Pd(0) using acetate as electron 26 donor; however, the biochemical and genetic mechanisms involved in this process have not 27 been described.
    [Show full text]
  • Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria
    Phylogenetic Profile of Copper Homeostasis in Deltaproteobacteria A Major Qualifying Report Submitted to the Faculty of Worcester Polytechnic Institute In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science By: __________________________ Courtney McCann Date Approved: _______________________ Professor José M. Argüello Biochemistry WPI Project Advisor 1 Abstract Copper homeostasis is achieved in bacteria through a combination of copper chaperones and transporting and chelating proteins. Bioinformatic analyses were used to identify which of these proteins are present in Deltaproteobacteria. The genetic environment of the bacteria is affected by its lifestyle, as those that live in higher concentrations of copper have more of these proteins. Two major transport proteins, CopA and CusC, were found to cluster together frequently in the genomes and appear integral to copper homeostasis in Deltaproteobacteria. 2 Acknowledgements I would like to thank Professor José Argüello for giving me the opportunity to work in his lab and do some incredible research with some equally incredible scientists. I need to give all of my thanks to my supervisor, Dr. Teresita Padilla-Benavides, for having me as her student and teaching me not only lab techniques, but also how to be scientist. I would also like to thank Dr. Georgina Hernández-Montes and Dr. Brenda Valderrama from the Insituto de Biotecnología at Universidad Nacional Autónoma de México (IBT-UNAM), Campus Morelos for hosting me and giving me the opportunity to work in their lab. I would like to thank Sarju Patel, Evren Kocabas, and Jessica Collins, whom I’ve worked alongside in the lab. I owe so much to these people, and their support and guidance has and will be invaluable to me as I move forward in my education and career.
    [Show full text]
  • Microbial Fuel Cell Is Emerging As a Versatile Technology: a Review on Its Possible Applications, Challenges and Strategies to Improve the Performances
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2017 Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances Ravinder Kumar Universiti Malaysia Pahang Lakhveer Singh Universiti Malaysia Pahang A W. Zularisam Universiti Malaysia Pahang Faisal I. Hai University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Kumar, Ravinder; Singh, Lakhveer; Zularisam, A W.; and Hai, Faisal I., "Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 294. https://ro.uow.edu.au/eispapers1/294 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances Abstract Microbial fuel cells (MFCs) are emerging as a versatile renewable energy technology. This is particularly because of themultidimensional applications of this eco-friendly technology. The technology depends on the electroactive bacteria,popularly known as exoelectrogens, to simultaneously produce electric power and treat wastewater. Electrodemodifications with nanomaterials such as gold nanoparticles and iron oxide nanoparticles or pretreatment methods suchas sonication and autoclave sterilization have shown promising results in enhancing MFC performance for electricitygeneration and wastewater treatment.
    [Show full text]
  • Comparative Analysis of Type IV Pilin in Desulfuromonadales
    ORIGINAL RESEARCH published: 21 December 2016 doi: 10.3389/fmicb.2016.02080 Comparative Analysis of Type IV Pilin in Desulfuromonadales Chuanjun Shu, Ke Xiao, Qin Yan and Xiao Sun * State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China During anaerobic respiration, the bacteria Geobacter sulfurreducens can transfer electrons to extracellular electron accepters through its pilus. G. sulfurreducens pili have been reported to have metallic-like conductivity that is similar to doped organic semiconductors. To study the characteristics and origin of conductive pilin proteins found in the pilus structure, their genetic, structural, and phylogenetic properties were analyzed. The genetic relationships, and conserved structures and sequences that were obtained were used to predict the evolution of the pilins. Homologous genes that encode conductive pilin were found using PilFind and Cluster. Sequence characteristics and protein tertiary structures were analyzed with MAFFT and QUARK, respectively. The origin of conductive pilins was explored by building a phylogenetic tree. Truncation is a characteristic of conductive pilin. The structures of truncated pilins and their accompanying proteins were found to be similar to the N-terminal and C-terminal ends Edited by: of full-length pilins respectively. The emergence of the truncated pilins can probably be Marina G. Kalyuzhanaya, ascribed to the evolutionary pressure of their extracellular electron transporting function. San Diego State University, USA Genes encoding truncated pilins and proteins similar to the C-terminal of full-length pilins, Reviewed by: Fengfeng Zhou, which contain a group of consecutive anti-parallel beta-sheets, are adjacent in bacterial Shenzhen Institutes of Advanced genomes.
    [Show full text]