Machine Reasoning Explainability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Logical Framework for Modularity of Ontologies∗
A Logical Framework for Modularity of Ontologies∗ Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler The University of Manchester School of Computer Science Manchester, M13 9PL, UK {bcg, horrocks, ykazakov, sattler }@cs.man.ac.uk Abstract ontology itself by possibly reusing the meaning of external symbols. Hence by merging an ontology with external on- Modularity is a key requirement for collaborative tologies we import the meaning of its external symbols to de- ontology engineering and for distributed ontology fine the meaning of its local symbols. reuse on the Web. Modern ontology languages, To make this idea work, we need to impose certain con- such as OWL, are logic-based, and thus a useful straints on the usage of the external signature: in particular, notion of modularity needs to take the semantics of merging ontologies should be “safe” in the sense that they ontologies and their implications into account. We do not produce unexpected results such as new inconsisten- propose a logic-based notion of modularity that al- cies or subsumptions between imported symbols. To achieve lows the modeler to specify the external signature this kind of safety, we use the notion of conservative exten- of their ontology, whose symbols are assumed to sions to define modularity of ontologies, and then prove that be defined in some other ontology. We define two a property of some ontologies, called locality, can be used restrictions on the usage of the external signature, to achieve modularity. More precisely, we define two no- a syntactic and a slightly less restrictive, seman- tions of locality for SHIQ TBoxes: (i) a tractable syntac- tic one, each of which is decidable and guarantees tic one which can be used to provide guidance in ontology a certain kind of “black-box” behavior, which en- editing tools, and (ii) a more general semantic one which can ables the controlled merging of ontologies. -
Deciding Semantic Matching of Stateless Services∗
Deciding Semantic Matching of Stateless Services∗ Duncan Hull†, Evgeny Zolin†, Andrey Bovykin‡, Ian Horrocks†, Ulrike Sattler†, and Robert Stevens† School of Computer Science, Department of Computer Science, † ‡ University of Manchester, UK University of Liverpool, UK Abstract specifying automated reasoning algorithms for such stateful service descriptions is basically impossible in the presence We present a novel approach to describe and reason about stateless information processing services. It can of any expressive ontology (Baader et al. 2005). Stateless- be seen as an extension of standard descriptions which ness implies that we do not need to formulate pre- and post- makes explicit the relationship between inputs and out- conditions since our services do not change the world. puts and takes into account OWL ontologies to fix the The question we are interested in here is how to help the meaning of the terms used in a service description. This biologist to find a service he or she is looking for, i.e., a allows us to define a notion of matching between ser- service that works with inputs and outputs the biologist can vices which yields high precision and recall for service provide/accept, and that provides the required functionality. location. We explain why matching is decidable, and The growing number of publicly available biomedical web provide biomedical example services to illustrate the utility of our approach. services, 3000 as of February 2006, required better match- ing techniques to locate services. Thus, we are concerned with the question of how to describe a service request Q Introduction and service advertisements Si such that the notion of a ser- Understanding the data generated from genome sequenc- vice S matching the request Q can be defined in a “useful” ing projects like the Human Genome Project is recognised way. -
ANDREAS PIERIS School of Informatics, University of Edinburgh 10 Crichton Street, Edinburgh, EH8 9AB, UK [email protected]
ANDREAS PIERIS School of Informatics, University of Edinburgh 10 Crichton Street, Edinburgh, EH8 9AB, UK [email protected] UNIVERSITY EDUCATION • D.Phil. in Computer Science, 2011 Department of Computer Science, University of Oxford Thesis: Ontological Query Answering: New Languages, Algorithms and Complexity Supervisor: Professor Georg Gottlob • M.Sc. in Mathematics anD FounDations oF Computer Science (with Distinction), 2007 Mathematical Institute, University of Oxford Thesis: Data Exchange and Schema Mappings Supervisor: Professor Georg Gottlob • B.Sc. in Computer Science (with Distinction, GPA: 9.06/10), 2006 Department of Computer Science, University of Cyprus Thesis: The Fully Mixed Nash Equilibrium Conjecture Supervisor: Professor Marios Mavronicolas EMPLOYMENT HISTORY • Lecturer (equivalent to Assistant ProFessor) in Databases, 09/2016 – present School of Informatics, University of Edinburgh • PostDoctoral Researcher, 11/2014 – 09/2016 Institute of Logic and Computation, Vienna University of Technology • PostDoctoral Researcher, 09/2011 – 10/2014 Department of Computer Science, University of Oxford RESEARCH Major research interests • Data management: knowledge-enriched data, uncertain data • Knowledge representation and reasoning: ontology languages, complexity of reasoning • Computational logic and its applications to computer science Research grants • EfFicient Querying oF Inconsistent Data, 09/2018 – 08/2022 Principal Investigator Funding agency: Engineering and Physical Sciences Research Council (EPSRC) Total award: £758,049 • Value AdDeD Data Systems: Principles anD Architecture, 04/2015 – 03/2020 Co-Investigator Funding agency: Engineering and Physical Sciences Research Council (EPSRC) Total award: £1,546,471 Research supervision experience • Marco Calautti, postdoctoral supervision, University of Edinburgh, 09/2016 – present • Markus Schneider, Ph.D. supervisor, University of Edinburgh, 09/2018 – present • Gerald Berger, Ph.D. -
Ontology-Based Methods for Analyzing Life Science Data
Habilitation a` Diriger des Recherches pr´esent´ee par Olivier Dameron Ontology-based methods for analyzing life science data Soutenue publiquement le 11 janvier 2016 devant le jury compos´ede Anita Burgun Professeur, Universit´eRen´eDescartes Paris Examinatrice Marie-Dominique Devignes Charg´eede recherches CNRS, LORIA Nancy Examinatrice Michel Dumontier Associate professor, Stanford University USA Rapporteur Christine Froidevaux Professeur, Universit´eParis Sud Rapporteure Fabien Gandon Directeur de recherches, Inria Sophia-Antipolis Rapporteur Anne Siegel Directrice de recherches CNRS, IRISA Rennes Examinatrice Alexandre Termier Professeur, Universit´ede Rennes 1 Examinateur 2 Contents 1 Introduction 9 1.1 Context ......................................... 10 1.2 Challenges . 11 1.3 Summary of the contributions . 14 1.4 Organization of the manuscript . 18 2 Reasoning based on hierarchies 21 2.1 Principle......................................... 21 2.1.1 RDF for describing data . 21 2.1.2 RDFS for describing types . 24 2.1.3 RDFS entailments . 26 2.1.4 Typical uses of RDFS entailments in life science . 26 2.1.5 Synthesis . 30 2.2 Case study: integrating diseases and pathways . 31 2.2.1 Context . 31 2.2.2 Objective . 32 2.2.3 Linking pathways and diseases using GO, KO and SNOMED-CT . 32 2.2.4 Querying associated diseases and pathways . 33 2.3 Methodology: Web services composition . 39 2.3.1 Context . 39 2.3.2 Objective . 40 2.3.3 Semantic compatibility of services parameters . 40 2.3.4 Algorithm for pairing services parameters . 40 2.4 Application: ontology-based query expansion with GO2PUB . 43 2.4.1 Context . 43 2.4.2 Objective . -
Description Logics
Description Logics Franz Baader1, Ian Horrocks2, and Ulrike Sattler2 1 Institut f¨urTheoretische Informatik, TU Dresden, Germany [email protected] 2 Department of Computer Science, University of Manchester, UK {horrocks,sattler}@cs.man.ac.uk Summary. In this chapter, we explain what description logics are and why they make good ontology languages. In particular, we introduce the description logic SHIQ, which has formed the basis of several well-known ontology languages, in- cluding OWL. We argue that, without the last decade of basic research in description logics, this family of knowledge representation languages could not have played such an important rˆolein this context. Description logic reasoning can be used both during the design phase, in order to improve the quality of ontologies, and in the deployment phase, in order to exploit the rich structure of ontologies and ontology based information. We discuss the extensions to SHIQ that are required for languages such as OWL and, finally, we sketch how novel reasoning services can support building DL knowledge bases. 1 Introduction The aim of this section is to give a brief introduction to description logics, and to argue why they are well-suited as ontology languages. In the remainder of the chapter we will put some flesh on this skeleton by providing more technical details with respect to the theory of description logics, and their relationship to state of the art ontology languages. More detail on these and other matters related to description logics can be found in [6]. Ontologies There have been many attempts to define what constitutes an ontology, per- haps the best known (at least amongst computer scientists) being due to Gruber: “an ontology is an explicit specification of a conceptualisation” [47].3 In this context, a conceptualisation means an abstract model of some aspect of the world, taking the form of a definition of the properties of important 3 This was later elaborated to “a formal specification of a shared conceptualisation” [21]. -
Proceedings of the 11Th International Workshop on Ontology
Proceedings of the 11th International Workshop on Ontology Matching (OM-2016) Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, Oktie Hassanzadeh, Ryutaro Ichise To cite this version: Pavel Shvaiko, Jérôme Euzenat, Ernesto Jiménez-Ruiz, Michelle Cheatham, Oktie Hassanzadeh, et al.. Proceedings of the 11th International Workshop on Ontology Matching (OM-2016). Ontology matching workshop, Kobe, Japan. No commercial editor., pp.1-252, 2016. hal-01421835 HAL Id: hal-01421835 https://hal.inria.fr/hal-01421835 Submitted on 15 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ontology Matching OM-2016 Proceedings of the ISWC Workshop Introduction Ontology matching1 is a key interoperability enabler for the semantic web, as well as a useful tactic in some classical data integration tasks dealing with the semantic hetero- geneity problem. It takes ontologies as input and determines as output an alignment, that is, a set of correspondences between the semantically related entities of those on- tologies. These correspondences can be used for various tasks, such as ontology merg- ing, data translation, query answering or navigation on the web of data. Thus, matching ontologies enables the knowledge and data expressed in the matched ontologies to in- teroperate. -
Justification Oriented Proofs In
Justification Oriented Proofs in OWL Matthew Horridge, Bijan Parsia, and Ulrike Sattler School of Computer Science, The University of Manchester Abstract. Justifications — that is, minimal entailing subsets of an on- tology — are currently the dominant form of explanation provided by ontology engineering environments, especially those focused on the Web Ontology Language (OWL). Despite this, there are naturally occurring justifications that can be very difficult to understand. In essence, justifi- cations are merely the premises of a proof and, as such, do not articulate the (often non-obvious) reasoning which connect those premises with the conclusion. This paper presents justification oriented proofs as a poten- tial solution to this problem. 1 Introduction and Motivation Modern ontology development environments such as Prot´eg´e-4, the NeOn Toolkit, Swoop, and Top Braid Composer, allow users to request explanations for entail- ments (inferences) that they encounter when editing or browsing ontologies. In- deed, the provision of explanation generating functionality is generally seen as being a vital component in such tools. Over the last few years, justifications have become the dominant form of explanation in these tools. This paper examines justifications as a kind of explanation and highlights some problems with them. It then presents justification lemmatisation as a non-standard reasoning service, which can be used to augment a justification with intermediate inference steps, and gives rise to a structure known as a justification oriented proof. Ultimately, a justification oriented proof could be used as an input into some presentation de- vice to help a person step though a justification that is otherwise too difficult for them to understand. -
Toward an Open Knowledge Research Graph.Pdf
THE SERIALS LIBRARIAN https://doi.org/10.1080/0361526X.2019.1540272 Toward an Open Knowledge Research Graph Sören Auera and Sanjeet Mann b aPresenter; bRecorder ABSTRACT KEYWORDS Knowledge graphs facilitate the discovery of information by organizing it into Knowledge graph; scholarly entities and describing the relationships of those entities to each other and to communication; Semantic established ontologies. They are popular with search and e-commerce com- Web; linked data; scientific panies and could address the biggest problems in scientific communication, research; machine learning according to Sören Auer of the Technische Informationsbibliothek and Leibniz University of Hannover. In his NASIG vision session, Auer introduced attendees to knowledge graphs and explained how they could make scientific research more discoverable, efficient, and collaborative. Challenges include incentiviz- ing researchers to participate and creating the training data needed to auto- mate the generation of knowledge graphs in all fields of research. Change in the digital world Thank you to Violeta Ilik and the NASIG Program Planning Committee for inviting me to this conference. I would like to show you where I come from. Leibniz University of Hannover has a castle that belonged to a prince, and next to the castle is the Technische Informationsbibliothek (TIB), responsible for supporting the scientific and technology community in Germany with publications, access, licenses, and digital information services. Figure 1 is an example of a knowledge graph about TIB. The basic ingredients of a knowledge graph are entities and relationships. We are the library of Leibniz University of Hannover and we are a member of Leibniz Association (a German research association). -
AAAI-11 Program Schedule.IAAI.EAAI
AAAI-11 Technical Program Schedule Monday, August 8 6:00 – 7:00 pm AAAI-11 Opening Reception Tuesday, August 9 8:30 - 9:00 am Grand Ballroom, Street Level AAAI-11/IAAI-11 Opening Ceremony Welcome and Opening Remarks Outstanding Award Presentations -- Papers, SPC Member, PC Member Wolfram Burgard and Dan Roth, AAAI-11 Program Cochairs IAAI Welcome, Robert S. Engelmore Award, Deployed Application Award Announcements Daniel Shapiro, IAAI-11 Conference Chair, Markus Fromherz, IAAI-11 Program Cochair, and David Leake, AI Magazine Editor-in-Chief Feigenbaum Prize, AAAI Classic Paper Award, Distinguished Service Award Fellows Announcement, Senior Member Recognition Eric Horvitz, AAAI Past President and Awards Committee Chair Henry Kautz, AAAI President 9:15 – 10:00 am AAAI-11 25th Conference Anniversary Panel Moderator: Manuela Veloso, AAAI President-Elect (Carnegie Mellon University) 10:00 – 10:20 am Coffee Break 10:20 - 11:20 am IAAI-11/AAAI-11 Joint Invited Talk: Building Watson: An Overview of DeepQA for the Jeopardy! Challenge David Ferrucci (IBM T J Watson Research Center) 11:30 am – 12:30 pm Description Logics 1 281: Revisiting Semantics for Epistemic Extensions of Description Logics Anees Mehdi, Sebastian Rudolph 242: Integrating Rules and Description Logics by Circumscription Qian Yang, Jia-Huai You, Zhiyong Feng 626: Conjunctive Query Inseparability of OWL 2QL TBoxes B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, M. Zakharyaschev Machine Learning 1 6024: Nectar: Quantity Makes Quality: Learning with Partial Views Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, Ohad Shamir 31: Symmetric Graph Regularized Constraint Propagation Zhenyong Fu, Zhiwu Lu, Horace H. S. -
Curriculum Vitae
Curriculum vitae Thomas Andreas Meyer 25 August 2019 Address Room 312, Computer Science Building University of Cape Town University Avenue, Rondebosch Tel: +27 12 650 5519 e-mail: [email protected] WWW: http://cs.uct.ac.za/~tmeyer Biographical information Date of birth: 14 January 1964, Randburg, South Africa. Marital status: Married to Louise Leenen. We have two children. Citizenship: Australian and South African. Qualifications 1. PhD (Computer Science), University of South Africa, Pretoria, South Africa, 1999. 2. MSc (Computer Science), Rand Afrikaans University (now the University of Johan- nesburg), Johannesburg, South Africa, 1986. 3. BSc Honours (Computer Science) with distinction, Rand Afrikaans University (now the University of Johannesburg), Johannesburg, South Africa, 1985. 4. BSc (Computer Science, Mathematical Statistics), Rand Afrikaans University (now the University of Johannesburg), Johannesburg, South Africa, 1984. 1 Employment and positions held 1. July 2015 to date: Professor, Department of Computer Science, University of Cape Town, Cape Town, South Africa. 2. July 2015 to June 2020: Director, Centre for Artificial Intelligence Research (CAIR), CSIR, Pretoria, South Africa. 3. July 2015 to June 2020: UCT-CSIR Chair in Artificial Intelligence, University of Cape Town, Cape Town, South Africa. 4. August 2011 to June 2015: Chief Scientist, CSIR Meraka Institute, Pretoria, South Africa. 5. May 2011 to June 2015: Director of the UKZN/CSIR Meraka Centre for Artificial Intelligence Research, CSIR and University of KwaZulu-Natal, South Africa. 6. August 2007 to July 2011: Principal Researcher, CSIR Meraka Institute, Pretoria, South Africa. 7. August 2007 to June 2015: Research Group Leader of the Knowledge Representation and Reasoning group (KRR) at the CSIR Meraka Institute, Pretoria, South Africa. -
Internationale Mathematische Nachrichten
INTERNATIONALE MATHEMATISCHE NACHRICHTEN INTERNATIONAL MATHEMATICAL NEWS NOUVELLES MATHEMA¶ TIQUES INTERNATIONALES NACHRICHTEN DER OSTERREICHISCHENÄ MATHEMATISCHEN GESELLSCHAFT EDITED BY OSTERREICHISCHEÄ MATHEMATISCHE GESELLSCHAFT Nr. 181 August 1999 WIEN INTERNATIONALE MATHEMATISCHE NACHRICHTEN INTERNATIONAL MATHEMATICAL NEWS NOUVELLES MATHEMA¶ TIQUES INTERNATIONALES GegrundetÄ 1947 von R. Inzinger, fortgefuhrtÄ von W. Wunderlich Herausgeber: OSTERREICHISCHEÄ MATHEMATISCHE GESELLSCHAFT Redaktion: P. Flor (U Graz; Herausgeber), U. Dieter (TU Graz), M. Drmota (TU Wien), L. Reich (U Graz) und J. Schwaiger (U Graz), unter stÄandiger Mit- arbeit von R. Mlitz (TU Wien) und E. Seidel (U Graz). ISSN 0020-7926. Korrespondenten DANEMARK:Ä M. E. Larsen (Dansk Matematisk Forening, Kopenhagen) FRANKREICH: B. Rouxel (Univ. Bretagne occ., Brest) GRIECHENLAND: N. K. Stephanidis (Univ. Saloniki) GROSSBRITANNIEN: The Institute of Mathematics and Its Applications (Southend-on-Sea), The London Mathematical Society JAPAN: K. Iseki¶ (Japanese Asoc. of Math. Sci) JUGOSLAWIEN: S. Pre·sic¶ (Univ. Belgrad) KROATIEN: M. Alic¶ (Zagreb) NORWEGEN: Norsk Matematisk Forening (Oslo) OSTERREICH:Ä C. Binder (TU Wien) RUMANIEN:Ä F.-K. Klepp (Timisoara) SCHWEDEN: Svenska matematikersamfundet (GÄoteborg) 2 SLOWAKEI: J. Sira· n· (Univ. Pre¼burg) SLOWENIEN: M. Razpet (Univ. Laibach) TSCHECHISCHE REPUBLIK: B. Maslowski (Akad. Wiss. Prag) USA: A. Jackson (Amer. Math. Soc., Providende RI) INTERNATIONALE MATHEMATISCHE NACHRICHTEN INTERNATIONAL MATHEMATICAL NEWS NOUVELLES MATHEMA¶ -
Conference Program
Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI-11) Twenty-Third Conference on Innovative Applications of Artificial Intelligence (IAAI-11) Second Symposium on Educational Advances in Artificial Intelligence (EAAI-11) August 7 – 11, 2011 Hyatt Regency San Francisco San Francisco, California, USA Sponsored by the Association for the Advancement of Artificial Intelligence Cosponsored by the National Science Foundation, AI Journal, Google, Inc. Microsoft Research, Cornell University Institute for Computational Sustainability Naval Research Laboratory, Yahoo! Research Labs, NASA Ames Research Center University of Southern California/Information Sciences Institute, ACM/SIGART IBM Research, Videolectures.net, and David E. Smith Conference Program Acknowledgments Robotics Program Chair Contents The Association for the Advancement of Artifi- Andrea Thomaz (Georgia Institute of Technology, USA) cial Intelligence acknowledges and thanks the Acknowledgments / 2 following individuals for their generous contri- Poker Competition Cohairs AI Video Competition / 18 butions of time and energy to the successful Nolan Bard (University of Alberta, Canada) Awards / 2–4 creation and planning of the Twenty-Fifth AAAI Jonathan Rubin (University of Auckland, New Competitions / 18–19 Conference on Artificial Intelligence and the Zealand) Conference at a Glance / 5 Twenty-Third Conference on Innovative Appli- AI Video Competition Cochairs Doctoral Consortium / 8 cations of Artificial Intelligence. David Aha (Naval Research Laboratory, USA) EAAI-11 Program / 9 Arnav Jhala (University of California, Santa Cruz, Exhibition / 16 AAAI-11 Conference Committee USA) General Information / 20 IAAI-11 Program / 10–15 AAAI Conference Committee Chair A complete listing of the AAAI-11 / IAAI-11 / Invited Presentations / 3, 6–7 Dieter Fox (University of Washington, USA) EAAI-11 Program Committee members appears in Poker Competition / 18 AAAI-11 Program Cochairs the conference proceedings.