Ag Codes and Vector Bundles on Rational Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bézout's Theorem
Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces. -
Chapter 1 Geometry of Plane Curves
Chapter 1 Geometry of Plane Curves Definition 1 A (parametrized) curve in Rn is a piece-wise differentiable func- tion α :(a, b) Rn. If I is any other subset of R, α : I Rn is a curve provided that α→extends to a piece-wise differentiable function→ on some open interval (a, b) I. The trace of a curve α is the set of points α ((a, b)) Rn. ⊃ ⊂ AsubsetS Rn is parametrized by α if and only if there exists set I R ⊂ ⊆ such that α : I Rn is a curve for which α (I)=S. A one-to-one parame- trization α assigns→ and orientation toacurveC thought of as the direction of increasing parameter, i.e., if s<t,the direction of increasing parameter runs from α (s) to α (t) . AsubsetS Rn may be parametrized in many ways. ⊂ Example 2 Consider the circle C : x2 + y2 =1and let ω>0. The curve 2π α : 0, R2 given by ω → ¡ ¤ α(t)=(cosωt, sin ωt) . is a parametrization of C for each choice of ω R. Recall that the velocity and acceleration are respectively given by ∈ α0 (t)=( ω sin ωt, ω cos ωt) − and α00 (t)= ω2 cos 2πωt, ω2 sin 2πωt = ω2α(t). − − − The speed is given by ¡ ¢ 2 2 v(t)= α0(t) = ( ω sin ωt) +(ω cos ωt) = ω. (1.1) k k − q 1 2 CHAPTER 1. GEOMETRY OF PLANE CURVES The various parametrizations obtained by varying ω change the velocity, ac- 2π celeration and speed but have the same trace, i.e., α 0, ω = C for each ω. -
Combination of Cubic and Quartic Plane Curve
IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis. -
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Counting Bitangents with Stable Maps David Ayalaa, Renzo Cavalierib,∗ Adepartment of Mathematics, Stanford University, 450 Serra Mall, Bldg
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Expo. Math. 24 (2006) 307–335 www.elsevier.de/exmath Counting bitangents with stable maps David Ayalaa, Renzo Cavalierib,∗ aDepartment of Mathematics, Stanford University, 450 Serra Mall, Bldg. 380, Stanford, CA 94305-2125, USA bDepartment of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, USA Received 9 May 2005; received in revised form 13 December 2005 Abstract This paper is an elementary introduction to the theory of moduli spaces of curves and maps. As an application to enumerative geometry, we show how to count the number of bitangent lines to a projective plane curve of degree d by doing intersection theory on moduli spaces. ᭧ 2006 Elsevier GmbH. All rights reserved. MSC 2000: 14N35; 14H10; 14C17 Keywords: Moduli spaces; Rational stable curves; Rational stable maps; Bitangent lines 1. Introduction 1.1. Philosophy and motivation The most apparent goal of this paper is to answer the following enumerative question: What is the number NB(d) of bitangent lines to a generic projective plane curve Z of degree d? This is a very classical question, that has been successfully solved with fairly elementary methods (see for example [1, p. 277]). Here, we propose to approach it from a very modern ∗ Corresponding author. E-mail addresses: [email protected] (D. Ayala), [email protected] (R. Cavalieri). 0723-0869/$ - see front matter ᭧ 2006 Elsevier GmbH. All rights reserved. doi:10.1016/j.exmath.2006.01.003 308 D. -
TWO FAMILIES of STABLE BUNDLES with the SAME SPECTRUM Nonreduced [M]
proceedings of the american mathematical society Volume 109, Number 3, July 1990 TWO FAMILIES OF STABLE BUNDLES WITH THE SAME SPECTRUM A. P. RAO (Communicated by Louis J. Ratliff, Jr.) Abstract. We study stable rank two algebraic vector bundles on P and show that the family of bundles with fixed Chern classes and spectrum may have more than one irreducible component. We also produce a component where the generic bundle has a monad with ghost terms which cannot be deformed away. In the last century, Halphen and M. Noether attempted to classify smooth algebraic curves in P . They proceeded with the invariants d , g , the degree and genus, and worked their way up to d = 20. As the invariants grew larger, the number of components of the parameter space grew as well. Recent work of Gruson and Peskine has settled the question of which invariant pairs (d, g) are admissible. For a fixed pair (d, g), the question of determining the number of components of the parameter space is still intractable. For some values of (d, g) (for example [E-l], if d > g + 3) there is only one component. For other values, one may find many components including components which are nonreduced [M]. More recently, similar questions have been asked about algebraic vector bun- dles of rank two on P . We will restrict our attention to stable bundles a? with first Chern class c, = 0 (and second Chern class c2 = n, so that « is a positive integer and i? has no global sections). To study these, we have the invariants n, the a-invariant (which is equal to dim//"'(P , f(-2)) mod 2) and the spectrum. -
Geometry of Algebraic Curves
Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2. -
The Genus of a Riemann Surface in the Plane Let S ⊂ CP 2 Be a Plane
The Genus of a Riemann Surface in the Plane 2 Let S ⊂ CP be a plane curve of degree δ. We prove here that: (δ − 1)(δ − 2) g = 2 We'll start with a version of the: n B´ezoutTheorem. If S ⊂ CP has degree δ and G is a homogeneous polynomial of degree d not vanishing identically on S (i.e. G 62 Id), then deg(div(G)) = dδ Proof. The intersection V (G) \ S is a finite set. We choose a linear form l that is non-zero on all the points of V (G) \ S, and then φ = G=ld is meromorphic when restricted to S, and div(G) − d · div(l) = div(φ) has degree zero. But div(l) has degree δ, by the definition of δ. 2 Now let S ⊂ CP be a planar embedding of a Riemann surface, and let F 2 C[x0; x1; x2]δ generate the ideal I of S and assume, changing coordinates if necessary, that (0 : 1 : 0) 62 S and that the line x2 = 0 is transverse to S, necessarily meeting S in δ points. Proof Sketch. Projecting from p = (0 : 1 : 0) gives a holomorphic map: 1 π : S ! CP 2 1 (as a map from CP to CP , the projection is defined at every point except 2 for p itself). In the open set U2 = f(x0 : x1 : x2) j x2 6= 0g = C with local coordinates x = x0=x2 and y = x1=x2, π is the projection onto the x-axis. 1 In these coordinates, the line at infinity is x2 = 0 and maps to 1 2 CP and does not contribute to the ramification of the map π. -
Bézout's Theorem
Bézout’s Theorem Jennifer Li Department of Mathematics University of Massachusetts Amherst, MA ¡ No common components How many intersection points are there? Motivation f (x,y) g(x,y) Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 2 / 80 How many intersection points are there? Motivation f (x,y) ¡ No common components g(x,y) Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 2 / 80 Motivation f (x,y) ¡ No common components g(x,y) How many intersection points are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 2 / 80 Algebra Geometry { set of solutions } { intersection points of curves } Motivation f (x,y) = 0 g(x,y) = 0 Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 3 / 80 Geometry { intersection points of curves } Motivation f (x,y) = 0 g(x,y) = 0 Algebra { set of solutions } Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 3 / 80 Motivation f (x,y) = 0 g(x,y) = 0 Algebra Geometry { set of solutions } { intersection points of curves } Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 3 / 80 Motivation f (x,y) = 0 g(x,y) = 0 How many intersections are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 4 / 80 Motivation f (x,y) = 0 g(x,y) = 0 How many intersections are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 5 / 80 Motivation f (x,y) = 0 g(x,y) = 0 How many intersections are there? Jennifer Li (University of Massachusetts) Bézout’s Theorem November 30, 2016 6 / 80 f (x): polynomial in one variable 2 n f (x) = a0 + a1x + a2x +⋯+ anx Example. -
The Adjunction Conjecture and Its Applications
The Adjunction Conjecture and its applications Florin Ambro Abstract Adjunction formulas are fundamental tools in the classification theory of algebraic va- rieties. In this paper we discuss adjunction formulas for fiber spaces and embeddings, extending the known results along the lines of the Adjunction Conjecture, independently proposed by Y. Kawamata and V. V. Shokurov. As an application, we simplify Koll´ar’s proof for the Anghern and Siu’s quadratic bound in the Fujita’s Conjecture. We also connect adjunction and its precise inverse to the problem of building isolated log canonical singularities. Contents 1 The basics of log pairs 5 1.1 Prerequisites ................................... 5 1.2 Logvarietiesandpairs. .. .. .. .. .. .. .. .. 5 1.3 Singularities and log discrepancies . ....... 6 1.4 Logcanonicalcenters. .. .. .. .. .. .. .. .. 7 1.5 TheLCSlocus .................................. 8 2 Minimal log discrepancies 9 2.1 The lower semicontinuity of minimal log discrepancies . ........... 10 2.2 Preciseinverseofadjunction. ..... 11 3 Adjunction for fiber spaces 14 3.1 Thediscriminantofalogdivisor . 14 3.2 Base change for the divisorial push forward . ....... 16 3.3 Positivityofthemodulipart . 18 arXiv:math/9903060v3 [math.AG] 30 Mar 1999 4 Adjunction on log canonical centers 20 4.1 Thedifferent ................................... 20 4.2 Positivityofthemodulipart . 22 5 Building singularities 25 5.1 Afirstestimate.................................. 26 5.2 Aquadraticbound ................................ 27 5.3 Theconjecturedoptimalbound . 29 5.4 Global generation of adjoint line bundles . ........ 30 References 32 1 Introduction The rough classification of projective algebraic varieties attempts to divide them according to properties of their canonical class KX . Therefore, whenever two varieties are closely related, it is essential to find formulas comparing their canonical divisors. Such formulas are called adjunction formulas. -
Blow-Ups Global Picture
Synopsis for Thursday, October 18 Blow-ups Global picture 2 1 Consider the projection π : P → P given by (x0,x1,x2) → (x1,x2). This is well-defined except at the center of projection (1, 0, 0). If we ignore that point we can consider the graph Γ of the well-defined map P 2 \ {(1, 0, 0)} → P 1 2 1 2 1 inside P \ {(1, 0, 0)} × P . If(x0,x1,x2; y0,y1) is a point in P × P then clearly y0x2 − y1x1 = 0 for points in Γ, because that is just another way of saying that (x1,x2) = λ(y0,y1) for some λ 6= 0. But this polynomial equation makes sense for the whole product and its zeroes make up the closure Γ of the graph. Now there is a projection π : Γ → P 1 given by the projection onto the second factor, which is defined on the whole of Γ as it is defined on the whole of P 2 × P 1. But what is the relation of Γ to P 2? There is of course a projection of P 2 × P 1 to the first factor that can be restricted to Γ. What are its fibers? If (x0,x1,x2) 6= (1, 0, 0) then not both x1,x2 can be zero, thus there is a unique 1 point (y0,y1) ∈ P such that (x0,x1,x2; y0,y1) ∈ Γ. Thus the projection is 1 : 1. However over (1, 0, 0) there will be no restriction on y0,y1 so the fiber is the entire line P 1! Thus Γ is the same as P 2 except over the point P where it has been replaced by an entire line. -
The Geometry of Smooth Quartics
The Geometry of Smooth Quartics Jakub Witaszek Born 1st December 1990 in Pu lawy, Poland June 6, 2014 Master's Thesis Mathematics Advisor: Prof. Dr. Daniel Huybrechts Mathematical Institute Mathematisch-Naturwissenschaftliche Fakultat¨ der Rheinischen Friedrich-Wilhelms-Universitat¨ Bonn Contents 1 Preliminaries 8 1.1 Curves . .8 1.1.1 Singularities of plane curves . .8 1.1.2 Simultaneous resolutions of singularities . 11 1.1.3 Spaces of plane curves of fixed degree . 13 1.1.4 Deformations of germs of singularities . 14 1.2 Locally stable maps and their singularities . 15 1.2.1 Locally stable maps . 15 1.2.2 The normal-crossing condition and transversality . 16 1.3 Picard schemes . 17 1.4 The enumerative theory . 19 1.4.1 The double-point formula . 19 1.4.2 Polar loci . 20 1.4.3 Nodal rational curves on K3 surfaces . 21 1.5 Constant cycle curves . 22 3 1.6 Hypersurfaces in P .......................... 23 1.6.1 The Gauss map . 24 1.6.2 The second fundamental form . 25 3 2 The geometry of smooth quartics in P 27 2.1 Properties of Gauss maps . 27 2.1.1 A local description . 27 2.1.2 A classification of tangent curves . 29 2.2 The parabolic curve . 32 2.3 Bitangents, hyperflexes and the flecnodal curve . 34 2.3.1 Bitangents . 34 2.3.2 Global properties of the flecnodal curve . 35 2.3.3 The flecnodal curve in local coordinates . 36 2 The Geometry of Smooth Quartics 2.4 Gauss swallowtails . 39 2.5 The double-cover curve .