The Modern Synthesis Reading: Chap

Total Page:16

File Type:pdf, Size:1020Kb

The Modern Synthesis Reading: Chap Evolutionary Processes Terms and Concepts I. Introduction - The modern synthesis Reading: Chap. 25 species, population II. No evolution: Hardy-Weinberg equilibrium A. Population genetics population genetics B. Assumptions of H-W gene pool, allele frequencies III. Causes of microevolution (forces leading to genetic Hardy-Weinberg equilibrium, non-evolving population change) Genetic drift, sampling effect, bottleneck effect, A. Natural selection founder effect B. Genetic Drift Natural selection: directional selection, stabilizing C. Gene flow selection, diversifying selection, sexual selection. D. Mutation E. Nonrandom mating What do these things have in common? I. Introduction: Where do we go from here? http://www.geocities.com /magicgoatman/elk1.jpg http://en.wikipedia.org/wiki/Image:Irish http://www.alanmurphyphotography.com/Galle Meiosis Chromosome _Elk_front.jpg ryimagesfromemail/Scarlet-Tanager-5.jpg Mitosis 1890’s inheritance “Irish elk” 1875 1902 Scarlet tanager http://www.gnoso.com/blog/wp- content/uploads/2007/07/ed15_3.jpg Homo sapiens – ? immature male Fig 22.1 The Modern Synthesis: Started in 1930’s Integrates ideas from many different fields: The Modern Synthesis Darwinian evolution Mendelian genetics Populations are the units of evolution (changes in Population genetics Comparative morphology & molecular biology allele frequencies from generation to Taxonomy – relationships of taxa generation) Paleontology – study of fossils Natural selection plays an important role in Biogeography – distribution of species evolution, but is not the only factor Applications (to name just a few) : Speciation is at the boundary between Medical microbiology microevolution and macroevolution Medical genetics Forensic science (e.g., DNA evidence) Conservation biology Agricultural policy (e.g., crop breeding, pest resistance) All images Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummings 1 Microevolution (Ch 25 – Evolutionary processes) - II. Hardy-Weinberg equilibrium: generation-to-generation changes in allele frequencies within populations. Bottom line: H-W is what happens when (occurs even if only a single locus populations are NOT evolving. in a population changes) Macroevolution (Ch 26 – Speciation) - development of new species (and higher taxa). A. The genetics of populations Hardy-Weinberg Theorem Population = localized, interbreeding group of individuals of one species H-W: In populations with Mendelian transmission of traits (i.e, segregation, independent assortment), in the absence of other forces, Population gene pool = all the alleles of all the individuals in the population Frequencies of alleles & genotypes in a population’s gene Consider one locus, pool remain the same for any number of generations. If you could count all alleles in all individuals, e.g. in a population of yellow- and green-seeded peas That is, meiosis and random fertilization do not lead to evolution. There are YY, Yy and yy individuals Of all the alleles, a certain fraction are Y, say p is that fraction H-W equilibrium relies on certain assumptions (upcoming) Then the rest of the alleles are y; that fraction is q Expressed by the formulas on the next page Hardy-Weinberg formulas (for one locus, 2 alleles) allele frequencies: p + q = 1.00 (by definition) genotype frequencies: p2 + 2pq + q2 = 1.00 (because of Mendelian inheritance, expressed using laws of probability – multiplication & addition) Where, and, p = frequency of 1 allele p2 = frequency of YY Fig 24.1 The Hardy-Weinberg equilibrium of allele frequencies in non-evolving populations q = frequency of alternate allele 2pq = frequency of Yy both expressed as decimal q2 = frequency of yy fractions of a total of 1.00 This equilibrium will hold true no matter what the frequencies of the alleles in the parent population. Try it with p = 0.24 and q = 0.76, for example, in a population of 1000 peas. 2 B. Assumptions of Hardy-Weinberg An example: Is there selection for equilibrium heterozygotes in HLA genes? (see pp. 507-8) 1. No selection (natural or artificial) 2. No genetic drift (very large population size, no 2 genes: HLA-A, HLA-B sampling effect) Code for proteins important in immune system 3. No migration (no gene flow in or out) Co-dominant 4. No mutations (change in form of an allele – the ultimate source of genetic change) Hypothesis: more proteins, greater disease resistance 5. Random mating Therefore, H-W equilibrium is a null hypothesis. Havasupai Tribe – People of the Blue- Green Waters HLA genes in the Havasupai People http://www.moon.com/planner/grand_canyon/mustsee/havasupai.html http://www.cpluhna.nau.edu/People/pais.htm http://www.grandcanyontreks.org/supai.htm http://www.cpluhna.nau.edu/People/pais.htm http://www.americansouthwest.net/arizona/grand_canyon/havasu_canyon.html Why the difference between H-W and Why is H-W theorem important? observed genotypes in Havasupai People? 1. Extends Mendelian genetics of individuals to population scale (where evolution works). 2. Shows that if Mendelian genetic processes are working, variation is maintained at the population level. 3. Gives a baseline (NULL HYPOTHESIS) against which to measure evolutionary change. (Good examples in your book: MN locus, HLA genes) 3 III. Causes of microevolution A. Natural selection Only factor that generally adapts a population to its environment. A. Natural selection The other three factors may effect populations in positive, negative, or B. Genetic drift neutral ways. C. Gene flow D. Mutation Four types: E. Nonrandom mating 1. Directional 2. Stabilizing 3. Disruptive/diversifying All are departures from the conditions required for 4. Sexual selection the Hardy-Weinberg equilibrium 1. Directional selection Directional selection tends to reduce genetic diversity within Phenotype moves toward one end of the populations, but only if range; - selection pressure is constant (environmental change, Ex. Cliff swallows in Great Plains. not just yearly variation) During 1996 cold snap, large birds had better - no strong counterbalancing selection pressures survivorship than small birds. 23.13 3. Disruptive/diversifying selection 2. Stabilizing selection - No change in average value of trait. - Reduced variation in trait Selects for two ends of a range Can result in balanced polymorphism Can result in speciation, IF coupled with sexual selection (reproductive isolation). 4 4. Sexual selection - Operates on differences in ability Example of individuals to attract mates; Beak type in black-bellied seedcrackers - Fitness = survival + reproduction West Cameroon, Africa Only two types of seeds – small & large Intermediate billed birds inefficient at feeding on either type C&R Fig. 23.14 All juveniles ? Sexual selection Females more choosy than males? Tends to act more strongly on males than females Sexually selected traits should reflect male fitness. (eggs are expensive, sperm are cheap) Predictions: - Females more choosy than males - Male-male competition for mates Carotenoids in beaks & feathers - well-fed Females chose siblings with brighter beaks - not fighting diseases Male-male competition B. Genetic Drift Changes in gene frequencies due to chance events (sampling errors) in small populations Hardy Weinberg assumes reproduction works probabilistically on gene frequencies, (p + q = 1) Reproduction in small populations may not work this way Three similar situations lead to genetic drift Sampling effect Elephant seals Bottleneck effect - male territories - Sexual dimorphism Founder effect (male/female size difference (4x!)) 5 Fig. 23.5 Genetic drift: sampling effect Bottleneck Effect Wildflower population with a stable size of only 10 plants Some alleles could easily be eliminated Draw drift C&R Fig. 23.5 Large population drastically reduced by a disaster By chance, some survivor’s alleles may be over- or under- represented, or some alleles may be eliminated Genetic drift continues until the population is large enough to minimize sampling errors C&R Fig. 23.4 C&R Fig. Endangered species Founder effect Bottleneck incidents cause loss of some C&R Fig. 23.5x New population starts with a few individuals not alleles from the gene pool genetically representative of a larger source This reduces individual variation and population. adaptability Extreme: single pregnant female or single seed Example: cheetah More often larger sample, but small Genetic variation in wild Genetic drift continues until the population is large populations is extremely low enough to minimize sampling errors Similar to highly inbred lab mice! C. Gene flow Gene flow: Lupines on Mt. St. Helens Genetic exchange due to migration of alleles Fertile individuals Gametes or spores Example: Wildflower population has white flowered plants only Pollen (with r alleles only) could be carried to another nearby population that lacks the allele. Gene flow tends to reduce differences between populations 6 D. Mutation Change in DNA What keeps mutations? Rare and random More likely to be harmful than beneficial Diploidy – masks recessive alleles Only mutations in cell lines that produce gametes can Hardy-Weinberg Equilibrium says that, be passed along to offspring without natural selection, gene frequencies One mutation does not affect a large population in a remain the same single generation A balance of recessive alleles can be kept Very important to evolution over the long term even without Hardy-Weinberg Heterozygote advantage The only source of new alleles Frequency-dependent selection Other causes of microevolution redistribute mutations
Recommended publications
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Phenotypic Plasticity Vs. Microevolution in Relation to Climate Change Noticeable Impacts of Climate Change Phenotypic Plasticit
    6/6/14 Phenotypic Plasticity vs. Microevolution in Relation to Climate Change By Elizabeth Berry, Alex Lefort, Andy Tran, and Maya Vrba (EPA, 2013) Noticeable Impacts of Climate Change Phenotypic Plasticity vs Microevolution !! Canadian Squirrel: earlier breeding !! Phenotypic Plasticity: The ability of a genotype to produce different phenotypes in different environments (Charmantier & Gienapp 2013) !! American Mosquito: changes in dormancy !! Microevolution: Evolution in a small scale-within a single population (UC Museum of Paleontology 2008) !! Field Mustard plant: early blooming times !! Distinction: Phenotypic Plasticity acts on individuals, Microevolution acts on populations. !! Drosophila melanogaster: changes in gene flow !! Norm of Reaction: The range of phenotypic variation available to a given genotype that can change based on the environment. University of California Museum of Paleontology, 2008 European Great Tit: Parus major European Blackcap: Sylvia atricapilla !! Breeding times are evolving earlier in females to account for !! ADCYAP1: gene that controls the Climate Change. expression of migratory behavior !! Phenotypic Plasticity evident in (Mueller et al., 2011) laying times. !! Migratory activity is heritable and population-specific (Berthold & !! Some females having more flexible laying dates. Pulido 1994) ! Climate change causes evolving !! Success of offspring dependent ! on breeding times and caterpillar migratory patterns (Berthold & biomass coinciding, Pulido 1994) Jerry Nicholls and BBC, 2014 University of California
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]
  • DEB Virtual Office Hour
    Division of Environmental Biology (DEB) Virtual Office Hour Welcome to the DEB Virtual Office Hour. We will begin soon. Please submit questions via the Q&A box available to you on WebEx. Please set notification to ‘All Panelists’ Division of Environmental Biology (DEB) Virtual Office Hour – Welcome! Program Directors in attendance today • Matt Olson – Evolutionary Processes ([email protected]) • Kendra McLauchlan – Ecosystem Sciences ([email protected]) • Ford Ballantyne – Ecosystem Sciences ([email protected]) • Doug Levey – Population and Community Ecology ([email protected]) • Leslie Rissler – Evolutionary Processes ([email protected]) • Sam Scheiner – Evolutionary Processes ([email protected]) • Chris Schneider – Systematics and Biodiversity Sciences ([email protected]) Facilitators – Christina Washington, Alina Dallmeier, and Megan Lewis DEB Virtual Office Hour Questions: • Submit your questions via the Q&A box on your screen and set to “All Panelists” • For recently asked questions and future office hour topics, see the DEB blog (https://debblog.nsfbio.com/) • For specific questions about your project, please contact a Program Director DEB Virtual Office Hour • DEB Office Hours: second Monday of each month, 1-2 pm EST Upcoming Topics: Feb 10: Rules of Life/Understanding the Rules of Life Mar 9: RAPID/EAGER/Workshops Apr 13: OPUS May 11: CAREERs June 8: BIO Postdoc Program DEB Virtual Office Hour Today’s Topics: • Bridging Ecology and Evolution Track in DEB Core Solicitation • Demystifying the Co-Review Process • Open question and answer
    [Show full text]
  • Genetic Drift Lab
    Genetic Drift Lab Small population sizes are more strongly influenced by random events than large populations. This means that the genetic frequencies of alleles in small populations are more likely to vary from one generation to the next from the original population. Often, genetic variation is rapidly lost in small populations and random events can create rapid genetic changes or microevolution in such cases. Populations may be subject to this random genetic drift (rapid movement of allele frequencies) by one of two events that reduce population size. 1. Bottlenecks - an incident reduces the overall number of individuals in a population and only a few survive to produce the next generation. Evidence of bottlenecks have been discovered in many species, such as cheetahs and the northern elephant seal. 2. Founder effect - a small number of individuals disperse and colonize new habitat, founding a new population. Organisms colonizing new habitats, such as islands, or migrating to new areas are also common. In both cases the surviving or founding individuals will often vary in genetic frequency from the parental populations (original sources). Also, small subsequent population size plays a big role in additional changes to the gene frequencies. I. Simulation of random events (coin tosses): Each student flips a coin 10 times. What are the expected number of heads for 10 flips? How many heads did you obtain for your 10 flips? _______ # students in your class ___________ # times heads appeared out of 10 trials for all students: 0 _____ 1 ______ 2 _______ 3 ______ 4 ______ 5 ______ 6 _____ 7 _______ 8 ______ 9 ______ 10 ______ How many total times did the replications meet the expected number of heads _______ How many times did the replications not meet this? __________ II.
    [Show full text]
  • Population Genetics
    Population Genetics • Study of the distribution of alleles in populations and causes of allele frequency changes Key Concepts • Diploid individuals carry two alleles at every locus Homozygous: alleles are the same Heterozygous: alleles are different • Evolution: change in allele frequencies from one generation to the next Distinguishing Among Sources of Phenotypic Variation in Populations • Discrete vs. continuous • Genotype or environment (nature vs. nurture) • Phenotypic Plasticity (revisited) Phenotypic variation - Discrete vs. Continuous Polygenic Control can create Continuous Variation Phenotypic Variation - Discrete vs. Continuous Quantitative or Continuous or Metric Variation, very often Polygenic Phenotypic variation - genotype or environment? Phenotypic variation - genotype or environment? Mechanisms of Evolutionary Change – “Microevolutionary Processes” • Mutation: Ultimate natural resource of evolution, occurs at the molecular level in DNA. • Natural Selection: A difference, on average, between the survival or fecundity of individuals with certain arrays of phenotypes as compared to individuals with alternative phenotypes. • Migration: The movement of alleles from one population to another, typically by the movement of individuals or via long-range dispersal of gametes. • Genetic Drift: Change in the frequencies of alleles in a population resulting from chance variation in the survival and/or reproductive success of individuals; results in nonadaptive evolution (e.g., bottlenecks). These combined forces affect changes at the level of individuals, populations, and species. What is Population Genetics? • The study of alleles becoming more or less common over time. • Applied Meiosis: Application of Mendel’s Law of segregation of alleles. • Hardy-Weinberg Equilibrium Principle: Acts as a null hypothesis for tracking allele and genotype frequencies in a population in the absence of evolutionary forces.
    [Show full text]
  • 5. EVOLUTION AS a POPULATION-GENETIC PROCESS 5 April 2020
    æ 5. EVOLUTION AS A POPULATION-GENETIC PROCESS 5 April 2020 With knowledge on rates of mutation, recombination, and random genetic drift in hand, we now consider how the magnitudes of these population-genetic features dictate the paths that are open vs. closed to evolutionary exploitation in various phylogenetic lineages. Because historical contingencies exist throughout the Tree of Life, we cannot expect to derive from first principles the source of every molecular detail of cellular diversification. We can, however, use established theory to address more general issues, such as the degree of attainable molecular refinement, rates of transition from one state to another, and the degree to which nonadaptive processes (mutation and random genetic drift) contribute to phylogenetic diversification. Substantial reviews of the field of evolutionary theory appear in Charlesworth and Charlesworth (2010) and Walsh and Lynch (2018). Much of the field is con- cerned with the mechanisms maintaining genetic variation within populations, as this ultimately dictates various aspects of the short-term response to selection. Here, however, we are primarily concerned with long-term patterns of phylogenetic diver- sification, so the focus is on the divergence of mean phenotypes. This still requires some knowledge of the principles of population genetics, as evolutionary divergence is ultimately a consequence of the accrual of genetic modifications at the population level. All evolutionary change initiates as a transient phase of genetic polymor- phism, during which mutant alleles navigate the rough sea of random genetic drift, often being evaluated on various genetic backgrounds, with some paths being more accessible to natural selection than others.
    [Show full text]
  • Phylogenetic Systematics As the Basis of Comparative Biology
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 73 Phylogenetic Systematics as the Basis of Comparative Biology KA. Funk and Daniel R. Brooks SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1990 ABSTRACT Funk, V.A. and Daniel R. Brooks. Phylogenetic Systematics as the Basis of Comparative Biology. Smithsonian Contributions to Botany, number 73, 45 pages, 102 figures, 12 tables, 199O.-Evolution is the unifying concept of biology. The study of evolution can be approached from a within-lineage (microevolution) or among-lineage (macroevolution) perspective. Phylogenetic systematics (cladistics) is the appropriate basis for all among-liieage studies in comparative biology. Phylogenetic systematics enhances studies in comparative biology in many ways. In the study of developmental constraints, the use of such phylogenies allows for the investigation of the possibility that ontogenetic changes (heterochrony) alone may be sufficient to explain the perceived magnitude of phenotypic change. Speciation via hybridization can be suggested, based on the character patterns of phylogenies. Phylogenetic systematics allows one to examine the potential of historical explanations for biogeographic patterns as well as modes of speciation. The historical components of coevolution, along with ecological and behavioral diversification, can be compared to the explanations of adaptation and natural selection. Because of the explanatory capabilities of phylogenetic systematics, studies in comparative biology that are not based on such phylogenies fail to reach their potential. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Srnithonhn Year. SERIES COVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Cmgrcss Cataloging-in-PublicationDiaa Funk, V.A (Vicki A.), 1947- PhylogmttiC ryrtcmaticsas tk basis of canpamtive biology / V.A.
    [Show full text]
  • Evaluating the Effects of Genetic Drift and Natural Selection in Drosophila Melanogaster
    Tested Studies for Laboratory Teaching Proceedings of the Association for Biology Laboratory Education Vol. 32, 195-210, 2011 Evaluating the Effects of Genetic Drift and Natural Selection in Drosophila melanogaster Elizabeth Welsh Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4J1 ([email protected]) This laboratory provides a “hands on” experimental approach to illustrate evolution in a semester-long study us- ing red-eye and white-eye phenotypes of Drosophila melanogaster. Students set up and maintain small and large fly populations for several generations to observe the effects of genetic drift and natural selection. They record the phenotypes, calculate allele frequencies and at the end of the semester, submit a formal laboratory report on this experiment which includes chi-square tests, and graphs of allele frequencies, heterozygosity and Fst values. They gain valuable practical, analytical, and writing experience from this experiment. Keywords: evolution, Drosophila melanogaster, natural selection, evolution, genetic drift, population size, hetero- zygosity Introduction Introduction This laboratory has been adapted from one developed Timing at the University of Toronto (Goldman, C., 1991). It is cur- One thing to consider is that because it is an ongoing se- rently used in the second year Evolution class at Dalhousie mester -long experiment, it does take up a bit of time, and University, which is a required class for all Biology Majors. other labs need to be organized around the fly lab schedule. Drosophila melanogaster has proven to be an ideal organ- Our labs are two hours long. We do an introductory lab dur- ism for an undergraduate laboratory in evolution because it ing which we go over administrative details of the laborato- is relatively easy to maintain and has a short life cycle.
    [Show full text]
  • Evodevo: an Ongoing Revolution?
    philosophies Article EvoDevo: An Ongoing Revolution? Salvatore Ivan Amato Department of Cognitive Sciences, University of Messina, Via Concezione 8, 98121 Messina, Italy; [email protected] or [email protected] Received: 27 September 2020; Accepted: 2 November 2020; Published: 5 November 2020 Abstract: Since its appearance, Evolutionary Developmental Biology (EvoDevo) has been called an emerging research program, a new paradigm, a new interdisciplinary field, or even a revolution. Behind these formulas, there is the awareness that something is changing in biology. EvoDevo is characterized by a variety of accounts and by an expanding theoretical framework. From an epistemological point of view, what is the relationship between EvoDevo and previous biological tradition? Is EvoDevo the carrier of a new message about how to conceive evolution and development? Furthermore, is it necessary to rethink the way we look at both of these processes? EvoDevo represents the attempt to synthesize two logics, that of evolution and that of development, and the way we conceive one affects the other. This synthesis is far from being fulfilled, but an adequate theory of development may represent a further step towards this achievement. In this article, an epistemological analysis of EvoDevo is presented, with particular attention paid to the relations to the Extended Evolutionary Synthesis (EES) and the Standard Evolutionary Synthesis (SET). Keywords: evolutionary developmental biology; evolutionary extended synthesis; theory of development 1. Introduction: The House That Charles Built Evolutionary biology, as well as science in general, is characterized by a continuous genealogy of problems, i.e., “a kind of dialectical sequence” of problems that are “linked together in a continuous family tree” [1] (p.
    [Show full text]
  • Lecture 23 Outline
    Microevolution: The Forces of Evolutionary Change Part 2 Lecture 23 Outline ● Conditions that cause evolutionary change ● Natural vs artificial selection ● Nonrandom mating and sexual selection ● The role of chance events – Genetic drift – Bottlenecks – Founder effects – Gene flow Conditions that Cause Evolutionary Change in Natural Populations ● Natural selection is an important, but not the only, force that results in biological evolution ● Micro-evolution occurs when the frequency of an allele in a population changes – Natural selection – Artificial selection – Sexual selection, mate choice, and nonrandom mating – Mutation – Genetic drift Review of Natural Selection ● The differential survival and reproduction of organisms whose genetic traits better adapt them to a particular environment ● Change in the number of individuals in a population that carry copies of a specific allele ● Determined by an individual©s phenotype Evolution and Mutation ● Mutation is the source of new alleles ● Evolution is the change in allele frequency over time ● Some other evolutionary mechanism required for new alleles to become more common ● The genetic makeup of populations, and ultimately species, changes as natural selection permits differential survival of genetic variants (mutants) that are better adapted to a particular environment. Disease Evolution ● All organism evolve – One is not ªmore evolvedº than another ● In most examples of disease evolution we are looking at the evolution of the disease rather than of the host: flu, HIV, antibiotic resistant bacteria, cholera, tuberculosis, etc. (exception: balanced polymorphism) ● Our immune system and the drugs we take are part of the disease©s environment natural =variation differential heredity selection reproduction ● Change in allele frequency in a population is called microevolution.
    [Show full text]
  • Evolutionary Pluralism and the Ideal of a Unified Biology
    História, Ciências, Saúde-Manguinhos ISSN: 0104-5970 ISSN: 1678-4758 Casa de Oswaldo Cruz, Fundação Oswaldo Cruz Araújo, Leonardo Augusto Luvison; Reis, Claudio Ricardo Martins dos Pluralismo evolutivo e o ideal de unificação da biologia História, Ciências, Saúde-Manguinhos, vol. 28, no. 2, 2021, pp. 393-411 Casa de Oswaldo Cruz, Fundação Oswaldo Cruz DOI: https://doi.org/10.1590/S0104-59702021000200004 Available in: https://www.redalyc.org/articulo.oa?id=386167870004 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Evolutionary pluralism and the ideal of a unified biology Evolutionary pluralism and the ideal of a unified biology ARAÚJO, Leonardo Augusto Luvison; REIS, Claudio Ricardo Martins dos. Evolutionary pluralism and the ideal of a unified biology.História, Ciências, Saúde – Manguinhos, Rio de Janeiro, v.28, n.2, abr.-jun. 2021. Available at: http://dx.doi. org/10.1590/S0104-59702021000200004. Abstract Biological evolution is often regarded as a central and unifying axis of biology. This article discusses historical aspects of this ideal of unification, as well as signs of its disintegration from the 1960s to 1980s. We argue that despite new proposals for the synthesis of biological knowledge, contemporary evolutionary biology is characterized by pluralism. The main points in favor of evolutionary pluralism are discussed and some consequences of this perspective are presented, particularly in terms of the ideal of a unified biology. Finally, we defend an evolutionary pluralism that critiques the ideal of unification as a scientific objective, but still favors local Leonardo Augusto Luvison Araújoi integrations.
    [Show full text]