Total Synthesis of Gomisin O; Asymmetric Total Syntheses of Eupomatilones 1, 2 & 5; and Studies Toward Total Synthesis of Mayolide A

Total Page:16

File Type:pdf, Size:1020Kb

Total Synthesis of Gomisin O; Asymmetric Total Syntheses of Eupomatilones 1, 2 & 5; and Studies Toward Total Synthesis of Mayolide A TOTAL SYNTHESIS OF GOMISIN O; ASYMMETRIC TOTAL SYNTHESES OF EUPOMATILONES 1, 2 & 5; AND STUDIES TOWARD TOTAL SYNTHESIS OF MAYOLIDE A DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By SOUMYA MITRA, M.S. ***** The Ohio State University 2007 Dissertation Committee: Approved by Professor Robert S. Coleman, Advisor Professor Craig J. Forsyth _________________________________ Professor Gideon Fraenkel Advisor Graduate Program in Chemistry ABSTRACT Gomisins are oriental medicinal plant lignans characterized by a highly electron- rich dibenzocyclooctadiene core structure with a stereogenic axis about the biaryl bond, exhibiting atropisomerism. The cyclooctane ring is additionally substituted with several stereogenic methyl and hydroxyl groups, thereby diversifying this class of lignans. Most members of this family possess anti-HIV, anti-hepatitis, analgesic, antitussive and central nervous system depressant activities. A convergent, highly efficient total synthesis of gomisins O and E would be discussed in this thesis with complete control of absolute and relative stereochemistry. The key steps involved in the total synthesis are a novel indium- mediated methylcrotylation, a diastereoselective B-alkyl Suzuki−Miyaura alkylborane coupling and an intramolecular oxidative biaryl cuprate cross-coupling with total atropdiastereocontrol. Eupomatilones are structurally novel fluxional plant lignans with varying degree of oxygenation on the biphenyl system. The α-methylene-γ-lactone moiety attached to the biphenyl, as found in eupomatilones 1, 2 and 5, readily forms covalent bonds to cellular proteins and is a cause of chronic actinic dermatitis (CAD). This moiety also forms photo adducts with DNA base thymine in sunlight and has been also shown to target the Iκβ kinase addition to the transcription factor regulator nuclear factor (NF-κΒ), signifying their ii potential role in cellular signaling processes. In this thesis, we would discuss a successful asymmetric strategy for the synthesis of a few members of this unique family of lignans. The key to the synthesis depends on a nicely optimized Suzuki−Miyaura biaryl cross- coupling reaction with heavily electron-rich coupling partners. In addition to this, the synthesis is novel in demonstrating the first example of an asymmetric carbomethoxycrotylboration approach to the synthesis of the α-methylene-γ-lactone moiety, involving application of Miyaura’s boryl-copper chemistry. This thesis also describes a novel route to the synthesis of the carbomethoxycrotylboronate reagent in enantiomerically pure form. This reagent could be of much use for further application in other natural product synthesis. Mayolides are cembrane diterpenes found in the lipids of marine soft corals exhibiting potent anti-cancer properties. Mayolide A is an α-methylene-γ-lactone derivative and also the first secocembrane diterpenoid to be isolated. In this thesis, we would discuss the synthetic strategy developed and the progress made towards the total synthesis of this structurally novel molecule, utilizing the carbomethoxycrotylation strategy developed during the total synthesis of eupomatilones as one of the key steps. iii DEDICATION To my parents, Dr. Lakshmi Kanta Mitra & Mrs. Tapati Mitra And My Grandmother, Mrs. Gita Ghosh iv ACKNOWLEDGMENTS My sincerest gratitude goes to my adviser and mentor, Dr. Robert S. Coleman, for all his intellectual support, for allowing me the freedom of independent scientific thinking, to achieve my goals and objectives that made this thesis possible. I would also thank him for all his encouragement and enthusiasm, which motivated me to organize scientific meetings at Ohio State and in ACS national conferences, for his persistent backing and mental support in times of need, and lastly for his patience in correcting my stylistic and scientific errors. It is he who has made me the chemist I am today. I wish to sincerely thank Dr. Srinivas R. Gurrala, who has helped me master the finer skills in experimental organic chemistry. I am also thankful to Dr. Xiaoling Lu and Amy Hayes for being exceptionally considerate, very understanding and co-operative office mates. I further extend my gratitude to the past and present members of Coleman group, who have heartily extended their help, friendship, experience and advice in my research. I am greatly indebted to my mom, dad, younger brother, and my grandmother for all their love, prayers and inspiration from Calcutta, India. Lastly, I would also like to thank the Department of Chemistry NMR facility, the computer support and all other dedicated support staff members, who have helped me in the graduate school at The Ohio State University. v VITA November 23, 1976. ……...Born – Calcutta, India 1999. …………………. B.Sc. (Honors) Chemistry, Presidency College, University of Calcutta, India 1999 − 2001……………………………………… M.S. Organic Chemistry, Indian Institute of Technology Bombay, (Mumbai), India 2001 – 2002. ………... Graduate Student Instructor, Department of Chemistry, University of Michigan, Ann Arbor, MI 2002 – 2007. ………. Graduate Teaching and Research Associate, The Ohio State University, Columbus, OH, USA PUBLICATIONS Research Publications 1. Kyung-Hoon Lee, Manolis Matzapetakis, Soumya Mitra, E. Neil G. Marsh, Vincent L. Pecoraro; “Control of Metal Coordination Number in de Novo Designed Peptides through Subtle Sequence Modifications” J. Am. Chem. Soc. 2004, 126, 9178- 9179. 2. Robert S. Coleman and Soumya Mitra; “2(methyldithio)-1H-isoindole-1,3(2H)- dione”, Electronic Encyclopedia of Reagents for Organic Synthesis, Ed. Leo A. Paquette, Wiley, NY, August 2004. vi 3. Robert S. Coleman, Srinivas R. Guralla, Soumya Mitra, Amresh M. Raao; “Asymmetric Total Synthesis of Dibenzocyclooctadiene Lignan Natural Products,” J. Org. Chem. 2005, 70, 8932-8941. 4. Francois-Xavier Felpin, Tahar Ayad and Soumya Mitra; “Pd/C: An Old Catalyst for New Applications – Its Use for the Suzuki–Miyaura Reaction”, Eur. J. Org. Chem. 2006, 2679-2690. 5. Soumya Mitra, Srinivas R. Guralla and Robert S. Coleman; “20.7 Product Class 7: Peroxy Acids and Derivatives”, Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, Ed. James S. Panek, Thieme, Stuttgart, 2007, Vol. 20b, 1553-1594. 6. Soumya Mitra, Srinivas R. Gurrala and Robert S. Coleman; “Total Synthesis of Eupomatilones,” J. Org. Chem. 2007, 72, asap article. FIELDS OF STUDY Major Field: Chemistry vii TABLE OF CONTENTS Page Abstract............................................................................................................................ii Dedication........................................................................................................................iv Acknowledgements..........................................................................................................v Vita...................................................................................................................................vi List of Schemes................................................................................................................xii List of Tables ...................................................................................................................xv List of Figures..................................................................................................................xvi List of Abbreviations .......................................................................................................xvii Chapters: Page 1. Dibenzocyclooctadiene lignans: Isolation, biological activity and structural elucidation....................................................................................................1 2.1. Introduction...........................................................................................................1 2.2. Isolation and structure determination of gomisin O and structurally related dibenzocyclooctadiene natural products ...................................................4 1.3. Biological activity of gomisins and dibenzocyclooctadiene lignans ....................7 2. Review of previous synthetic strategies towards the construction of the dibenzocyclooctadiene core.........................................................................................10 2.1. Kende’s approach .................................................................................................11 2.2. Raphael’s approach...............................................................................................12 viii 2.3. Zeigler’s approach ................................................................................................14 2.4. Magnus’ approach ................................................................................................15 2.5. Meyers’ approach .................................................................................................16 2.6. Motherwell’s approach .........................................................................................18 2.7. Molander’s approach ............................................................................................19 3. Brief review of atropisomerism, oxidative biaryl cross coupling, problems in methylcrotylation, and the B-alkyl Suzuki−Miyaura cross-coupling reaction ............21 2.1. Atropisomerism in biaryls ....................................................................................21 2.2. Atropselective intramolecular couplings ..............................................................22
Recommended publications
  • Contemporary Organosilicon Chemistry
    Contemporary organosilicon chemistry Edited by Steve Marsden Generated on 05 October 2021, 02:13 Imprint Beilstein Journal of Organic Chemistry www.bjoc.org ISSN 1860-5397 Email: [email protected] The Beilstein Journal of Organic Chemistry is published by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. This thematic issue, published in the Beilstein Beilstein-Institut zur Förderung der Journal of Organic Chemistry, is copyright the Chemischen Wissenschaften Beilstein-Institut zur Förderung der Chemischen Trakehner Straße 7–9 Wissenschaften. The copyright of the individual 60487 Frankfurt am Main articles in this document is the property of their Germany respective authors, subject to a Creative www.beilstein-institut.de Commons Attribution (CC-BY) license. Contemporary organosilicon chemistry Steve Marsden Editorial Open Access Address: Beilstein Journal of Organic Chemistry 2007, 3, No. 4. School of Chemistry, University of Leeds, Leeds LS2 9JT, UK doi:10.1186/1860-5397-3-4 Email: Received: 06 February 2007 Steve Marsden - [email protected] Accepted: 08 February 2007 Published: 08 February 2007 © 2007 Marsden; licensee Beilstein-Institut License and terms: see end of document. Abstract Editorial for the Thematic Series on Contemporary Organosilicon Chemistry. The field of organosilicon chemistry has a rich and varied the 1990s, and equivalent to the number appearing in the much history, and has long since made the progression from chemical longer established field of organoboron chemistry
    [Show full text]
  • Organic Synthesis: Handout 1
    Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III 8 x 1hr Lectures: Michaelmas Term Weeks 5-8 2016 Mon at 10am; Wed at 9am Dyson Perrins lecture theatre Copies of this handout will be available at hEp://donohoe.chem.ox.ac.uk/page16/index.html 1/33 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 Organic Synthesis III Synopsis 1) Introduc5on to synthesis: (i) Why do we want to synthesise molecules- what sort of molecules do we need to make? (ii) What aspects of selecvity do we need to accomplish a good synthesis (chemo-, regio- and stereoselecvity)? (iii) Protecng group chemistry is central to any syntheAc effort (examples and principles) (iv) What is the perfect synthesis (performed in industry versus academia)? 2) The chiral pool: where does absolute stereochemistry come from? 3) Retrosynthesis- learning to think backwards (revision from first and second year). Importance of making C-C bonds and controlling oxidaAon state. Umpolung 4) Some problems to think about 5) Examples of retrosynthesis/synthesis in ac5on. 6) Ten handy hints for retrosynthesis 7) Soluons to the problems Recommended books: General: Organic Chemistry (Warren et al) Organic Synthesis: The DisconnecRon Approach (S. Warren) Classics in Total Synthesis Volumes I and II (K. C. Nicolaou) The Logic of Chemical Synthesis (E. J. Corey) 2/33 View Article Online / Journal Homepage / Table of Contents for this issue 619461 Strychniqae and BYucine. Pavt XLII. 903 Prof Tim Donohoe: Strategies and Taccs in Organic Synthesis: Handout 1 (i) Why do we want to synthesise complex molecules? Isolated from the Pacific Yew in 1962 Prescribed for prostate, breast and ovarian cancer Unique mode of acRon 1x 100 year old tree = 300 mg Taxol Isolated in 1818- poisonous Stuctural elucidaon took R.
    [Show full text]
  • Enantioselective Total Synthesis of (-)-Deoxoapodine
    Enantioselective total synthesis of (-)-deoxoapodine The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kang, Taek, et al., "Enantioselective total synthesis of (-)- deoxoapodine." Angewandte Chemie International Edition 56, 44 (Sept. 2017): p. 13857-60 doi 10.1002/anie.201708088 ©2017 Author(s) As Published 10.1002/anie.201708088 Publisher Wiley Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125957 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Angew Manuscript Author Chem Int Ed Engl Manuscript Author . Author manuscript; available in PMC 2018 October 23. Published in final edited form as: Angew Chem Int Ed Engl. 2017 October 23; 56(44): 13857–13860. doi:10.1002/anie.201708088. Enantioselective Total Synthesis of (−)-Deoxoapodine Dr. Taek Kang§,a, Dr. Kolby L. White§,a, Tyler J. Mannb, Prof. Dr. Amir H. Hoveydab, and Prof. Dr. Mohammad Movassaghia aDepartment of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139 (USA) bDepartment of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA) Abstract The first enantioselective total synthesis of (−)-deoxoapodine is described. Our synthesis of this hexacyclic aspidosperma alkaloid includes an efficient molybdenum-catalyzed enantioselective ring-closing metathesis reaction for desymmetrization of an advanced intermediate that introduces the C5-quaternary stereocenter. After C21-oxygenation, the pentacyclic core was accessed via an electrophilic C19-amide activation and transannular spirocyclization. A biogenetically inspired dehydrative C6-etherification reaction proved highly effective to secure the F-ring and the fourth contiguous stereocenter of (−)-deoxoapodine with complete stereochemical control.
    [Show full text]
  • Ruthenium-Catalyzed CH Functionalization Of(Hetero)
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1465 Ruthenium-catalyzed C-H Functionalization of (Hetero)arenes KARTHIK DEVARAJ ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9783-5 UPPSALA urn:nbn:se:uu:diva-310998 2017 Dissertation presented at Uppsala University to be publicly examined in B22, BMC, Husargatan 3, Uppsala, Uppsala, Friday, 24 February 2017 at 09:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Victor A. Snieckus (Department of Chemistry, Queen's University, Canada). Abstract Devaraj, K. 2017. Ruthenium-catalyzed C-H Functionalization of (Hetero)arenes. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1465. 59 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9783-5. This thesis concerned about the Ru-catalyzed C-H functionalizations on the synthesis of 2- arylindole unit, silylation of heteroarenes and preparation of aryne precursor. In the first project, we developed the Ru-catalyzed C2-H arylation of N-(2-pyrimidyl) indoles and pyrroles with nucleophilic arylboronic acids under oxidative conditions. Wide variety of arylboronic acids afforded the desired product in excellent yield regardless of the substituents or functional group electronic nature. Electron-rich heteroarenes are well suited for this method than electron-poor heteroarenes. Halides such as bromide and iodide also survived, further derivatisation of the halide is shown by Heck alkenylation. In order to find catalytic on-cycle intermediate extensive mechanistic experiments have been carried out by preparing presumed ruthenacyclic complexes and C-H/D exchange reactions.
    [Show full text]
  • Article Download
    wjpls, 2020, Vol. 6, Issue 8, 61-75 Review Article ISSN 2454-2229 Mitali et al. World Journal of Pharmaceutical and Life Science World Journal of Pharmaceutical and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 6.129 INSULIN THERAPY AND IT’S NEW APPROACHES Tejaswini S. Kawanpure and Dr. Mitali M. Bodhankar* Gurunanak College of Pharmacy, Near Dixit Nagar, Nari Road, Nagpur- 440026. Corresponding Author: Dr. Mitali M. Bodhankar Gurunanak College of Pharmacy, Near Dixit Nagar, Nari Road, Nagpur- 440026. Article Received on 01/06/2020 Article Revised on 22/06/2020 Article Accepted on 12/07/2020 ABSTRACT Diabetes mellitus is a serious pathologic condition which is responsible for major healthcare problems worldwide Insulin replacement therapy has been used in the clinical Management of diabetes mellitus for more than 84 years. Insulin has remained indispensable in dispensable in management of diabetes mellitus since its discovery in 1921. Comparatively, a large percentage of world population is affected by diabetes mellitus, out of which approximately 5-10% with type 1 diabetes while the remaining 90% with type 2. The present mode of insulin administration is by the subcutaneous route through which insulin introduced into the body in a non-physiological manner having many challenges. Hence novel approaches for insulin delivery are being explored. Challenges that have adverse effect on oral route of insulin administration mainly includes rapid enzymatic degradation in the stomach, inactivation and digestion by proteolytic enzymes in the intestinal lumen and poor permeability across intestinal epithelium because of its high molecular weight and its lipophilicity. Approaches such as liposomes, micro emulsions, nano cubicle, insulin chewing gum and so forth have been prepared to ensure the oral delivery of insulin.
    [Show full text]
  • Nigam Prasad Rath Research Professor
    Nigam Prasad Rath Research Professor Department of Chemistry and Biochemistry University of Missouri - St. Louis One University Boulevard St. Louis, MO 63121. E-mail: [email protected] Phone: 314-516-5333 FAX: 314-516-5342 Education : B. Sc.(Honors) : 1st Class Honors in Chemistry with Distinction, Berhampur University, Berhampur, India, 1977. M. Sc. (Chemistry): 1st Class, Berhampur University, Berhampur, India, 1979. Ph. D. (Chemistry): Oklahoma State University, Stillwater, OK, USA, 1985. Professional Experience: Research Professor , Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO, 2004 to present. Research Associate Professor , Department of Chemistry, University of Missouri, St. Louis, MO, 1997 to 2004. Research Assistant Professor , Department of Chemistry, University of Missouri, St. Louis, MO, 1989 to 1996. Assistant Faculty Fellow , Department of Chemistry, University of Notre Dame, Notre Dame, IN 1987 to 1989. Post Doctoral Research Associate , Department of Chemistry, University of Notre Dame, Notre Dame, IN 1986-87. Graduate Assistant , Department of Chemistry, Oklahoma State University, Stillwater, OK 1982 to 1985. Junior Research Fellow (CSIR) , Department of Chemistry, Indian Institute of Technology, Kharagpur, India, 1981-82. Junior Research Fellow , Department of Chemistry, Indian Institute of Technology, Kanpur, India, 1979 to 1981. 2 Professional Positions: Visiting Scientist, Monsanto Corporate Research, Chesterfield, MO, 1992 to 1994. Scientific Consultant, Regional Research Laboratory, Trivandrum, India, 1992 to present. Assistant Professor, Evening College, University of Missouri, St. Louis, 1992 to 2000. Research Mentor, Engelmann Mathematics and Science Institute, University of Missouri, St. Louis, 1990 to 1998. Research Mentor, NSF STARS Program, University of Missouri, St. Louis, 1999 to present. Honors and Awards: National Merit Scholarship, India, 1977-79.
    [Show full text]
  • The Total Synthesis of Securinine and Other Methodology Studies
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2010 The total synthesis of securinine and other methodology studies Bhartesh Dhudshia University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Dhudshia, Bhartesh, "The total synthesis of securinine and other methodology studies" (2010). Electronic Theses and Dissertations. 8275. https://scholar.uwindsor.ca/etd/8275 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. The Total Synthesis of Securinine and Other Methodology Studies by Bhartesh Dhudshia A Dissertation Submitted to the Faculty of Graduate Studies through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0220631 A1 Mezey Et Al
    US 2016O220631A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0220631 A1 Mezey et al. (43) Pub. Date: Aug. 4, 2016 (54) METHODS OF MODULATING Publication Classification ERYTHROPOESS WITH ARGINNE VASOPRESSIN RECEPTOR 1B MOLECULES (51) Int. Cl. A638/II (2006.01) (71) Applicant: THE USA, AS REPRESENTED BY A613 L/404 (2006.01) THE SECRETARY DEPARTMENT A613 L/46.5 (2006.01) OF HEALTH AND HUMAN A638/8 (2006.01) SERVICES, Bethesda, MD (US) A6II 45/06 (2006.01) (52) U.S. Cl. (72) Inventors: Eva M. Mezey, Rockville, MD (US); CPC ............. A61K 38/11 (2013.01); A61 K38/1816 Balazs Mayer, Budakeszi (HU); (2013.01); A61K 45/06 (2013.01); A61 K Krisztian Nemeth, Budapest (HU); 3 1/465 (2013.01); A61 K31/404 (2013.01) Miklos Krepuska, Rockville, MD (US) (73) Assignee: The USA, as represented by the (57) ABSTRACT Secretary, Departm-ent of Health and Disclosed are methods of modulating erythropoiesis with Human Service, Bethesda, MD (US) arginine vasopressin receptor 1B (AVPR1B) molecules, such Appl. No.: as AVPR1B agonists or antagonists. In one example, a (21) 15/022,531 method of stimulating erythropoiesis is disclosed including (22) PCT Fled: Oct. 1, 2014 administering an effective amount of an AVPR1B stimulatory molecule to a subject in need thereof, thereby stimulating (86) PCT NO.: PCT/US2O14/058613 erythropoiesis. Also disclosed is a method of stimulating hematopoetic stem cell (HSC) proliferation which includes S371 (c)(1), administering an effective amount of an AVPR1B stimulatory (2) Date: Mar. 16, 2016 molecule to a subject in need thereof, thereby stimulating HSC proliferation.
    [Show full text]
  • Recent Advances in Total Synthesis Via Metathesis Reactions
    SYNTHESIS0039-78811437-210X © Georg Thieme Verlag Stuttgart · New York 2018, 50, 3749–3786 review 3749 en Syn thesis I. Cheng-Sánchez, F. Sarabia Review Recent Advances in Total Synthesis via Metathesis Reactions Iván Cheng-Sánchez Francisco Sarabia* Department of Organic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos s/n. 29071- Málaga, Spain [email protected] Received: 16.04.2018 ly explained by the emergence, design, and development of Accepted after revision: 30.05.2018 powerful catalysts that are capable of promoting striking Published online: 18.07.2018 DOI: 10.1055/s-0037-1610206; Art ID: ss-2018-z0262-r transformations in highly efficient and selective fashions. In fact, the ability of many of them to forge C–C bonds be- Abstract The metathesis reactions, in their various versions, have be- tween or within highly functionalized and sensitive com- come a powerful and extremely valuable tool for the formation of car- pounds has allowed for the preparation of complex frame- bon–carbon bonds in organic synthesis. The plethora of available cata- lysts to perform these reactions, combined with the various works, whose access were previously hampered by the lim- transformations that can be accomplished, have positioned the me- itations of conventional synthetic methods. Among the tathesis processes as one of the most important reactions of this centu- myriad of recent catalysts, those developed and designed to ry. In this review, we highlight the most relevant synthetic contributions promote metathesis reactions have had a profound impact published between 2012 and early 2018 in the field of total synthesis, reflecting the state of the art of this chemistry and demonstrating the and created a real revolution in the field of total synthesis, significant synthetic potential of these methodologies.
    [Show full text]
  • Total Synthesis of ( )-Hennoxazole a Vol
    ORGANIC LETTERS − 2007 Total Synthesis of ( )-Hennoxazole A Vol. 9, No. 6 1153-1155 Thomas E. Smith,* Wen-Hsin Kuo, Victoria D. Bock, Jennifer L. Roizen, Emily P. Balskus, and Ashleigh B. Theberge Department of Chemistry, Williams College, Williamstown, Massachusetts 01267 [email protected] Received January 31, 2007 ABSTRACT An enantioselective, convergent, total synthesis of the antiviral marine natural product (−)-hennoxazole A has been completed in 17 steps, longest linear sequence, from serine methyl ester and in 9 steps from an achiral bisoxazole intermediate. Elaboration of a thiazolidinethione allowed for rapid assembly of the pyran-based ring system. Key late-stage coupling was effected by deprotonation of the bisoxazole methyl group, followed by alkylation with an allylic bromide side chain segment. Marine natural products have become increasingly important Williams,5 and Shioiri6 laboratories.7 In this communication, as lead compounds for the development of new drugs as a we report the shortest asymmetric total synthesis of hen- consequence of their intriguing structural diversity and noxazole A to date. biological activity.1 Hennoxazole A (1), first isolated by The development of relatively mild conditions for the Scheuer from the marine sponge Polyfibrospongia, displays preparation of oxazoles has made the late-stage assembly of antiviral activity against herpes simplex type 1, as well as these ring systems a common, albeit not always efficient, peripheral analgesic behavior.2 The two contiguous 2,4- strategy in the synthesis
    [Show full text]
  • Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millennium: a Review
    Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millennium: A Review Edgars Abele Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006, Latvia E-mail: [email protected] ABSTRACT Recent advances in the fluoride ion mediated reactions of Si-Η, Si-C, Si-O, Si-N, Si-P bonds containing silanes are described. Application of silicon bonds activation by fluoride ion in the syntheses of different types of organic compounds is discussed. A new mechanism, based on quantum chemical calculations, is presented. The literature data published from January 2001 to December 2004 are included in this review. CONTENTS Page 1. INTRODUCTION 45 2. HYDROSILANES 46 3. Si-C BOND 49 3.1. Vinyl and Allyl Silanes 49 3.2. Aryl Silanes 52 3.3. Subsituted Alkylsilanes 54 3.4. Fluoroalkyl Silanes 56 3.5. Other Silanes Containing Si-C Bond 58 4. Si-N BOND 58 5. Si-O BOND 60 6. Si-P BOND 66 7. CONCLUSIONS 66 8. REFERENCES 67 1. INTRODUCTION Reactions of organosilicon compounds catalyzed by nucleophiles have been under extensive study for more than twenty-five years. In this field two excellent reviews were published 11,21. Recently a monograph dedicated to hypervalent organosilicon compounds was also published /3/. There are also two reviews on 45 Vol. 28, No. 2, 2005 Activation of Silicon Bonds by Fluoride Ion in the Organic Synthesis in the New Millenium: A Review fluoride mediated reactions of fluorinated silanes /4/. Two recent reviews are dedicated to fluoride ion activation of silicon bonds in the presence of transition metal catalysts 151.
    [Show full text]
  • Constitutive Endocytic Cycle of the CB1 Cannabinoid Receptor. Christophe Leterrier, Damien Bonnard, Damien Carrel, Jean Rossier, Zsolt Lenkei
    Constitutive endocytic cycle of the CB1 cannabinoid receptor. Christophe Leterrier, Damien Bonnard, Damien Carrel, Jean Rossier, Zsolt Lenkei To cite this version: Christophe Leterrier, Damien Bonnard, Damien Carrel, Jean Rossier, Zsolt Lenkei. Constitutive endocytic cycle of the CB1 cannabinoid receptor.. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2004, 279 (34), pp.36013-36021. 10.1074/jbc.M403990200. hal-00250336 HAL Id: hal-00250336 https://hal.archives-ouvertes.fr/hal-00250336 Submitted on 6 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Supplemental Material can be found at: http://www.jbc.org/cgi/content/full/M403990200/DC1 THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 279, No. 34, Issue of August 20, pp. 36013–36021, 2004 © 2004 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Constitutive Endocytic Cycle of the CB1 Cannabinoid Receptor*□S Received for publication, April 9, 2004, and in revised form, June 9, 2004 Published, JBC Papers in Press, June
    [Show full text]