Introduction to Electromagnetics; Maxwell's Equations and Derivation of the Wave Equation for Light; Polarization Justificat

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Electromagnetics; Maxwell's Equations and Derivation of the Wave Equation for Light; Polarization Justificat The 3D wave equation Plane wave Spherical wave MIT 2.71/2.710 03/11/09 wk6-b-13 Planar and Spherical Wavefronts Planar wavefront (plane wave): The wave phase is constant along a planar surface (the wavefront). As time evolves, the wavefronts propagate at the wave speed without changing; we say that the wavefronts are invariant to propagation in this case. Spherical wavefront (spherical wave): The wave phase is constant along a spherical surface (the wavefront). As time evolves, the wavefronts propagate at the wave speed and expand outwards while preserving the wave’s energy. MIT 2.71/2.710 03/11/09 wk6-b-14 Wavefronts, rays, and wave vectors Rays are: k 1) normals to the wavefront surfaces 2) trajectories of “particles of light” Wave vectors: At each point on the wavefront, we may assign a normal vector k This is known as the wave vector; k it magnitude k is the wave number and it is defined as k MIT 2.71/2.710 03/11/09 wk6-b-15 3D wave vector from the wave equation wavefront x kx k wave vector kz z ky y MIT 2.71/2.710 03/11/09 wk6 -b-16 3D wave vector and the Descartes sphere The wave vector represents the momentum of the wave. Consistent with Geometrical Optics, its magnitude is constrained to be proportional to the refractive index n (2π/λfree is a normalization factor) In wave optics, the Descartes sphere is also known as Ewald sphere or simply as the k-sphere. (Ewald sphere may be familiar to you from solid state physics) MIT 2.71/2.710 03/11/09 wk6-b-17 Spherical wave “point” source Outgoing rays Outgoing wavefronts (spherical) MIT 2.71/2.710 03/11/09 wk6-b-18 Dispersive waves Dispersion curves for glass Fig. 9X,Y in Jenkins, Francis A., and Harvey E. White. Fundamentals of Optics. 4th ed. New York, NY: McGraw-Hill, 1976. ISBN: 9780070323308. (c) McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. $! ' /011'23451 #26')781 $98')781 +08')781 #" -.* #, '#! #! ! '+ ! & guided light ! " Dispersion diagram for metal waveguide of width cut-off a=1µm frequency ' MIT 2.71/2.710 ! " #! #" $! ( !# 03/16/09 wk7-a- 1 %&!'#! ') * Superposition of waves at different frequencies Fig. 7.16a,b,c in Hecht, Eugene. Optics. Reading, MA: Addison-Wesley, 2001. ISBN: 9780805385663. (c) Addison-Wesley. All rights reserved. This content is excluded from ourCreative Commons license. For more information, see http://ocw.mit.edu/fairuse . MIT 2.71/2.710 03/16/09 wk7-a- 2 Group and phase velocity $! ' /011'23451 #26')781 $98')781 +08')781 #" -.* #, '#! #! ! '+ ! & ! " ' ! " #! #" $! ( !# %&!'#! ') * MIT 2.71/2.710 03/16/09 wk7-a- 3 Spatial frequencies We now turn to a monochromatic (single color) optical field. The field is often observed (or measured) at a planar surface along the optical axis z. The wavefront shape at the observation plane is, therefore, of particular interest. x observation planes x θ z Plane wave Spherical wave MIT 2.71/2.710 03/16/09 wk7-a- 4 Spatial frequencies Plane wave Spherical wave MIT 2.71/2.710 03/16/09 wk7-a- 5 Today • Electromagnetics – Electric (Coulomb) and magnetic forces – Gauss Law: electrical – Gauss Law: magnetic – Faraday’s Law – Ampère-Maxwell Law – Maxwell’s equations ⇒ Wave equation – Energy propagation • Poynting vector • average Poynting vector: intensity – Calculation of the intensity from phasors • Intensity MIT 2.71/2.710 03/18/09 wk7-b- 1 Electric and magnetic forces I r q q´ F + + dl free charges r F I´ Coulomb force Magnetic force (dielectric) permitivity (magnetic) permeability of free space of free space MIT 2.71/2.710 03/18/09 wk7-b- 2 Electric and magnetic fields Observation Generation F velocity E v static charge: electric E q + ⇒ field + electric field ⊗ electric magnetic B charge induction B v moving charge (electric current): + ⇒ Lorentz force + magnetic field MIT 2.71/2.710 03/18/09 wk7-b- 3 Gauss Law: electric field E E da da + + V A Gauss theorem ρ: charge density MIT 2.71/2.710 03/18/09 wk7-b- 4 Gauss Law: magnetic field da there are no magnetic B charges V A Gauss theorem MIT 2.71/2.710 03/18/09 wk7-b- 5 Faraday’s Law: electromotive force E dl B(t) (in/de)creasing A C Stokes theorem MIT 2.71/2.710 03/18/09 wk7-b- 6 Ampère-Maxwell Law: magnetic induction B B dl dl E I current capacitor A A C C Stokes theorem MIT 2.71/2.710 03/18/09 wk7-b- 7 Maxwell’s Equations (free space) Integral form Differential form MIT 2.71/2.710 03/18/09 wk7-b- 8 Wave Equation for electromagnetic waves MIT 2.71/2.710 03/18/09 wk7-b- 9 MIT OpenCourseWare http://ocw.mit.edu 2.71 / 2.710 Optics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .
Recommended publications
  • Wavefront Decomposition and Propagation Through Complex Models with Analytical Ray Theory and Signal Processing Paul Cristini, Eric De Bazelaire
    Wavefront decomposition and propagation through complex models with analytical ray theory and signal processing Paul Cristini, Eric de Bazelaire To cite this version: Paul Cristini, Eric de Bazelaire. Wavefront decomposition and propagation through complex models with analytical ray theory and signal processing. 2006. hal-00110279 HAL Id: hal-00110279 https://hal.archives-ouvertes.fr/hal-00110279 Preprint submitted on 27 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. March 31, 2006 14:7 WSPC/130-JCA jca_sbrt Journal of Computational Acoustics c IMACS Wavefront decomposition and propagation through complex models with analytical ray theory and signal processing P. CRISTINI CNRS-UMR5212 Laboratoire de Mod´elisation et d'Imagerie en G´eosciences de Pau Universit´e de Pau et des Pays de l'Adour BP 1155, 64013 Pau Cedex, France [email protected] E. De BAZELAIRE 11, Route du bourg 64230 Beyrie-en-B´earn, France [email protected] Received (Day Month Year) Revised (Day Month Year) We present a novel method which can perform the fast computation of the times of arrival of seismic waves which propagate between a source and an array of receivers in a stratified medium.
    [Show full text]
  • Engineering Electromagnetic Wave Properties Using Subwavelength Antennas Structures
    ENGINEERING ELECTROMAGNETIC WAVE PROPERTIES USING SUBWAVELENGTH ANTENNAS STRUCTURES Dissertation Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in Electro-Optics By Shiyi Wang UNIVERSITY OF DAYTON Dayton, Ohio May, 2015 ENGINEERING ELECTROMAGNETIC WAVE PROPERTIES USING SUBWAVELENGTH ANTENNAS STRUCTURES Name: Wang, Shiyi APPROVED BY: ____________________________ ____________________________ Qiwen Zhan, Ph.D. Partha Banerjee, Ph.D. Advisory Committee Chairman Committee Member Professor Director and Professor Electro-Optics Program Electro-Optics Program ____________________________ ____________________________ Andrew Sarangan, Ph.D. Imad Agha, Ph.D. Committee Member Committee Member Professor Assistant Professor Electro-Optics Program Physics ____________________________ ____________________________ John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean, School of Engineering School of Engineering ii © Copyright by Shiyi Wang All rights reserved 2015 iii ABSTRACT ENGINEERING ELECTROMAGNETIC WAVE PROPERTIES USING SUBWAVELENGTH ANTENNAS STRUCTURES Name: Wang, Shiyi University of Dayton Advisor: Dr. Qiwen Zhan With extraordinary properties, generation of complex electromagnetic field based on novel subwavelength antennas structures has attracted great attentions in many areas of modern nano science and technology, such as compact RF sensors, micro-wave receivers and nano- antenna-based optical/IR devices. This dissertation
    [Show full text]
  • Model-Based Wavefront Reconstruction Approaches For
    Submitted by Dipl.-Ing. Victoria Hutterer, BSc. Submitted at Industrial Mathematics Institute Supervisor and First Examiner Univ.-Prof. Dr. Model-based wavefront Ronny Ramlau reconstruction approaches Second Examiner Eric Todd Quinto, Ph.D., Robinson Profes- for pyramid wavefront sensors sor of Mathematics in Adaptive Optics October 2018 Doctoral Thesis to obtain the academic degree of Doktorin der Technischen Wissenschaften in the Doctoral Program Technische Wissenschaften JOHANNES KEPLER UNIVERSITY LINZ Altenbergerstraße 69 4040 Linz, Osterreich¨ www.jku.at DVR 0093696 Abstract Atmospheric turbulence and diffraction of light result in the blurring of images of celestial objects when they are observed by ground based telescopes. To correct for the distortions caused by wind flow or small varying temperature regions in the at- mosphere, the new generation of Extremely Large Telescopes (ELTs) uses Adaptive Optics (AO) techniques. An AO system consists of wavefront sensors, control algo- rithms and deformable mirrors. A wavefront sensor measures incoming distorted wave- fronts, the control algorithm links the wavefront sensor measurements to the mirror actuator commands, and deformable mirrors mechanically correct for the atmospheric aberrations in real-time. Reconstruction of the unknown wavefront from given sensor measurements is an Inverse Problem. Many instruments currently under development for ELT-sized telescopes have pyramid wavefront sensors included as the primary option. For this sensor type, the relation between the intensity of the incoming light and sensor data is non-linear. The high number of correcting elements to be controlled in real-time or the segmented primary mirrors of the ELTs lead to unprecedented challenges when designing the control al- gorithms.
    [Show full text]
  • Megakernels Considered Harmful: Wavefront Path Tracing on Gpus
    Megakernels Considered Harmful: Wavefront Path Tracing on GPUs Samuli Laine Tero Karras Timo Aila NVIDIA∗ Abstract order to handle irregular control flow, some threads are masked out when executing a branch they should not participate in. This in- When programming for GPUs, simply porting a large CPU program curs a performance loss, as masked-out threads are not performing into an equally large GPU kernel is generally not a good approach. useful work. Due to SIMT execution model on GPUs, divergence in control flow carries substantial performance penalties, as does high register us- The second factor is the high-bandwidth, high-latency memory sys- age that lessens the latency-hiding capability that is essential for the tem. The impressive memory bandwidth in modern GPUs comes at high-latency, high-bandwidth memory system of a GPU. In this pa- the expense of a relatively long delay between making a memory per, we implement a path tracer on a GPU using a wavefront formu- request and getting the result. To hide this latency, GPUs are de- lation, avoiding these pitfalls that can be especially prominent when signed to accommodate many more threads than can be executed in using materials that are expensive to evaluate. We compare our per- any given clock cycle, so that whenever a group of threads is wait- formance against the traditional megakernel approach, and demon- ing for a memory request to be served, other threads may be exe- strate that the wavefront formulation is much better suited for real- cuted. The effectiveness of this mechanism, i.e., the latency-hiding world use cases where multiple complex materials are present in capability, is determined by the threads’ resource usage, the most the scene.
    [Show full text]
  • Wavefront Coding Fluorescence Microscopy Using High Aperture Lenses
    Wavefront Coding Fluorescence Microscopy Using High Aperture Lenses Matthew R. Arnison*, Carol J. Cogswelly, Colin J. R. Sheppard*, Peter Törökz * University of Sydney, Australia University of Colorado, U. S. A. y Imperial College, U. K. z 1 Extended Depth of Field Microscopy In recent years live cell fluorescence microscopy has become increasingly important in biological and medical studies. This is largely due to new genetic engineering techniques which allow cell features to grow their own fluorescent markers. A pop- ular example is green fluorescent protein. This avoids the need to stain, and thereby kill, a cell specimen before taking fluorescence images, and thus provides a major new method for observing live cell dynamics. With this new opportunity come new challenges. Because in earlier days the process of staining killed the cells, microscopists could do little additional harm by squashing the preparation to make it flat, thereby making it easier to image with a high resolution, shallow depth of field lens. In modern live cell fluorescence imag- ing, the specimen may be quite thick (in optical terms). Yet a single 2D image per time–step may still be sufficient for many studies, as long as there is a large depth of field as well as high resolution. Light is a scarce resource for live cell fluorescence microscopy. To image rapidly changing specimens the microscopist needs to capture images quickly. One of the chief constraints on imaging speed is the light intensity. Increasing the illumination will result in faster acquisition, but can affect specimen behaviour through heating, or reduce fluorescent intensity through photobleaching.
    [Show full text]
  • Topic 3: Operation of Simple Lens
    V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Topic 3: Operation of Simple Lens Aim: Covers imaging of simple lens using Fresnel Diffraction, resolu- tion limits and basics of aberrations theory. Contents: 1. Phase and Pupil Functions of a lens 2. Image of Axial Point 3. Example of Round Lens 4. Diffraction limit of lens 5. Defocus 6. The Strehl Limit 7. Other Aberrations PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -1- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Ray Model Simple Ray Optics gives f Image Object u v Imaging properties of 1 1 1 + = u v f The focal length is given by 1 1 1 = (n − 1) + f R1 R2 For Infinite object Phase Shift Ray Optics gives Delta Fn f Lens introduces a path length difference, or PHASE SHIFT. PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -2- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Phase Function of a Lens δ1 δ2 h R2 R1 n P0 P ∆ 1 With NO lens, Phase Shift between , P0 ! P1 is 2p F = kD where k = l with lens in place, at distance h from optical, F = k0d1 + d2 +n(D − d1 − d2)1 Air Glass @ A which can be arranged to|giv{ze } | {z } F = knD − k(n − 1)(d1 + d2) where d1 and d2 depend on h, the ray height.
    [Show full text]
  • Adaptive Optics: an Introduction Claire E
    1 Adaptive Optics: An Introduction Claire E. Max I. BRIEF OVERVIEW OF ADAPTIVE OPTICS Adaptive optics is a technology that removes aberrations from optical systems, through use of one or more deformable mirrors which change their shape to compensate for the aberrations. In the case of adaptive optics (hereafter AO) for ground-based telescopes, the main application is to remove image blurring due to turbulence in the Earth's atmosphere, so that telescopes on the ground can "see" as clearly as if they were in space. Of course space telescopes have the great advantage that they can obtain images and spectra at wavelengths that are not transmitted by the atmosphere. This has been exploited to great effect in ultra-violet bands, at near-infrared wavelengths that are not in the atmospheric "windows" at J, H, and K bands, and for the mid- and far-infrared. However since it is much more difficult and expensive to launch the largest telescopes into space instead of building them on the ground, a very fruitful synergy has emerged in which images and low-resolution spectra obtained with space telescopes such as HST are followed up by adaptive- optics-equipped ground-based telescopes with larger collecting area. Astronomy is by no means the only application for adaptive optics. Beginning in the late 1990's, AO has been applied with great success to imaging the living human retina (Porter 2006). Many of the most powerful lasers are using AO to correct for thermal distortions in their optics. Recently AO has been applied to biological microscopy and deep-tissue imaging (Kubby 2012).
    [Show full text]
  • Huygens Principle; Young Interferometer; Fresnel Diffraction
    Today • Interference – inadequacy of a single intensity measurement to determine the optical field – Michelson interferometer • measuring – distance – index of refraction – Mach-Zehnder interferometer • measuring – wavefront MIT 2.71/2.710 03/30/09 wk8-a- 1 A reminder: phase delay in wave propagation z t t z = 2.875λ phasor due In general, to propagation (path delay) real representation phasor representation MIT 2.71/2.710 03/30/09 wk8-a- 2 Phase delay from a plane wave propagating at angle θ towards a vertical screen path delay increases linearly with x x λ vertical screen (plane of observation) θ z z=fixed (not to scale) Phasor representation: may also be written as: MIT 2.71/2.710 03/30/09 wk8-a- 3 Phase delay from a spherical wave propagating from distance z0 towards a vertical screen x z=z0 path delay increases quadratically with x λ vertical screen (plane of observation) z z=fixed (not to scale) Phasor representation: may also be written as: MIT 2.71/2.710 03/30/09 wk8-a- 4 The significance of phase delays • The intensity of plane and spherical waves, observed on a screen, is very similar so they cannot be reliably discriminated – note that the 1/(x2+y2+z2) intensity variation in the case of the spherical wave is too weak in the paraxial case z>>|x|, |y| so in practice it cannot be measured reliably • In many other cases, the phase of the field carries important information, for example – the “history” of where the field has been through • distance traveled • materials in the path • generally, the “optical path length” is inscribed
    [Show full text]
  • Shack–Hartmann Wavefront Sensor with Array of Phase Coded Masks
    Shack–Hartmann wavefront sensor with array of phase coded masks NITIN DUBEY,* RAVI KUMAR, JOSEPH ROSEN School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel *Corresponding author: [email protected] Shack-Hartmann wavefront sensors (SHWS) are generally used to measure the wavefront curvature of light beams. Measurement accuracy and the sensitivity of these sensors are important factors for better wavefront sensing. In this study, we demonstrate a new type of SHWS with better measurement accuracy than the regular SHWS. The lenslet array in the regular SHWS is replaced with an array of coded phase masks and the principle of coded aperture correlation holography (COACH) is used for wavefront reconstruction. Sharper correlation peaks achieved by COACH improve the accuracy of the estimated local slopes of the measured wavefront and consequently improve the reconstruction accuracy of the overall wavefront. Experimental results confirm that the proposed method provides a lower mean square wavefront error by one order of magnitude in comparison to the regular SHWS. Shack-Hartmann wavefront sensor (SHWS) was developed for pattern created by illuminating a single CPM with a plane wave. The optical metrology purposes [1] and later has been used in various intensity response in each cell of the array is shifted according to the other fields, such as adaptive optics [2], microscopy [3], retinal average slope of the wavefront in each corresponding cell. Composing imaging [4], and high-power laser systems [5]. Usually, in SHWS a the entire slopes yields a three-dimensional curvature used as an microlens array is used to measure the wavefront local gradients.
    [Show full text]
  • From Scattering to Wavefronts: What’S in Between? Michael Mrochen, Phd
    From Scattering to Wavefronts: What’s in between? Michael Mrochen, PhD Swiss Federal Institute of Technology Institute of Biomedical Engineering IROC Institute for Refractive and Oculoplastic Surgery Zürich Switzerland Foreword • This is a report on a work in progress ! • Geometric-optical methods are used to develop an analytical theory for surface scattering on rough surface sturctures (irregular structures). • Parts of this work are published in: – SPIE Proceedings Ophthalmic Technologies (1998,1999) – Laser Physics 12: 1239-1256 (2002) – Laser Physics 12: 1333-1348 (2002) Clinical observation: Hartmann -Shack and Tscherning wavefront measurements demonstrate an increased background noise when the tearfilm breaks up. Clinical observation: Hartmann -Shack and Tscherning wavefront measurements demonstrate an increased background noise before and after LASIK After LASIK Before LASIK Clinical observation: Some eyes have irregular surface structures that are not reasonably described in terms of modes (Zernike, Taylor, ...) Striae Cornea after complicated LASIK BSCVA: 20/50 decentered measurement Centered measurement Problem ! Clinical observations indicate that there are other sources of optical errors that are not detected or described or measured by the currently used wavefront sensors. -> Visual symptoms do not correlate well with wavefront data in such complicated cases Question ?! What are the optical effects of such irregular structures ? Irregular structures = surface roughness Optical effects of that might detoriate the image quality
    [Show full text]
  • Predictive Dynamic Digital Holography
    Mechanical and Aerospace Engineering Beam Control Laboratory Predictive Dynamic Digital Holography Sennan Sulaiman Steve Gibson Mechanical and Aerospace Engineering UCLA [email protected] 1 1 Mechanical and Aerospace Engineering Beam Control Laboratory Predictive Dynamic Digital Holography Sennan Sulaiman Steve Gibson Mechanical and Aerospace Engineering UCLA [email protected] Thanks to Mark Spencer and Dan Marker AFRL, Kirtland AFB 2 2 Mechanical and Aerospace Engineering Beam Control Laboratory Motivation • Digital holography has received heightened attention in recent applications: – Optical Tweezing – Adaptive Optics – Wavefront Sensing • Major advantages of digital holography over classical AO: – Fewer optical components required – No wavefront sensing device required (Shack-Hartmann or SRI) – Versatility of processing techniques on both amplitude and phase information • Digital holography drawback: – Iterative numerical wavefront propagation and sharpness metric optimization • Computationally intensive 3 Mechanical and Aerospace Engineering Beam Control Laboratory Classical Adaptive Optics Optical Beam with Corrected Wavefront Adaptive Image of Wavefront (Phase) Optics Distant Point Source Sensor Algorithm Sharpened (Beacon) Image Adaptive Optics with Wavefront Prediction Optical Beam with Wavefront Corrected Wavefront Adaptive Image of Prediction Wavefront (Phase) Optics Distant Point Source Sensor Adaptive Algorithm Sharpened (Beacon) & Optimal Image Wavefront prediction compensates for loop delays due to sensor readout, processing,
    [Show full text]
  • SOLID STATE PHYSICS PART II Optical Properties of Solids
    SOLID STATE PHYSICS PART II Optical Properties of Solids M. S. Dresselhaus 1 Contents 1 Review of Fundamental Relations for Optical Phenomena 1 1.1 Introductory Remarks on Optical Probes . 1 1.2 The Complex dielectric function and the complex optical conductivity . 2 1.3 Relation of Complex Dielectric Function to Observables . 4 1.4 Units for Frequency Measurements . 7 2 Drude Theory{Free Carrier Contribution to the Optical Properties 8 2.1 The Free Carrier Contribution . 8 2.2 Low Frequency Response: !¿ 1 . 10 ¿ 2.3 High Frequency Response; !¿ 1 . 11 À 2.4 The Plasma Frequency . 11 3 Interband Transitions 15 3.1 The Interband Transition Process . 15 3.1.1 Insulators . 19 3.1.2 Semiconductors . 19 3.1.3 Metals . 19 3.2 Form of the Hamiltonian in an Electromagnetic Field . 20 3.3 Relation between Momentum Matrix Elements and the E®ective Mass . 21 3.4 Spin-Orbit Interaction in Solids . 23 4 The Joint Density of States and Critical Points 27 4.1 The Joint Density of States . 27 4.2 Critical Points . 30 5 Absorption of Light in Solids 36 5.1 The Absorption Coe±cient . 36 5.2 Free Carrier Absorption in Semiconductors . 37 5.3 Free Carrier Absorption in Metals . 38 5.4 Direct Interband Transitions . 41 5.4.1 Temperature Dependence of Eg . 46 5.4.2 Dependence of Absorption Edge on Fermi Energy . 46 5.4.3 Dependence of Absorption Edge on Applied Electric Field . 47 5.5 Conservation of Crystal Momentum in Direct Optical Transitions . 47 5.6 Indirect Interband Transitions .
    [Show full text]