Seismic ray tracing and wavefront tracking in laterally heterogeneous media N. Rawlinson ∗, J. Hauser, M. Sambridge Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia 1 Introduction 1.1 Motivation One of the most common and challenging problems in seismology is the prediction of source-receiver paths taken by seismic energy in the presence of lateral variations in wavespeed. The solution to this problem is required in many applications that exploit the high frequency component of seismic records, such as body wave tomography, migra- tion of reflection data and earthquake relocation. The process of tracking the kinematic evolution of seismic energy also brings with it the possibility of computing various other wave-related quantities such as traveltime, amplitude, attenuation, or even the high fre- quency waveform, which can then be compared to observations. The difficulties associated with locating a two point path arise from the non-linear re- lationship between velocity and path geometry. Fig. 1, which shows a fan of ray paths ∗ Corresponding author. Email addresses:
[email protected] (N. Rawlinson),
[email protected] (J. Hauser),
[email protected] (M. Sambridge). From: Advances in Geophysics, 49, 203-267. Published in 2007. v(km/s) 2 3 4 5 6 7 0 10 20 30 40 50 60 70 80 90 100 0 0 −10 −10 −20 −20 Depth (km) −30 −30 −40 −40 0 10 20 30 40 50 60 70 80 90 100 Distance (km) Fig. 1. Trajectories followed by a uniform fan of 100 rays emitted by a source point (grey dot) in a smoothly varying heterogeneous medium.