Pharmacokinetics, Biodistribution and Metabolism of a Novel Selective Androgen Receptor Modulator Designed for Prostate Cancer Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacokinetics, Biodistribution and Metabolism of a Novel Selective Androgen Receptor Modulator Designed for Prostate Cancer Imaging 213-222.qxd 13/11/2009 02:14 ÌÌ Page 213 INTERNATIONAL JOURNAL OF ONCOLOGY 36: 213-222, 2010 213 Pharmacokinetics, biodistribution and metabolism of a novel selective androgen receptor modulator designed for prostate cancer imaging JUN YANG1, ZENGRU WU1, DI WU1, MICHAEL V. DARBY2, SEOUNG SOO HONG3,4, DUANE D. MILLER3,4 and JAMES T. DALTON1,4 Divisions of 1Pharmaceutics and 2Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210; 3Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee; 4GTx, Inc., Memphis, TN 38163, USA Received August 4, 2009; Accepted September 14, 2009 DOI: 10.3892/ijo_00000492 Abstract. Knowledge of the presence and extent of disease 3 doses were further simultaneously fitted with a two-compart- plays a major role in clinical management of prostate cancer, mental model and the results were similar to those obtained as it provides meaningful information as to which therapy to from non-compartmental analysis. Biodistribution studies choose and who might benefit from this therapy. The wide using 125I-labeled S-26 indicated that it did not specifically expression of androgen receptor (AR) in primary and meta- target AR-rich tissue (e.g. prostate). A substantial amount of static prostate tumors offers a cellular target for receptor- radioactivity recovered from thyroid gland indicated the mediated imaging of prostate cancer. In our previous study, a release of free iodine. In metabolism studies, unchanged S-26 non-steroidal AR ligand, S-26 [S-3-(4-fluorophenoxy)-2- and its metabolites were detected in rat urine and fecal samples. hydroxy-2-methyl-N-(4-cyano-3-iodophenyl)-propionamide] Oxidation, de-iodination, hydrolysis, and sulfate conjugation showed promising in vitro pharmacological properties as an were the major metabolic pathways of S-26 in rats, with de- AR-mediated imaging agent, with high AR binding affinity iodination representing a unique metabolic pathway of S-26 and AR specificity. The overall goal of this study was to among other selective androgen receptor modulators. In characterize the in vivo metabolic and biodistribution profile conclusion, the extensive plasma clearance and de-iodination of S-26 in rats. Non-compartmental pharmacokinetic ana- of S-26 likely contribute to its lack of AR tissue selectivity lysis of S-26 in rat plasma showed that clearance (CL), in vivo. Future studies using metabolically stable ligands with volume of distribution (Vdss), and half-life (T1/2) of S-26 were less lipophilicity and higher AR binding affinity may repre- 0.30±0.07 l/h/kg, 1.44±0.33 l/kg, and 4 h, respectively, after sent a promising and rational approach for AR-mediated intravenous (i.v.) administration. Dose proportionality (1, 10 imaging. and 30 mg/kg) studies suggested that the pharmacokinetics of S-26 are dose-independent. The plasma concentrations of all Introduction Prostate cancer is the most commonly diagnosed cancer and _________________________________________ remains the second leading cause of death from cancer in American men (1). Procedures for reliable and accurate staging Correspondence to: Dr James T. Dalton, GTx, Inc., 3 North Dunlap of prostate cancer are essential in the management of prostate Street, Memphis, TN 38163, USA cancer. Androgen receptor (AR) is an important intracellular E-mail: [email protected] receptor, which mediates the pharmacologic effects of andro- gens and is involved in the progression of prostate cancer. Abbreviations: AR, androgen receptor; DHT, dihydrotestosterone; T, testosterone; SHBG, sex hormone binding globulin; PEG 300, AR is expressed in all stages of prostate cancer evolution, polyethylene glycol 300; Ki, dissociation equilibrium constant of including prostatic intraepithelial neoplasia (2), primary (3,4) the inhibitor; HPLC, high-performance liquid chromatography; LC- and metastatic disease (5,6), both before and after androgen MS, liquid chromatography-mass spectrometry; MS/MS, tandem ablation therapy. Even androgen-independent tumors express mass spectrometry; GI tract, gastrointestinal tract; CL, clearance; the AR (2). Metastatic prostate tumors expressing AR regard- AUC, area under the concentration-time curve; T1/2, elimination less of their sensitivity to hormonal therapy offer a cellular half-life; Vdss, volume of distribution at equilibrium; DES, diethyl- target for receptor-mediated imaging or treatment of advanced stilbrestil; ID/g, injected dose per gram of tissue prostate cancer. Chemicals that modulate AR activity can be divided into Key words: pharmacokinetics, biodistribution, metabolism, androgen four classes based on their structure (steroidal and non- receptor, prostate cancer steroidal) and function (androgenic and antiandrogenic). Non-steroidal antiandrogens, a major interest for the treatment 213-222.qxd 13/11/2009 02:14 ÌÌ Page 214 214 YANG et al: PHARMACOKINETICS, BIODISTRIBUTION AND METABOLISM OF S-26 of ‘androgen-dependent’ prostate cancer, have been used Animals. Male Sprague-Dawley rats, purchased from Harlan clinically for years. Over the past several years, we determined Biosciences (Indianapolis, IN), were kept on a 12-h light/dark many of the physicochemical and structural requirements for cycle in temperature and humidity controlled rooms. Animals high affinity AR binding by non-steroidal ligands (7,8). had access to food and water ad libitum. All animal studies Much of our research efforts have focused on characterization were reviewed and approved by the Institutional Animal Care of the in vivo pharmacologic activity and tissue selectivity of and Use Committee at The Ohio State University. aryl propionamide selective androgen receptor modulators (SARMs) in animal models of androgen-dependent disease Pharmacokinetic studies. Male Sprague-Dawley rats weighing (9-12). We completed extensive studies on the molecular and 195-238 g were used for pharmacokinetic studies. A catheter preclinical pharmacology of these compounds, advancing them was implanted in the right jugular vein of each rat 24 h prior from high affinity but metabolically labile ligands (13) to to dosing. Animals (n=15) were divided into 3 groups. The tissue-selective drugs with promising in vivo pharmacologic pharmacokinetics of S-26 were determined after an intra- activity (9,10,12,14-17). These studies on the structure- venous dose of 1 or 10 or 30 mg/kg via the jugular vein. activity relationships for AR binding and activation provide Dosing solutions were prepared by dissolving S-26 in a important information for rationally modifying the structures vehicle containing DMSO (5%, v/v) in PEG 300. Doses were of non-steroidal ligand to obtain novel compounds for AR delivered in a volume of 500 μl, and the jugular vein catheter mediated imaging of prostate cancer (18). Our previous studies was flushed three times with total of 500 μl of saline. Blood showed that non-steroidal AR ligands incorporating iodine in samples were collected prior to the dose and at 5, 10, 20, 40, either the A ring or B ring of the aryl propionamide pharma- 60, 120, 240, 480, 720, 1080 and 1440 min after drug adminis- cophore retain high binding affinity to the AR (18-21). In our tration. Blood samples were immediately centrifuged at previous report, S-3-(4-fluorophenoxy)-2-hydroxy-2-methyl- 3,000 g for 10 min. The plasma fraction of each sample was N-(4-cyano-3-iodo-phenyl)-propionamide (referred to as S-26 transferred to a clean Eppendorf tube and stored at -20˚C hereafter as in ref. 18) was shown to exhibit favorable until analysis. properties for further development as an imaging agent for prostate cancer, i.e., high-AR binding affinity of 3.3 nM HPLC-UV analysis. HPLC analytical methods to determine (which is similar to testosterone), high specificity (does not the plasma concentration of S-26 were developed and vali- cross-react with other members of the steroid hormone receptor dated. An aliquot (100 μl) of each plasma sample was spiked family) and lack of binding to SHBG, a plasma protein that with 20 μl of an internal standard (a structural analog of S-26, binds steroids with high affinity (18). S-26 (Fig. 1) incorporates 75 μg/ml final concentration) and mixed well with 1 ml of an iodine group at the meta-position of the A aromatic ring, acetonitrile. After centrifugation at 12,000 x g, 4˚C for 5 min, which provides the opportunity to introduce varying isotopes the supernatant was collected and evaporated. The residues of iodine for research, therapeutic and diagnostic purposes. were reconstituted in 150 μl of mobile phase and an aliquot Iodine-125 offers a good radiotracer for imaging research, of 100 μl was used for HPLC analysis. The separation of S-26 whereas iodine-123 could be clinically used for diagnosis and internal standard was carried out using an isocratic mobile and iodine-131 could be used for receptor-mediated radiation phase (acetonitrile/H2O:50/50, v/v) at a flow rate of 1 ml/min therapy. Reported herein are the in vivo evaluations and with a Nova-Pak C18 column (3.9x150 mm, particle size 4 μm) characterization of S-26 as a potential AR mediated imaging (Waters Corporation, Milford, MA). The UV absorbance of agent. We first determined the pharmacokinetic parameters eluents was monitored at 270 nm. Calibration standards were of S-26 and then synthesized 125I-labeled S-26 for in vivo bio- prepared in blank rat plasma with concentrations ranging distribution studies in rats. As a whole, these studies provide from 0.05 to 50 μg/ml. The recovery of S-26 ranged from important new information regarding the metabolic and physico- 95.1 to 99.6%, as measured using low, medium and high chemical factors that govern AR-mediated accumulation of the concentration samples. The intra- and inter-day coefficients aryl propionamide SARMs and suggest structural modifications of variation of the assay were 5.2 and 8.5%, respectively, at a to improve their potential for prostate cancer imaging.
Recommended publications
  • Pharmacology Risk Report
    Evidence Report: Risk of Therapeutic Failure Due to Ineffectiveness of Medication Virginia E. Wotring Ph. D. Universities Space Research Association, Houston, TX Human Research Program Human Health Countermeasures Element Approved for Public Release: August 02, 2011 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 2 TABLE OF CONTENTS I. PRD RISK TITLE: RISK OF THERAPEUTIC FAILURE DUE TO INEFFECTIVENESS OF MEDICATION ..................................................................... 6 II. EXECUTIVE SUMMARY .............................................................................................. 6 III. INTRODUCTION ............................................................................................................ 7 IV. PHARMACOK INETICS ............................................................................................... 11 A. Absorption ...................................................................................................................... 11 1. Evidence ................................................................................................................................ 16 2. Risk ........................................................................................................................................ 20 3. Gaps ....................................................................................................................................... 21 B. Distribution ....................................................................................................................
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • Deciphering Molecular Mechanisms of Adverse Reactions of Drugs
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Deciphering Molecular Mechanisms of Adverse Reactions of Drugs A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Yu-Chen Chen Committee in charge: Professor Ruben Abagyan, Chair Professor Grace M. Kuo, Co-Chair Professor Nuno F. Bandeira Professor Sanjoy Dasgupta Professor Lucila Ohno-Machado 2014 Copyright Yu-Chen Chen, 2014 All rights reserved. Signature Page The Dissertation of Yu-Chen Chen is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ Co-Chair _____________________________________________________________________ Chair University of California, San Diego 2014 iii TABLE OF CONTENTS Table of Contents Signature Page ............................................................................................................... iii Table of Contents .......................................................................................................... iv List of Figures ................................................................................................................ ix List of Tables ...............................................................................................................
    [Show full text]
  • Therapeutic Implications and Challenges Towards Drug Discovery. J Nanotechnol Nanomaterials
    https://www.scientificarchives.com/journal/journal-of-nanotechnology-and-nanomaterials Journal of Nanotechnology and Nanomaterials Short Communication CO-Releasing Materials: Therapeutic Implications and Challenges towards Drug Discovery Muhammad Faizan1, Niaz Muhammad2* 1Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Nor- mal University, Xi’an 710062, China 2Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China *Correspondence should be addressed to Niaz Muhammad; [email protected] Received date: August 05, 2019, Accepted date: September 16, 2019 Copyright: © 2020 Faizan M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Keywords: CO administration; CO-releasing materials; been raised significantly beyond the therapeutic level CO-releasing molecules; Therapeutic agent; Organometallic because CO gas has great affinity with hemoglobin to complexes; Synovial joints form the carboxy hemoglobin (COHb). The percentage of COHb above 10% (therapeutic level) contains the CO: Carbon Monoxide; HO: Heme Abbreviations: oxygen movement along blood circulation [7]. This issue Oxygenase; COHb: Carboxy Hemoglobin; CORMats: CO- has been addressed properly through indirect inhalation. Releasing Materials; CORMs: CO-Releasing Molecules Indirect inhalation strategy has been further divided into Introduction two categories i.e. CO-releasing molecules (CORMs) and CO-releasing materials (CORMats) [8]. Since last century, carbon monoxide (CO) generally regarded as “silent killer” and life-threatening for living CORMs are organometallic carbonyl complexes organisms because of its colourless, odourless and good for solubility and shown good compatibility with poisonous nature [1].
    [Show full text]
  • Recent Emergence of Rhenium(I) Tricarbonyl Complexes As Photosensitisers for Cancer Therapy
    molecules Review Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy Hui Shan Liew 1, Chun-Wai Mai 2,3 , Mohd Zulkefeli 3, Thiagarajan Madheswaran 3, Lik Voon Kiew 4, Nicolas Delsuc 5 and May Lee Low 3,* 1 School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] 2 Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] 3 School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] (M.Z.); [email protected] (T.M.) 4 Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 5 Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, 75005 Paris, France; [email protected] * Correspondence: [email protected]; Tel.: +60-3-27317694 Academic Editor: Kogularamanan Suntharalingam Received: 8 July 2020; Accepted: 23 July 2020; Published: 12 September 2020 Abstract: Photodynamic therapy (PDT) is emerging as a significant complementary or alternative approach for cancer treatment. PDT drugs act as photosensitisers, which upon using appropriate wavelength light and in the presence of molecular oxygen, can lead to cell death. Herein, we reviewed the general characteristics of the different generation of photosensitisers. We also outlined the emergence of rhenium (Re) and more specifically, Re(I) tricarbonyl complexes as a new generation of metal-based photosensitisers for photodynamic therapy that are of great interest in multidisciplinary research. The photophysical properties and structures of Re(I) complexes discussed in this review are summarised to determine basic features and similarities among the structures that are important for their phototoxic activity and future investigations.
    [Show full text]
  • Molecular and Preclinical Pharmacology of Nonsteroidal Androgen Receptor Ligands
    Molecular and Preclinical Pharmacology of Nonsteroidal Androgen Receptor Ligands Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amanda Jones, M.S. Graduate Program in Pharmacy The Ohio State University 2010 Dissertation Committee: James T. Dalton, Advisor Thomas D. Schmittgen William L. Hayton Robert W. Brueggemeier Copyright by Amanda Jones 2010 Abstract The androgen receptor (AR) is critical for the growth and development of secondary sexual organs, muscle, bone and other tissues, making it an excellent therapeutic target. Ubiquitous expression of AR impedes the ability of endogenous steroids to function tissue selectively. In addition to the lack of tissue selectivity, clinical use of testosterone is limited due to poor bioavailability and pharmacokinetic problems. Our lab, in the last decade, discovered and developed tissue selective AR modulators (SARMs) that spare androgenic effects in secondary sexual organs, but demonstrate potential to treat muscle wasting diseases. This work reveals the discovery of next generation SARMs to treat prostate cancer and mechanistically characterize a prospective SARM in muscle and central nervous system (CNS). Prostate cancer relies on the AR for its growth, making it the primary therapeutic target in this disease. However, prolonged inhibition, with commercially available AR antagonists, leads to the development of mutations in its ligand binding domain resulting in resistance. Utilizing the crystal structure of AR-wild-type and AR-W741L mutant, we synthesized a series of AR pan- antagonists (that inhibit both wild-type and mutant ARs). Structure activity relationship studies indicate that sulfonyl and amine linkages of the aryl propionamide pharmacophore are important for the antagonist activity.
    [Show full text]
  • Tissue Selectivity in Multiple Endocrine Neoplasia Type 1-Associated Tumorigenesis Ana Gracanin,1 Koen M
    Published OnlineFirst August 4, 2009; DOI: 10.1158/0008-5472.CAN-09-0678 Review Tissue Selectivity in Multiple Endocrine Neoplasia Type 1-Associated Tumorigenesis Ana Gracanin,1 Koen M. A. Dreijerink,2,3 Rob B. van der Luijt,4 Cornelis J. M. Lips,3 and Jo W. M. Ho¨ppener5,6 1Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Departments of 2Physiological Chemistry, 3Internal Medicine and Endocrinology, 4Medical Genetics, and 5Metabolic and Endocrine Diseases, University Medical Center Utrecht; and 6Netherlands Metabolomics Center, Utrecht, The Netherlands Abstract menin, has functions in DNA stability and gene regulation and The phenotype of the multiple endocrine neoplasia type 1 can function as a tumor suppressor (4). However, the ubiquitous (MEN1) syndrome cannot be explained solely by the expres- nature of menin expression fails to explain the predominant sion pattern of the predisposing gene MEN1 and its encoded endocrine phenotype of MEN1 and its variable clinical manifes- protein, menin. This reviewaddresses putative factors tation. The diversity of organs and/or tissues affected in MEN1 determining MEN1-associated tissue-selective tumorigenesis. might suggest a very early defect during embryonal develop- Menin’s interaction with mixed-lineage leukemia protein- ment. In agreement with this notion, menin-deficient mouse containing histone methyl transferase (MLL-HMT) complex embryos develop abnormalities in multiple endocrine and mediates tissue-selective tumor-suppressing and
    [Show full text]
  • The Pharmacokinetics of Raloxifene and Its Interaction with Apigenin in Rat
    Molecules 2010, 15, 8478-8487; doi:10.3390/molecules15118478 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article The Pharmacokinetics of Raloxifene and Its Interaction with Apigenin in Rat Yan Chen 1, Xiaobin Jia 1,*, Jian Chen 1, Jinyan Wang 1 and Ming Hu 2 1 Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, China; E-Mails: [email protected] (Y.C.); [email protected] (J.C.); [email protected] (J.W.) 2 Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030, USA; E-Mail: [email protected] (M.H) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: 86-25-85608672; Fax: 86-25-85637809. Received: 25 October 2010; in revised form: 15 November 2010 / Accepted: 16 November 2010/ Published: 18 November 2010 Abstract: Purpose: Raloxifene is a selective estrogen receptor modulator which is structurally similar to tamoxifen. As flavonoids can interact with raloxifene in vitro, we evaluated the in vivo pharmacokinetics of raloxifene in rats when co-administered with apigenin. Methods: The pharmacokinetics of raloxifene in the absence or presence of apigenin was investigated in rats after different dosage regimens. The plasma concentrations before and after enzymatic hydrolysis were analyzed by HPLC, and the pharmacokinetic profiles of raloxifene administered alone and in combination with apigenin were compared. Results: Co-administration of apigenin with raloxifene in a 1:2 ratio by weight resulted in a 55% and 37% increase in the Cmax and AUC of intact raloxifene, respectively.
    [Show full text]
  • Pharmacokinetic/Pharmacodynamic Modelling of Robenacoxib in a Feline
    Pharmacokinetic/pharmacodynamic modelling of robenacoxib in a feline tissue cage model of inflammation Ludovic Pelligand, Jonathan King, Pierre-Louis Toutain, Jonathan Elliott, Peter Lees To cite this version: Ludovic Pelligand, Jonathan King, Pierre-Louis Toutain, Jonathan Elliott, Peter Lees. Pharma- cokinetic/pharmacodynamic modelling of robenacoxib in a feline tissue cage model of inflamma- tion. Journal of Veterinary Pharmacology and Therapeutics, Wiley-Blackwell, 2012, 35 (1), pp.19-32. 10.1111/j.1365-2885.2011.01288.x. hal-01191246 HAL Id: hal-01191246 https://hal.archives-ouvertes.fr/hal-01191246 Submitted on 1 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J. vet. Pharmacol. Therap. 35, 19–32. doi: 10.1111/j.1365-2885.2011.01288.x. Pharmacokinetic⁄pharmacodynamic modelling of robenacoxib in a feline tissue cage model of inflammation L. PELLIGAND* Pelligand, L., King, J. N., Toutain, P. L., Elliott, J., Lees, P. Pharmacoki- J. N. KING netic ⁄ pharmacodynamic modelling of robenacoxib in a feline tissue cage model of inflammation. J. vet. Pharmacol. Therap. 35, 19–32. P. L. TOUTAINà J. ELLIOTT* & Robenacoxib is a novel nonsteroidal anti-inflammatory drug developed for use P.
    [Show full text]
  • A Straightforward Route to Enantiopure Pyrrolizidines And
    Molecules 2001, 6, 142-193 molecules ISSN 1420-3049 http://www.mdpi.org Review Muscarinic Receptor Agonists and Antagonists Kenneth J. Broadley1 and David R. Kelly2,* 1Division of Pharmacology, Welsh School of Pharmacy and 2Department of Chemistry, Cardiff University, Cathays Park, Cardiff, CF10 3TB, UK *To whom correspondence should be addressed; e-mail: [email protected] Received: 2 August 2000; in revised form 16 January 2001 / Accepted: 16 January 2001 / Published: 28 February 2001 Abstract: A comprehensive review of pharmacological and medical aspects of the muscarinic class of acetylcholine agonists and antagonists is presented. The therapeutic benefits of achieving receptor subtype selectivity are outlined and applications in the treatment of Alzheimer’s disease are discussed. A selection of chemical routes are described, which illustrate contemporary methodology for the synthesis of chiral medicinal compounds (asymmetric synthesis, chiral pool, enzymes). Routes to bicyclic intrannular amines and intramolecular Diels-Alder reactions are highlighted. Keywords: Alzheimer’s disease, nicotine, acetylcholine, arecoline, himbacine, tacrine, cyclostelletamines, intramolecular Diels-Alder reaction, indole alkaloids Contents 1 The Pharmacology of Muscarinic Receptors 1.1 Introduction 1.2 Muscarinic receptor subtypes Molecules 2001, 6 143 2 Pharmacological Effects of Agonists and Therapeutic Applications 2.1 Cardiovascular system 2.2 Gastointestinal tract 2.3 Other smooth muscle 2.4 Glandular secretions 2.5 The eye 2.6 Central nervous
    [Show full text]
  • Combinatorial Expression of GPCR Isoforms Affects Signalling and Drug Responses
    Marti-Solano, M. et al. (2020) Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature, 587, pp. 650-656. (doi: 10.1038/s41586-020-2888-2). This is the author’s final accepted version. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/223530/ Deposited on: 29 September 2020 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Combinatorial expression of functionally distinct GPCR isoforms can diversify receptor signalling response Maria Marti-Solano1,*, Stephanie E. Crilly2, Duccio Malinverni1, Christian Munk3, Matthew Harris4, Abigail Pearce4, Tezz Quon5, Amanda E. Mackenzie5, Xusheng Wang6,7, Junmin Peng6,8, Andrew B. Tobin5, Graham Ladds4, Graeme Milligan5, David E. Gloriam3, Manojkumar A. Puthenveedu2,9, M. Madan Babu1,* 1MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. 2Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA 3Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. 4Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom. 5Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK. 6Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. 7Department of Biology, University of North Dakota, Grand Forks, ND 58202, USA. 8Departments of Structural Biology and Developmental Neurobiology, St.
    [Show full text]
  • (Sarm) Tissue-Selectivity
    A COMPREHENSIVE INVESTIGATION INTO THE MOLECULAR MECHANISM RESPONSIBLE FOR SELECTIVE ANDROGEN RECEPTOR MODULATOR (SARM) TISSUE-SELECTIVITY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Natalie Elizabeth Goldberger, M.S. ***** The Ohio State University 2008 Dissertation Committee: Approved by: Dr. James T. Dalton, Ph.D., Advisor Dr. Charles E. Bell, Ph.D. ____________________________ Dr. Mamuka Kvaratskhelia, Ph.D. Advisor Dr. Charles Brooks, Ph.D. Biophysics Graduate Program i ABSTRACT The androgen receptor (AR) is a member of the superfamily of nuclear receptors (NRs) that regulate gene expression in a ligand-dependent manner. Selective androgen receptor modulators (SARMs) are ligands that activate AR in a tissue-selective manner to produce unique physiological effects. To investigate the mechanism responsible for SARM tissue-selectivity, the conformation of AR was analyzed using the NHS-biotin labeling technique. Briefly, ligand-bound AR was affinity purified from Sf9 cells and incubated with NHS-biotin to biotinylate surface accessible lysine residues. Unfortunately, no biotinylation was observed for any of the AR samples, thus the possibility that AR chaperone proteins and cofactors were blocking NHS-biotin access to AR was subsequently investigated using native gels, immunoprecipitation (IP) and liquid chromatography coupled with ion trap mass spectroscopy (MS). IP and native gel analysis subsequently revealed multiple ligand-specific bands. The largest native gel protein bands (~ 690 kDa) for both the dihydrotestosterone- and SARM- treated samples were analyzed using tandem MS, and ligand-specific cofactors were identified. Most interesting was the identification of nuclear receptor corepressor (NCoR) in only the SARM-treated sample.
    [Show full text]