Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Modularity Based Community Detection with Deep Learning 1,2,3 1 3, 1 4 5,6 Liang Yang, Xiaochun Cao, Dongxiao He, ⇤ Chuan Wang, Xiao Wang, Weixiong Zhang 1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences 2School of Information Engineering, Tianjin University of Commerce 3School of Computer Science and Technology, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University 4Department of Computer Science and Technology, Tsinghua University 5College of Math and Computer Science, Institute for Systems Biology, Jianghan University 6Department of Computer Science and Engineering, Washington University in St. Louis yangliang,caoxiaochun,wangchuan @iie.ac.cn,
[email protected], {
[email protected],
[email protected]} Abstract model [Psorakis et al., 2011] focuses on deriving generative models of networks. Such a generative model in essence maps Identification of module or community structures a network to an embedding in a low-dimensional latent space. is important for characterizing and understanding The mapping can be done by, e.g., nonnegative matrix fac- complex systems. While designed with different ob- torization (NMF) [Wang et al., 2008]. Unlike the stochastic jectives, i.e., stochastic models for regeneration and model, the modularity maximization model [Newman, 2006], modularity maximization models for discrimination, as the name suggests, attempts to maximize a modularity func- both these two types of model look for low-rank tion on network substructures. The optimization can be done embedding to best represent and reconstruct net- by eigenvalue decomposition (EVD), which is equivalent to work topology.