Neuroanatomy of Stress Responses

Total Page:16

File Type:pdf, Size:1020Kb

Neuroanatomy of Stress Responses Advances in Neuroimmune Biology 4 (2013) 13–33 13 DOI 10.3233/NIB-130054 IOS Press Neuroanatomy of Stress Responses Takashi Ueyama∗ Department of Anatomy and Cell Biology, Wakayama Medical University Graduate School of Medicine, Kimiidera, Wakayama, Japan Abstract. The autonomic nervous system, especially the sympathetic nervous system, regulates immune responses, while cytokines produced in the immune system also affect neuronal activities. Stress-induced expression of immediate early genes, such as c-Fos in the brain, and the viral transneuronal labeling using pseudorabies virus make it possible to analyze the neuro- circuitry of the stress-related central autonomic nervous system. Limbic systems (amygdala, lateral septum, infralimbic, insular, ventromedial temporal cortical regions), and several hypothalamic and brainstem nuclei have been identified as the central sites that regulate stress-induced sympathetic nervous activation. This review focuses on the involvement of the amygdala in the regulation of stress-induced sympathetic nervous responses. All amygdaloid subnuclei receive psychological information from other limbic regions, while the lateral and central subnuclei receive sensory and immune information from parabrachial nucleus and medical geniculate nucleus. Output to the hypothalamus mainly originates from the medial amygdala, while output to the bed nucleus of the stria terminalis originates from the central amygdala and the medial amygdala. Sex steroids such as estrogen and androgen can modulate the sympathetic nervous activity since their receptors are expressed in the medial amygdala. Keywords: Amygdala, central autonomic nervous system, immediate early genes, projection, sex steroids, viral trans-neuronal labeling ABBREVIATIONS AI agranular insular cortex AP area postrema APir amygdalopiriform transition area A5 A5 noradrenaline cells Arc arcuate hypothalamic nucleus A7 A7 noradrenaline cells BAOT bed nucleus of the accessory olfactory tract AA anterior amygdaloid area BL basolateral amygdaloid nucleus Acb accumbens nucleus BLA basolateral amygdaloid nucleus, anterior AcbC accumbens nucleus, core part AcbSh accumbens nucleus, shell BLP basolateral amygdaloid nucleus, posterior ACo anterior cortical amygdaloid nucleus part AH anterior hypothalamic area BLV basolateral amygdaloid nucleus, ventral AHi amygdalohippocampal area part AHiAL amygdalohippocampal area, anterolateral BM basomedial amygdaloid nucleus part BMA basomedial amygdaloid nucleus, anterior AHiPM amygdalohippocampal area, posteromedial part part BMP basomedial amygdaloid nucleus, posterior part ∗ Correspondence to: Takashi Ueyama, M.D., Ph.D., Department BST bed nucleus of the stria terminalis of Anatomy and Cell Biology, Wakayama Medical University Grad- BSTIA bed nucleus of the stria terminalis, uate School of Medicine, 811-1, Kimiidera, Wakayama, 641-8509, Japan. Tel./Fax: +81 73 441 0616; E-mail: tueyama@wakayama- intraamygdaloid division med.ac.jp. CA1 field CA1 of the hippocampus ISSN 1878-948X/13/$27.50 © 2013 – IOS Press and the authors. All rights reserved This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License. 14 T. Ueyama / Neuroanatomy of Stress Responses CA2 field CA2 of the hippocampus LPMR lateral posterior thalamic nucleus, CA3 field CA3 of the hippocampus mediorostral part CeA central amygdaloid nucleus LPO lateral preoptic area CeC central amygdaloid nucleus, capsular part LS lateral septal nucleus CeL central amygdaloid nucleus, lateral division LSD lateral septal nucleus, dorsal part CeM central amygdaloid nucleus, medial LSI lateral septal nucleus, intermediate part division LSV lateral septal nucleus, ventral part Cgl cingulate cortex, area 1 M1 primary motor cortex CM central medial thalamic nucleus M2 secondary motor cortex CPu caudate putamen (striatum) MCPO magnocellular preoptic nucleus CoA cortical amygdaloid nucleus MD mediodorsal thalamic nucleus CxA cortex-amygdala transition zone MeA medial amygdaloid nucleus DEn dorsal endopiriform nucleus MeAD medial amygdaloid nucleus, anterodorsal DLL dorsal nucleus of the lateral lemniscus part DLPAG dorsolateral periaqueductal gray MeAV medial amygdaloid nucleus, anteroventral DMH dorsomedial hypothalamic nucleus part DMPAG dorsomedial periaqueductal gray MePD medial amygdaloid nucleus, posterodorsal DP dorsal peduncular cortex part DpMe deep mesencephalic nucleus MePV medial amygdaloid nucleus, posteroventral DR dorsal raphe nucleus part DRC dorsal raphe nucleus, caudal part MG medial geniculate nucleus DRD dorsal raphe nucleus, dorsal part MGD medial geniculate nucleus, dorsal part DTgP dorsal tegmental nucleus, pericentral part MGM medial geniculate nucleus, medial part Ect ectorhinal cortex MHb medial habenular nucleus Eth ethmoid thalamic nucleus MM medial mammillary nucleus, medial part EW Edinger-Westphal nucleus MO medial orbital cortex GiV gigantocellular reticular nucleus, ventral MPA medial preoptic area part MPB medial parabrachial nucleus HDB nucleus of the horizontal limb of the MPO medial preoptic nucleus diagonal band MS medial septal nucleus IAM interanteromedial thalamic nucleus NTS nucleus of the solitary tract IL infralimbic cortex opt optic tract IM intercalated amygdaloid nucleus, PaAP parventricular hypothalamic nucleus, main part anterior parvicellular part IPAC interstitial nucleus of the posterior limb of PB parabrachial nucleus the anterior commissure Pe periventricular hypothalamic nucleus LaA lateral amygdaloid nucleus PeF perifornical nucleus LaDL lateral amygdaloid nucleus, dorsolateral PF parafascicular thalamic nucleus part PH posterior hypothalamic area LaVL lateral amygdaloid nucleus, ventrolateral PIL posterior intralaminar thalamic nucleus part Pir piriform cortex LaVM lateral amygdaloid nucleus, ventromedial PLCo posterolateral cortical amygdaloid part nucleus LC locus coeruleus PMCo posteromedial cortical amygdaloid nucleus LDTg laterodorsal tegmental nucleus PMD premammillary nucleus, dorsal part LEnt lateral entorhinal cortex PMV premammillary nucleus, ventral part LH lateral hypothalamic area PP peripeduncular nucleus LO lateral orbital cortex PRh perirhinal cortex LPAG lateral periaqueductal gray PrL prelimbic cortex LPB lateral parabrachial nucleus PSTh parasubthalamic nucleus LPGi lateral paragigantocellular nucleus PT paratenial thalamic nucleus T. Ueyama / Neuroanatomy of Stress Responses 15 PV paraventricular thalamic nucleus ous changes in cellular signaling pathways, resulting PVA paraventricular thalamic nucleus, anterior in alterations of gene expression for cytokines and part antibodies. Recently, the involvement of the parasym- PVH paraventricular hypothalamic nucleus pathetic nervous system on immune regulation has PVP paraventricular thalamic nucleus, posterior been also reported. For example, stimulation of the part vagus nerve attenuates cytokine production, thereby RCh retrochiasmatic area improving survival in experimental sepsis, hemor- REth retroethmoid nucleus rhagic shock, ischemia-reperfusion injury, and other RMg raphe magnus nucleus conditions of cytokine excess [2]. Proinflammatory RPa raphe pallidus nucleus cytokines such as interleukin-1␤ (IL-1␤), tumor necro- RVL rostroventrolateral reticular nucleus sis factor-␣ (TNF-␣) and interleukin-6 (IL-6) and S subiculum other chemical mediators produced in the immune S1 primary somatosensory cortex systems also affect neuronal activities. Cytokines and S2 secondary somatosensory cortex their receptors are expressed in the nervous sys- SCN suprachiasmatic nucleus tems, and may be attributed to invading immune, or SI substantia innominata resident cells [3, 4]. Neuronal immune-modulations SO supraoptic nucleus are conducted within the central nervous system SPFPC subparafascicular thalamic nucleus, (CNS). For instance, neural activity of the amyg- parvicellular part dala and insular cortex as measured by implanted SubB subbrachial nucleus deep-brain electrodes is not only specific for the SuM supramammillary nucleus type of immune challenge (T-cell-independent antigen TeA temporal association cortex lipopolysaccharide versus the T-cell-dependent anti- Tu olfactory tubercle gen staphylococcal enterotoxin B), but also sensitive to VC ventral cochlear nucleus different immune states (naive versus desensitization) VDB nucleus of the ventral limb of the diagonal [5]. band The first purpose of this review is to introduce recent VEn ventral endopiriform nucleus advances in central autonomic nervous system that reg- VLPAG ventrolateral periaqueductal gray ulates the peripheral sympathetic nervous system by a VMH ventromedial hypothalamic nucleus comparison of the data from different kinds of neu- VP ventral pallidum roanatomical labeling techniques. The second purpose VPL ventral posterolateral thalamic nucleus of this review is to reinvestigate and summarize the VTM ventral tuberomammilary nucleus exra- and intra-amygdala projections into major subnu- ZI zona incerta clei of the amygdala, a key-relay and integrative region of the central autonomic nervous system, and projec- tions from the medical amygdaloid nucleus and from the central amydgaloid nucleus. INTRODUCTION Bidirectional interactions between the autonomic nervous system (sympathetic nervous system and CENTRAL AUTONOMIC NERVOUS parasympathetic nervous system) and the immune sys- SYSTEM tem have been studied extensively. The immune system is regulated mainly by the sympathetic nervous system, The peripheral autonomic nervous system
Recommended publications
  • The Effect of Fasting on the Ultrastructure of the Hypothalamic Arcuate Nucleus in Young Rats
    Folia Morphol. Vol. 68, No. 3, pp. 113–118 Copyright © 2009 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The effect of fasting on the ultrastructure of the hypothalamic arcuate nucleus in young rats J. Kubasik-Juraniec1, N. Knap2 1Department of Electron Microscopy, Medical University of Gdańsk, Poland 2Department of Medical Chemistry, Medical University of Gdańsk, Poland [Received 8 May 2009; Accepted 17 July 2009] In the present study, we described ultrastructural changes occurring in the neurons of the hypothalamic arcuate nucleus after food deprivation. Young male Wistar rats (5 months old, n = 12) were divided into three groups. The animals in Group I were used as control (normally fed), and the rats in Groups II and III were fasted for 48 hours and 96 hours, respectively. In both treated groups, fasting caused rearrangement of the rough endoplasmic reticulum form- ing lamellar bodies and membranous whorls. The lamellar bodies were rather short in the controls, whereas in the fasting animals they became longer and were sometimes participating in the formation of membranous whorls com- posed of the concentric layers of the smooth endoplasmic reticulum. The whorls were often placed in the vicinity of a very well developed Golgi complex. Some Golgi complexes displayed an early stage of whorl formation. Moreover, an increased serum level of 8-isoprostanes, being a reliable marker of total oxida- tive stress in the body, was observed in both fasting groups of rats as com- pared to the control. (Folia Morphol 2009; 68, 3: 113–118) Key words: arcuate nucleus, fasting, membranous whorls, isoprostanes INTRODUCTION membranous whorls in the ARH neurons of a male The arcuate nucleus of the hypothalamus (ARH) rat on the fourth day after castration.
    [Show full text]
  • Variations in Number of Dopamine Neurons and Tyrosine Hydroxylase Activity in Hypothalamus of Two Mouse Strains
    0270.6474/83/0304-0832$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 3, No. 4, pp. 832-843 Printed in U.S.A. April 1983 VARIATIONS IN NUMBER OF DOPAMINE NEURONS AND TYROSINE HYDROXYLASE ACTIVITY IN HYPOTHALAMUS OF TWO MOUSE STRAINS HARRIET BAKER,2 TONG H. JOH, DAVID A. RUGGIERO, AND DONALD J. REIS Laboratory of Neurobiology, Cornell University Medical College, New York, New York 10021 Received May 3, 1982; Revised August 23, 1982; Accepted October 8, 1982 Abstract Mice of the BALB/cJ strain have more neurons and greater tyrosine hydroxylase (TH) activity in the midbrain than mice of the CBA/J strain (Baker, H., T. H. Joh, and D. J. Reis (1980) Proc. Natl. Acad. Sci. U. S. A. 77: 4369-4373). To determine whether the strain differences in dopamine (DA) neuron number and regional TH activity are more generalized, regional TH activity was measured and counts of neurons containing the enzyme were made in the hypothalamus of male mice of the BALB/cJ and CBA/J strains. TH activity was measured in dissections of whole hypothalamus (excluding the preoptic area), the preoptic area containing a rostral extension of the Al4 group, the mediobasal hypothalamus containing the A12 group, and the mediodorsal hypothal- amus containing neurons of the Al3 and Al4 groups. Serial sections were taken and the number of DA neurons was established by counting at 50- to 60-pm intervals all cells stained for TH through each area. In conjunction with data obtained biochemically, the average amount of TH per neuron was determined.
    [Show full text]
  • Mapping the Populations of Neurotensin Neurons in the Male Mouse Brain T Laura E
    Neuropeptides 76 (2019) 101930 Contents lists available at ScienceDirect Neuropeptides journal homepage: www.elsevier.com/locate/npep Mapping the populations of neurotensin neurons in the male mouse brain T Laura E. Schroeder, Ryan Furdock, Cristina Rivera Quiles, Gizem Kurt, Patricia Perez-Bonilla, ⁎ Angela Garcia, Crystal Colon-Ortiz, Juliette Brown, Raluca Bugescu, Gina M. Leinninger Department of Physiology, Michigan State University, East Lansing, MI 48114, United States ARTICLE INFO ABSTRACT Keywords: Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including car- Lateral hypothalamus diovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Parabrachial nucleus Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout Periaqueductal gray the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously Central amygdala identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre Thalamus mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both Nucleus accumbens Preoptic area visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative Abbreviation: 12 N, Hypoglossal nucleus;
    [Show full text]
  • Patterns of Increased Brain Activity Indicative of Pain in a Rat Model of Peripheral Mononeuropathy
    The Journal of Neuroscience. June 1993. 13(6): 2689-2702 Patterns of Increased Brain Activity Indicative of Pain in a Rat Model of Peripheral Mononeuropathy Jianren Mao, David J. Mayer, and Donald D. Price Department of Anesthesiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298 Regional changes in brain neural activity were examined in haviors in CCI rats and clinical symptoms in neuropathic pain rats with painful peripheral mononeuropathy (chronic con- patients. strictive injury, Ccl) by using the fully quantitative W-2- [Key words: neuropathic pain, P-deoxyglucose, hyperal- deoxyglucose (2-DG) autoradiographic technique to mea- gesia, spontaneous pain, nerve injury, brainstem, cerebral sure local glucose utilization rate. CCI rats used in the cortex, thalamusj experiment exhibited demonstrable thermal hyperalgesia and spontaneous pain behaviors 10 d after sciatic nerve ligation when the 2-DG experiment was carried out. In the absence Peripheral nerve injury sometimes results in a chronic neuro- of overt peripheral stimulation, reliable increases in 2-DG pathic pain syndrome characterized by hyperalgesia, sponta- metabolic activity were observed in CCI rats as compared neouspain, radiation of pain, and nociceptive responsesto nor- to sham-operated rats within extensive brain regions that mally innocuous stimulation (allodynia) (Bon@ 1979; Thomas, have been implicated in supraspinal nociceptive processing. 1984; Price et al., 1989). Most of these symptoms have been These brain regions included cortical somatosensory areas, recently observed in a rodent model of painful peripheral mon- clngulate cortex, amygdala, ventral posterolateral thalamic oneuropathy induced by loose ligation of the rat’s common nucleus, posterior thalamic nucleus, hypothalamic arcuate sciatic nerve(chronicconstrictive injury, CCI) (Bennett and Xie, nucleus, central gray matter, deep layers of superior collic- 1988).
    [Show full text]
  • Neuromodulation in Treatment of Hypertension by Acupuncture: a Neurophysiological Prospective
    Vol.5, No.4A, 65-72 (2013) Health http://dx.doi.org/10.4236/health.2013.54A009 Neuromodulation in treatment of hypertension by acupuncture: A neurophysiological prospective Peyman Benharash1, Wei Zhou2* 1Division of Cardiothoracic Surgery, University of California, Los Angeles, USA 2Department of Anesthesiology, University of California, Los Angeles, USA; *Corresponding Author: [email protected] Received 28 February 2013; revised 30 March 2013; accepted 6 April 2013 Copyright © 2013 Peyman Benharash, Wei Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT study the effects of acupuncture on the hyper- tensive man. Hypertension is a major public health problem affecting over one billion individuals worldwide. Keywords: Central Nervous System; This disease is the result of complex interac- Electroacupuncture; Neurotransmitter; Brain Stem tions between genetic and life-style factors and the central nervous system. Sympathetic hyper- activity has been postulated to be present in 1. INTRODUCTION most forms of hypertension. Pharmaceutical Hypertension has become a serious public health prob- therapy for hypertension has not been perfected, lem impacting over one billion lives worldwide [1]. At often requires a multidrug regimen, and is as- the turn of this century, 7.6 million deaths were attribut- sociated with adverse side effects. Acupuncture, able to hypertension. The majority of this disease burden a form of somatic afferent nerve stimulation has occurred in working people in low to middle-income been used to treat a host of cardiovascular dis- countries, while its prevalence increases with age and the eases such as hypertension.
    [Show full text]
  • Appetite Suppression and Weight Reduction by a Centrally Active Aminosterol Rexford S
    Appetite Suppression and Weight Reduction by a Centrally Active Aminosterol Rexford S. Ahima,1 Hiralben R. Patel,1 Nobuhiko Takahashi,1 Yong Qi,1 Stanley M. Hileman,2 and Michael A. Zasloff3 The rise in obesity and its complications has generated metabolite of cholesterol that was originally isolated from enormous interest in the regulation of feeding and body the dogfish shark (Squalus acanthias) liver during a weight. We show that a spermine metabolite of choles- search for naturally occurring antimicrobial compounds terol (MSI-1436) decreases body weight, specifically (4,5). MSI-1436 is structurally similar to squalamine (MSI- fat, by suppressing feeding and preventing the reduc- 1256) except for a spermine side-chain at C-3 on the tion in energy expenditure, hormonal changes, and pat- cholesterol A-ring (4,5). The bioactivity of MSI-1436 is also terns of neuropeptide expression normally associated dependent on a seven ␣-OH and sulfated moiety at C-25 with weight loss. MSI-1436 enters the brain after pe- (5). Unexpectedly, MSI-1436 was shown to inhibit feeding ripheral injection and is more potent when injected into and decrease body weight in a highly specific manner in the cerebral ventricle (intracerebroventricular [ICV]). Systemic or ICV MSI-1436 administration induced sim- normal and obese rodents (5). ilar patterns of Fos immunoreactivity in the brain, MSI-1436 is distributed to the brain and several periph- especially the paraventricular hypothalamic nucleus eral tissues (5). A single or intermittent treatment with (PVN). This brain region integrates neural signals from MSI-1436 results in a prolonged reduction in food intake hypothalamic and brain stem nuclei and regulates feed- and body weight and has been partly attributed to its long ing behavior, autonomic function, and neuroendocrine half-life (ϳ7 days in rodents) (5).
    [Show full text]
  • No Slide Title
    Laboratory 11: Cartoons Chiyeko Tsuchitani, Ph.D. NOTE: These illustrations are NOT to be reproduced in the public domain For the visually challenged, cartoons that may help you remember some hypothalamic nuclei and limbic structures. You can study the figures and the review questions in Lab 11 of the Laboratory Guide to learn the connections and functions of these structures.. PS #26 For PS24: Two Cows 1. What is the cow at the left eating? 2. What is hanging off the chin of the cow at the left ? 3. What is forming the chin of the cow at the left? 4. What is hanging over the nose of the cow at the left? 5. What is forming the dark nose of the cow at the right? 6. What is forming the chin of the cow at the right? 7. What is forming the hollow “bump” on the forehead of the cow at the right? 8. Is the thalamus present in this picture? 9. Can you locate the supraoptic and suprachiasmatic nuclei? For PS24: Two Cows 1. The anterior commissure 2. The optic chiasm 3. The preoptic nucleus of the hypothalamus 4. The column of the fornix 5. The postcommissural fornix 6. The anterior nucleus of the hypothalamus 7. The terminal vein 8. The thalamus is not present in this picture. 9. The supraoptic nucleus is above the optic tract (right) and suprachiasmatic nucleus is above the optic chiasm. PS #25 For PS25: Armadillo 1. The nose of the armadillo is what structure? 2. What hypothalamic nucleus forms the snout (above the nose) ? 3.
    [Show full text]
  • Ancestral Circuits for the Coordinated Modulation of Brain State
    Article Ancestral Circuits for the Coordinated Modulation of Brain State Graphical Abstract Authors Matthew Lovett-Barron, Aaron S. Andalman, William E. Allen, Sam Vesuna, Isaac Kauvar, Vanessa M. Burns, Karl Deisseroth Correspondence [email protected] In Brief Registration of brain-wide activity measurements with multiple molecular markers at cellular resolution uncovers multiple diverse neuromodulatory pathways linked to brain state. Highlights d MultiMAP: registering brain-wide cellular-resolution dynamics with molecular identity d Diverse neuromodulatory cell types across the zebrafish brain correlate with alertness d Neuromodulator-specific brain-state-dependent dynamics are conserved from fish to mouse d Activation of diverse neuromodulators similarly modulates alertness-related behavior Lovett-Barron et al., 2017, Cell 171, 1–13 December 14, 2017 ª 2017 Elsevier Inc. https://doi.org/10.1016/j.cell.2017.10.021 Please cite this article in press as: Lovett-Barron et al., Ancestral Circuits for the Coordinated Modulation of Brain State, Cell (2017), https:// doi.org/10.1016/j.cell.2017.10.021 Article Ancestral Circuits for the Coordinated Modulation of Brain State Matthew Lovett-Barron,1,2 Aaron S. Andalman,1,2 William E. Allen,1,3 Sam Vesuna,1 Isaac Kauvar,1,4 Vanessa M. Burns,2,5 and Karl Deisseroth1,2,6,7,8,* 1Department of Bioengineering 2CNC Program 3Neuroscience Program 4Department of Electrical Engineering 5Department of Chemical and Systems Biology 6Department of Psychiatry and Behavioral Sciences 7Howard Hughes Medical Institute Stanford University, Stanford, CA 94305, USA 8Lead Contact *Correspondence: [email protected] https://doi.org/10.1016/j.cell.2017.10.021 SUMMARY in part by neuromodulatory systems, which are composed of cell types that project widely throughout the brain and release Internal states of the brain profoundly influence neurotransmitters such as biogenic amines and neuropeptides behavior.
    [Show full text]
  • Disruption of Arcuate/Paraventricular Nucleus Connections Changes Body Energy Balance and Response to Acute Stress
    The Journal of Neuroscience, September 1, 2000, 20(17):6707–6713 Disruption of Arcuate/Paraventricular Nucleus Connections Changes Body Energy Balance and Response to Acute Stress M. Elizabeth Bell, Seema Bhatnagar, Susan F. Akana, SuJean Choi, and Mary F. Dallman Department of Physiology, University of California, San Francisco, San Francisco, California 94143 The mediobasal hypothalamus regulates functions necessary for Plasma ACTH was increased at 0 min in lesioned rats but was survival, including body energy balance and adaptation to stress. decreased 15 and 30 min after restraint as compared with The purpose of this experiment was to determine the contribu- shams. There was no difference in plasma corticosterone. Immu- tion of the arcuate nucleus (ARC) in controlling these two func- nostaining revealed that ␣-melanocortin (␣MSH) and neuropep- tions by the paraventricular nucleus (PVN). Circular, horizontal tide Y (NPY) accumulated below the cuts, and both were de- cuts (1.0 mm radius) were placed immediately above the anterior creased in PVN. Food intake and body weight were correlated ARC to sever afferents to the PVN. In shams the knife was negatively to ␣MSH, but not NPY in PVN. There was no differ- lowered to the same coordinates but was not rotated. Food ence in proopiomelanocortin (POMC) mRNA, but NPY mRNA intake and body weight were monitored twice daily, at the be- was reduced in the ARC of lesioned animals. We conclude that ginning and end of the light cycle, for 1 week. On the final day the ARC controls body energy balance in unstressed rats, possibly animals were restrained for 30 min.
    [Show full text]
  • The Type 2 Iodothyronine Deiodinase Is Expressed Primarily in Glial Cells in the Neonatal Rat Brain
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 10391–10396, September 1997 Neurobiology The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain ANA GUADAN˜O-FERRAZ*, MARIA JESUS OBREGO´N*, DONALD L. ST.GERMAIN†, AND JUAN BERNAL*‡ *Instituto de Investigaciones Biome´dicas,Consejo Superior de Investigaciones Cientı´ficas 28029 Madrid, Spain; and †Departments of Medicine and Physiology, Dartmouth Medical School, Lebanon, NH 03756 Communicated by Donald D. Brown, Carnegie Institution of Washington, Baltimore, MD, July 14, 1997 (received for review May 13, 1997) ABSTRACT Thyroid hormone plays an essential role in brain in the face of limiting amounts of the prohormone T4 mammalian brain maturation and function, in large part by (16). Brain T3 levels thus appear to be protected to a consid- regulating the expression of specific neuronal genes. In this erable extent by alterations in circulating thyroid hormone tissue, the type 2 deiodinase (D2) appears to be essential for levels (12, 16). A second important factor in this regard is a providing adequate levels of the active thyroid hormone decrease in the clearance rate of T3 in the hypothyroid brain 3,5,3*-triiodothyronine (T3) during the developmental period. effected by a decrease in the activity of the type 3 deiodinase We have studied the regional and cellular localization of D2 (D3) (11). This enzyme converts T4 and T3 to inactive mRNA in the brain of 15-day-old neonatal rats. D2 is ex- metabolites by 5-deiodination (17). The coordinated regula- pressed in the cerebral cortex, olfactory bulb, hippocampus, tion of D2 and D3 activity appears to be critical for thyroid caudate, thalamus, hypothalamus, and cerebellum and was hormone homeostasis in this tissue.
    [Show full text]
  • Anatomy of the Opioid-Systems of the Brain Karl M
    THE CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES SPECIAL FEATURE Anatomy of the Opioid-Systems of the Brain Karl M. Knigge and Shirley A. Joseph This paper was presented in May 1983 at the Centennial Neurosciences Symposium of the Department of Anatomy, University of Manitoba, at which Dr. Knigge was a keynote speaker. Can. J. Neurol. Sci. 1984; 11:14-23 In 1969, Roger Guillemin and Andrew Schally independently subpopulations: a hypothalamic arcuate opiocortin system, a reported the isolation and identification of the first hypothalamic brainstem medullary opiocortin pool of neurons, and a hypo­ neuropeptide, thyrotropin releasing factor (TRF). Following thalamic alpha MSH-specific system. In the present report we this landmark event in neuroendocrinology the ensuing years will review our anatomical studies on only the opiocortin division have witnessed a cascade of isolations of new neuropeptides of the brain opioids. Unless specifically noted, our descriptions and a virtual revolution in neurobiology. The discipline of relate to the brain of the rat. neuroendocrinology has been remarkably impacted by the The arcuate opiocortin system consists of a pool or "bed nucleus" evidence that all of the "hypophysiotrophic" releasing factors of perikarya located in the arcuate and periarcuate regions of presently identified are distributed widely throughout the brain the hypothalamus (Fig. 1). In species we have examined, including with neurotransmitter or neuromodulator roles quite different rat, mouse, hamster, guinea pig, dog, horse, primate and human, from their actions of regulating the secretion of pituitary hormones. this pool of neuron cell bodies extends the entire antero-posterior The study of these neuropeptide systems in activity of the distance of the hypothalamus.
    [Show full text]
  • LRRK2 Is Expressed in Areas Affected by Parkinson's Disease in the Adult
    Simón-Sánchez, 1 LRRK2 is expressed in areas affected by Parkinson’s disease in the adult mouse brain Javier Simón-Sánchez1, Vicente Herranz-Pérez1, Francisco Olucha- Bordonau2, Jordi Pérez-Tur1, * 1. Unitat de Genètica Molecular. Departament de Genòmica i Proteòmica. Institut de Biomedicina de València-CSIC. 2. Departament d’Anatomia i Embriologia Humana. Facultat de Medicina. Universitat de València-Estudi General. *: Address for correspondence at: Unitat de Genètica Molecular. Institut de Biomedicina de València-CSIC. C/ Jaume Roig, 11. E46010 València (Spain). Telephone: +34 96 339 1755 Fax: +34 96 339 3774 e-mail: [email protected] Running title: Expression of LRRK2 in the Adult Mouse Brain pages; 4 figures; 2 tables. Word count: manuscript: 4,314 words; abstract: 179 words; introduction: 515 words. Simón-Sánchez, 2 ABSTRACT The LRRK2 gene was recently found to have multiple mutations that are causative for autosomal dominant inherited Parkinson´s disease (PD). Previously, we used Northern blot analysis to show that that this gene was expressed in the cerebellum, cerebral cortex, medulla, spinal cord, occipital pole, frontal lobe, temporal lobe and caudate putamen. However, a more comprehensive map of LRRK2 mRNA localization in the central nervous system is still lacking. In this study we have mapped the distribution of the mRNA encoding for LRRK2 using non-radioactive in situ hybridization. We detected a moderate expression of this PD-related gene throughout the adult mouse brain. A stronger hybridization signal was observed in deep cerebral cortex layers, superficial cingulate cortex layers, the piriform cortex, hippocampal formation, caudate putamen, substantia nigra, the basolateral and basomedial anterior amygdala nuclei, reticular thalamic nucleus and also in the cerebellar granular cell layer.
    [Show full text]