Permit Application Form (Under Antarctica Treaty and Environmental Protocol) for Entry in Antarctic Specially Protected Area (ASPA)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Rfvotsfroeat a NEWS BULLETI N
?7*&zmmt ■ ■ ^^—^mmmmml RfvOTsfroeaT A NEWS BULLETI N p u b l i s h e d q u a r t e r l y b y t h e NEW ZEALAND ANTARCTIC SOCIETY (INC) AN AUSTRALIAN FLAG FLIES AGAIN OVER THE MAIN HUT BUILT AT CAPE DENISON IN 1911 BY SIR DOUGLAS MAWSON'S AUSTRALASIAN ANTARC TIC EXPEDITION, 1911-14. WHEN MEMBERS OF THE AUSTRALIAN NATIONAL ANTARCTIC RESEARCH EXPEDITION VISITED THE HUT THEY FOUND IT FILLED WITH ICE AND SNOW BUT IN A FAIR STATE OF REPAIR AFTER MORE THAN 60 YEARS OF ANTARCTIC BLIZZARDS WITHOUT MAINTENANCE. Australian Antarctic Division Photo: D. J. Lugg Vol. 7 No. 2 Registered at Post Office Headquarters. Wellington, New Zealand, as a magazine. June, 1974 . ) / E I W W AUSTRALIA ) WELLINGTON / I ^JlCHRISTCHURCH I NEW ZEALAND TASMANIA * Cimpbtll I (NZ) • OSS DEPENDE/V/cy \ * H i l l e t t ( U S ) < t e , vmdi *N** "4#/.* ,i,rN v ( n z ) w K ' T M ANTARCTICA/,\ / l\ Ah U/?VVAY). XA Ten,.""" r^>''/ <U5SR) ,-f—lV(SA) ' ^ A ^ /j'/iiPI I (UK) * M«rion I (IA) DRAWN BY DEPARTMENT OF LANDS & SURVEY WELLINGTON. NEW ZEALAND. AUG 1969 3rd EDITION .-• v ©ex (Successor to "Antarctic News Bulletin") Vol. 7 No. 2 74th ISSUE June, 1974 Editor: J. M. CAFFIN, 35 Chepstow Avenue, Christchurch 5. Address all contributions, enquiries, etc., to the Editor. All Business Communications, Subscriptions, etc., to: Secretary, New Zealand Antarctic Society (Inc.), P.O. Box 1223, Christchurch, N.Z. CONTENTS ARTICLE TOURIST PARTIES 63, 64 POLAR ACTIVITIES NEW ZEALAND .. -
The Antarctic Treaty
The Antarctic Treaty Measures adopted at the Thirty-ninth Consultative Meeting held at Santiago, Chile 23 May – 1 June 2016 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty November 2017 Cm 9542 © Crown copyright 2017 This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH ISBN 978-1-5286-0126-9 CCS1117441642 11/17 Printed on paper containing 75% recycled fibre content minimum Printed in the UK by the APS Group on behalf of the Controller of Her Majestyʼs Stationery Office MEASURES ADOPTED AT THE THIRTY-NINTH ANTARCTIC TREATY CONSULTATIVE MEETING Santiago, Chile 23 May – 1 June 2016 The Measures1 adopted at the Thirty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents. -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
Antarctic Treaty Handbook
Annex Proposed Renumbering of Antarctic Protected Areas Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted ‘Taylor Rookery 1 101 1992 Rookery Islands 2 102 1992 Ardery Island and Odbert Island 3 103 1992 Sabrina Island 4 104 Beaufort Island 5 105 Cape Crozier [redesignated as SSSI no.4] - - Cape Hallet 7 106 Dion Islands 8 107 Green Island 9 108 Byers Peninsula [redesignated as SSSI no. 6] - - Cape Shireff [redesignated as SSSI no. 32] - - Fildes Peninsula [redesignated as SSSI no.5] - - Moe Island 13 109 1995 Lynch Island 14 110 Southern Powell Island 15 111 1995 Coppermine Peninsula 16 112 Litchfield Island 17 113 North Coronation Island 18 114 Lagotellerie Island 19 115 New College Valley 20 116 1992 Avian Island (was SSSI no. 30) 21 117 ‘Cryptogram Ridge’ 22 118 Forlidas and Davis Valley Ponds 23 119 Pointe-Geologic Archipelago 24 120 1995 Cape Royds 1 121 Arrival Heights 2 122 Barwick Valley 3 123 Cape Crozier (was SPA no. 6) 4 124 Fildes Peninsula (was SPA no. 12) 5 125 Byers Peninsula (was SPA no. 10) 6 126 Haswell Island 7 127 Western Shore of Admiralty Bay 8 128 Rothera Point 9 129 Caughley Beach 10 116 1995 ‘Tramway Ridge’ 11 130 Canada Glacier 12 131 Potter Peninsula 13 132 Existing SPA’s Existing Site Proposed Year Annex V No. New Site Management Plan No. Adopted Harmony Point 14 133 Cierva Point 15 134 North-east Bailey Peninsula 16 135 Clark Peninsula 17 136 North-west White Island 18 137 Linnaeus Terrace 19 138 Biscoe Point 20 139 Parts of Deception Island 21 140 ‘Yukidori Valley’ 22 141 Svarthmaren 23 142 Summit of Mount Melbourne 24 118 ‘Marine Plain’ 25 143 Chile Bay 26 144 Port Foster 27 145 South Bay 28 146 Ablation Point 29 147 Avian Island [redesignated as SPA no. -
Management Plan for Antarctic Specially Protected Area No. 167
Management Plan for Antarctic Specially Protected Area No. 167 Hawker Island, Princess Elizabeth Land Introduction -west from Davis station off the Vestfold Hills on the Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica. The island was designated as Antarctic Specially Protected Area (ASPA) No. 167 under Measure 1 (2006), following a proposal by Australia, primarily to protect the southernmost breeding colony of southern giant petrels (Macronectes giganteus) (Map B). The Area is one of only four known breeding locations for southern giant petrels on the coast of East Antarctica, all of which have been designated as ASPAs: ASPA 102, Rookery Islands, Holme Bay, Mac.Robertson Land near Mawson Station; ASPA 160, Frazier Islands, Wilkes , Hawker Island also supports breeding colonies of Adélie penguins (Pygocelis adeliae), south polar skuas (Catharacta maccormicki), Cape petrels (Daption capense) and occasionally Weddell seals (Leptonychotes weddellii). 1. Description of values to be protected The total population of southern giant petrels in East Antarctica represents less than 1% of the global breeding population. It is currently estimated at approximately 300 pairs, comprising approximately 45 pairs on Hawker Island (2010), 2-4 pairs on Giganteus Island (Rookery Islands group) (2007), approximately 250 pairs on the Frazier Islands (2001) and 8-9 pairs at Pointe Géologie (2005). Southern giant petrels also breed on other islands in the southern Indian and Atlantic Oceans and at the Antarctic Peninsula. The southern giant petrel colony at Hawker Island was discovered in December 1963; at that time there were 40- but it is unclear how many nests were occupied. Between 1963 and 2007, intermittent counts of adults, eggs or chicks were undertaken at various stages of the breeding cycle. -
Notice of Permit Applications Received Under the Antarctic
26048 Federal Register / Vol. 77, No. 85 / Wednesday, May 2, 2012 / Notices ADDRESSES: Send comments to Mr. registrants born before January 1, 1960. telephone: 202–787–1622; Email: Nicholas A. Fraser, Desk Officer for When registrants or other authorized [email protected]. NARA, Office of Management and individuals request information from or SUPPLEMENTARY INFORMATION: On 30 Budget, New Executive Office Building, copies of SSS records they must provide March 2009, President Barack Obama Washington, DC 20503; fax: 202–395– on forms or letters certain information signed into law the Integrated Coastal 5167; or electronically mailed to about the registrant and the nature of _ _ and Ocean Observation System Act of Nicholas A. [email protected]. the request. Requestors use NA Form 2009. Among the requirements in the FOR FURTHER INFORMATION CONTACT: 13172, Selective Service Record Request Act is a directive to the IOOC to Requests for additional information or to obtain information from SSS records ‘‘develop contract certification copies of the proposed information stored at NARA facilities. standards and compliance procedures collection and supporting statement Dated: April 26, 2012. for all non-Federal assets, including should be directed to Tamee Fechhelm Michael L. Wash, regional information coordination at telephone number 301–837–1694 or Executive for Information Services/CIO. entities, to establish eligibility for fax number 301–713–7409. [FR Doc. 2012–10609 Filed 5–1–12; 8:45 am] integration into the System and to SUPPLEMENTARY INFORMATION: Pursuant BILLING CODE 7515–01–P ensure compliance with all applicable to the Paperwork Reduction Act of 1995 standards and protocols established by (Pub. -
Formation of a Large Ice Depression on Dålk Glacier (Larsemann
Journal of Glaciology Formation of a large ice depression on Dålk Glacier (Larsemann Hills, East Antarctica) caused by the rapid drainage of an englacial cavity Article Cite this article: Boronina A, Popov S, Alina Boronina1,2 , Sergey Popov2,3 , Galina Pryakhina2, Pryakhina G, Chetverova A, Ryzhova E, Grigoreva S (2021). Formation of a large ice Antonina Chetverova2,4, Ekaterina Ryzhova5 and Svetlana Grigoreva2,4 depression on Dålk Glacier (Larsemann Hills, East Antarctica) caused by the rapid drainage 1State Hydrological Institute (SHI), 23 2nd line Vasilyevsky Island, St. Petersburg 199004, Russia; 2Saint Petersburg of an englacial cavity. Journal of Glaciology State University (SPbU), 7-9 Universitetskaya Emb., St. Petersburg 199034, Russia; 3Polar Marine Geosurvey 1–16. https://doi.org/10.1017/jog.2021.58 Expedition (PMGE), 24 Pobedy Str., Lomonosov, St. Petersburg 198412, Russia; 4Arctic and Antarctic Research 5 Received: 21 November 2020 Institute (AARI), 38 Bering Str., St. Petersburg 199397, Russia and Geophyspoisk LLC, 15 26th line Vasilyevsky Revised: 1 May 2021 Island, St. Petersburg 199106, Russia Accepted: 4 May 2021 Abstract Keywords: Antarctic glaciology; glacier hazards; glacier In the afternoon of 30 January 2017, a catastrophic outburst flood occurred in the Larsemann hydrology; glacier modelling; ground- Hills (Princess Elizabeth Land, East Antarctica). The rapid drainage of both a thin supraglacial penetrating radar layer of water (near Boulder Lake) and Lake Ledyanoe into the englacial Lake Dålk provoked Author for correspondence: its overfill and outburst. As a result, a depression of 183 m × 220 m was formed in the place Alina Boronina, where Lake Dålk was located. This study summarises and clarifies the current state of knowledge E-mail: [email protected] on the flood that occurred in 2017. -
Management Plan for Antarctic Specially Protected Area No
Measure 9 (2011) Annex Management Plan for Antarctic Specially Protected Area No. 167 Hawker Island, Princess Elizabeth Land Introduction Hawker Island (68°38’S, 77°51’E, Map A) is located 7 km south-west from Davis station off the Vestfold Hills on the Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica. The island was designated as Antarctic Specially Protected Area (ASPA) No. 167 under Measure 1 (2006), following a proposal by Australia, primarily to protect the southernmost breeding colony of southern giant petrels (Macronectes giganteus) (Map B). The Area is one of only four known breeding locations for southern giant petrels on the coast of East Antarctica, all of which have been designated as ASPAs: ASPA 102, Rookery Islands, Holme Bay, Mac.Robertson Land (67º36’S, 62º53’E) – near Mawson Station; ASPA 160, Frazier Islands, Wilkes Land (66°13’S, 110°11’E) – near Casey station; and ASPA 120, Pointe Géologie, Terre Adélie (66º40’S, 140º01’E) – near Dumont d’Urville. Hawker Island also supports breeding colonies of Adélie penguins (Pygocelis adeliae), south polar skuas (Catharacta maccormicki), Cape petrels (Daption capense) and occasionally Weddell seals (Leptonychotes weddellii). 1. Description of values to be protected The total population of southern giant petrels in East Antarctica represents less than 1% of the global breeding population. It is currently estimated at approximately 300 pairs, comprising approximately 45 pairs on Hawker Island (2010), 2-4 pairs on Giganteus Island (Rookery Islands group) (2007), approximately 250 pairs on the Frazier Islands (2001) and 8-9 pairs at Pointe Géologie (2005). Southern giant petrels also breed on other islands in the southern Indian and Atlantic Oceans and at the Antarctic Peninsula. -
Retention Time of Lakes in the Larsemann Hills Oasis, East
Retention time of lakes in the Larsemann Hills oasis, East Antarctica Elena Shevnina1, Ekaterina Kourzeneva1, Yury Dvornikov2, Irina Fedorova3 1Finnish Meteorological Institute, Helsinki, Finland. 2 Department of Landscape Design and Sustainable Ecosystems, Agrarian-Technological Institute, RUDN University, 5 Moscow, Russia 3Saint-Petersburg State University, St. Petersburg, Russia. Correspondence to: Elena Shevnina ([email protected]) Abstract. The study gives first estimates of water transport time scales for five lakes located in the Larsemann Hills oasis (69º23´S, 76º20´E) in East Antarctica. We estimated the lake retention time (LRT) as a ratio of the lake volume to the inflow 10 and outflow terms of a lake water balance equation. The LRT was evaluated for lakes of epiglacial and land-locked types, and it was assumed that these lakes are monomictic with water exchange existing during the warm season only. We used hydrological observations collected in 4 seasonal field campaigns to evaluate the LRT. For the epiglacial lakes Progress and Nella/Scandrett, the LRT was estimated at 12–13 and 4–5 years, respectively. For the land-locked lakes Stepped, Sarah Tarn and Reid, our results show a big difference in the LRT calculated from the outflow and inflow terms of the water balance 15 equation. The LRT for these lakes vary depending on the methods and errors inherent to them. We suggest to rely on the estimations from the outflow terms since they are based on the hydrological measurements with better quality. Lake Stepped exchange water within less then 1.5 years. Lake Sarah Tarn and Lake Reid are endorheic ponds with the water loss mainly through evaporation, their LRT was estimated as 21–22 years and 8–9 years, respectively. -
Insights on the Environmental Impacts Associated with Visible Disturbance of Ice-Free Ground in Antarctica SHAUN T
Antarctic Science 31(6), 304–314 (2019) © Antarctic Science Ltd 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/S0954102019000440 Insights on the environmental impacts associated with visible disturbance of ice-free ground in Antarctica SHAUN T. BROOKS 1, PABLO TEJEDO2 and TANYA A. O'NEILL3,4 1Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia 2Departamento de Ecología, Universidad Autónoma de Madrid, Madrid, Spain 3Environmental Research Institute, University of Waikato, Hamilton, New Zealand 4School of Sciences, University of Waikato, Hamilton, New Zealand [email protected] Abstract: The small ice-free areas of Antarctica provide an essential habitat for most evident terrestrial biodiversity, as well as being disproportionately targeted by human activity. Visual detection of disturbance within these environments has become a useful tool for measuring areas affected by human impact, but questions remain as to what environmental consequences such disturbance actually has. To answer such questions, several factors must be considered, including the climate and biotic and abiotic characteristics. Although a body of research has established the consequences of disturbance at given locations, this paper was conceived in order to assess whether their findings could be generalized as a statement across the Antarctic continent. From a review of 31 studies within the Maritime Antarctic, Continental Antarctic and McMurdo Dry Valleys regions, we found that 83% confirmed impacts in areas of visible disturbance. -
Manuscript (Supplement Shevnina Etal2021.Xlsx)
Retention time of lakes in the Larsemann Hills oasis, East Antarctica Elena Shevnina1, Ekaterina Kourzeneva1, Yury Dvornikov2, Irina Fedorova3 1Finnish Meteorological Institute, Helsinki, Finland. 2 Department of Landscape Design and Sustainable Ecosystems, Agrarian-Technological Institute, RUDN University, 5 Moscow, Russia 3Saint-Petersburg State University, St. Petersburg, Russia. Correspondence to: Elena Shevnina ([email protected]) Abstract. This study provides first estimates of water transport time scale for five lakes located in the Larsemann Hills oasis (69º23´S, 76º20´E) in East Antarctica. We estimated lake retention time (LRT) as a ratio of lake volume to the inflow and 10 outflow terms of a lake water balance equation. The LRT was evaluated for lakes of epiglacial and land-locked types, and it was assumed that these lakes are monomictic, with water exchange occurring during the warm season only. We used hydrological observations collected in 4 seasonal field campaigns to evaluate the LRT. For the epiglacial lakes Progress and Nella/Scandrett, the LRT was estimated at 12–13 and 4–5 years, respectively. For the land-locked lakes Stepped, Sarah Tarn and Reid, our results show a great difference in the LRT calculated from the outflow and inflow terms of the water balance 15 equation. The LRTs for these lakes vary depending on the methods and errors inherent to them. We relied on the estimations from the outflow terms, since they are based on hydrological measurements with better quality. Lake Stepped exchanged water within less than 1.5 years. Lake Sarah Tarn and Lake Reid are endorheic ponds, with water loss mainly through evaporation.