The Scales of Gravitational Lensing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Rapidly Spinning Black Hole Powers the Einstein Cross
The Astrophysical Journal Letters, 792:L19 (5pp), 2014 September 1 doi:10.1088/2041-8205/792/1/L19 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A RAPIDLY SPINNING BLACK HOLE POWERS THE EINSTEIN CROSS Mark T. Reynolds1, Dominic J. Walton2, Jon M. Miller1, and Rubens C. Reis1 1 Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI 48109, USA; [email protected] 2 Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA Received 2014 July 22; accepted 2014 August 7; published 2014 August 20 ABSTRACT Observations over the past 20 yr have revealed a strong relationship between the properties of the supermassive black hole lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local universe. Herein, we present the results of an analysis of ∼0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the “Einstein-cross”), lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black = +0.06 hole is found to have a spin of a∗ 0.74−0.03 at the 90% confidence level. -
Set 4: Active Galaxies
Set 4: Active Galaxies Phenomenology • History: Seyfert in the 1920’s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral galaxies • Seyfert galaxies categorized as 1 if emission lines of HI, HeI and HeII are very broad - Doppler broadening of 1000-5000 km/s and narrower forbidden lines of ∼ 500km/s. Variable. Seyfert 2 if all lines are ∼ 500km/s. Not variable. • Both show a featureless continuum, for Seyfert 1 often more luminous than the whole galaxy • Seyferts are part of a class of galaxies with active galactic nuclei (AGN) • Radio galaxies mainly found in ellipticals - also broad and narrow line - extremely bright in the radio - often with extended lobes connected to center by jets of ∼ 50kpc in extent Radio Galaxy 3C31, NGC 383 Phenomenology • Quasars discovered in 1960 by Matthews and Sandage are extremely distant, quasi-starlike, with broad emission lines. Faint fuzzy halo reveals the parent galaxy of extremely luminous object 38−41 11−14 - visible luminosity L ∼ 10 W or ∼ 10 L • Quasars can be both radio loud (QSR) and quiet (QSO) • Blazars (BL Lac) highly variable AGN with high degree of polarization, mostly in ellipticals • ULIRGs - ultra luminous infrared galaxies - possibly dust enshrouded AGN (alternately may be starburst) • LINERS - similar to Seyfert 2 but low ionization nuclear emission line region - low luminosity AGN with strong emission lines of low ionization species Spectrum . • AGN share a basic general form for their continuum emission • Flat broken power law continuum - specific flux −α Fν / ν . -
Constellation Queries Over Big Data
Constellation Queries over Big Data Fabio Porto Amir Khatibi Joao Guilherme Nobre LNCC UFMG LNCC DEXL Lab Brazil DEXL Lab Petropolis, Brazil [email protected] Petropolis, Brazil [email protected] [email protected] Eduardo Ogasawara Patrick Valduriez Dennis Shasha CEFET-RJ INRIA New York University Rio de Janeiro, Brazil Montpellier, France New York, USA [email protected] [email protected] [email protected] ABSTRACT The availability of large datasets in science, web and mobile A geometrical pattern is a set of points with all pairwise dis- applications enables new interpretations of natural phenom- tances (or, more generally, relative distances) specified. Find- ena and human behavior. ing matches to such patterns has applications to spatial data in Consider the following two use cases: seismic, astronomical, and transportation contexts. For exam- Scenario 1. An astronomy catalog is a table holding bil- ple, a particularly interesting geometric pattern in astronomy lions of sky objects from a region of the sky, captured by tele- is the Einstein cross, which is an astronomical phenomenon scopes. An astronomer may be interested in identifying the in which a single quasar is observed as four distinct sky ob- effects of gravitational lensing in quasars, as predicted by Ein- jects (due to gravitational lensing) when captured by earth stein’s General Theory of Relativity [2]. According to this the- telescopes. Finding such crosses, as well as other geometric ory, massive objects like galaxies bend light rays that travel patterns, is a challenging problem as the potential number of near them just as a glass lens does. -
Gravitational Lensing in Quasar Samples
Astronomy and Astrophysics Review ManuscriptNr will b e inserted by hand later Gravitational Lensing in Quasar Samples JeanFrancois Claeskens and Jean Surdej Institut dAstrophysique et de Geophysique Universite de Liege Avenue de Cointe B Liege Belgium Received April Accepted Summary The rst cosmic mirage was discovered approximately years ago as the double optical counterpart of a radio source This phenomenon had b een predicted some years earlier as a consequence of General Relativity We present here a summary of what we have learnt since The applications are so numerous that we had to concentrate on a few selected asp ects of this new eld of research This review is fo cused on strong gravitational lensing ie the formation of multiple images in QSO samples It is intended to give an uptodate status of the observations and to present an overview of its most interesting p otential applications in cosmology and astrophysics as well as numerous imp ortant results achieved so far The rst Section follows an intuitive approach to the basics of gravitational lensing and is develop ed in view of our interest in multiply imaged quasars The astrophysical and cosmo logical applications of gravitational lensing are outlined in Section and the most imp ortant results are presented in Section Sections and are devoted to the observations Finally conclusions are summarized in the last Section We have tried to avoid duplication with existing and excellent intro ductions to the eld of gravitational lensing For this reason we did not concentrate -
The Schwarzschild Metric and Applications 1
The Schwarzschild Metric and Applications 1 Analytic solutions of Einstein's equations are hard to come by. It's easier in situations that e hibit symmetries. 1916: Karl Schwarzschild sought the metric describing the static, spherically symmetric spacetime surrounding a spherically symmetric mass distribution. A static spacetime is one for which there exists a time coordinate t such that i' all the components of g are independent of t ii' the line element ds( is invariant under the transformation t -t A spacetime that satis+es (i) but not (ii' is called stationary. An example is a rotating azimuthally symmetric mass distribution. The metric for a static spacetime has the form where xi are the spatial coordinates and dl( is a time*independent spatial metric. -ross-terms dt dxi are missing because their presence would violate condition (ii'. 23ote: The Kerr metric, which describes the spacetime outside a rotating ( axisymmetric mass distribution, contains a term ∝ dt d.] To preser)e spherical symmetry& dl( can be distorted from the flat-space metric only in the radial direction. In 5at space, (1) r is the distance from the origin and (2) 6r( is the area of a sphere. Let's de+ne r such that (2) remains true but (1) can be violated. Then, A,xi' A,r) in cases of spherical symmetry. The Ricci tensor for this metric is diagonal, with components S/ 10.1 /rimes denote differentiation with respect to r. The region outside the spherically symmetric mass distribution is empty. 9 The vacuum Einstein equations are R = 0. To find A,r' and B,r'# (. -
The Gravitational Lens Effect of Galaxies and Black Holes
.f .(-L THE GRAVITATIONAL LENS EFFECT of GALAXIES and BLACK HOLES by Igor Bray, B.Sc. (Hons.) A thesis submitted in accordance with the requirements of the Degree of Doctor of Philosophy. Department of lr{athematical Physics The University of Adelaide South Australia January 1986 Awo.c(sd rt,zb to rny wife Ann CONTENTS STATEMENT ACKNOWLEDGEMENTS lt ABSTRACT lll PART I Spheroidal Gravitational Lenses I Introduction 1.1 Spherical gravitational lenses I 1.2 Spheroidal gravitational lenses 12 2 Derivationof I("o). ......16 3 Numerical Investigation 3.1 Evaluations oI l(zs) 27 3.2 Numericaltechniques 38 3.3 Numerical results 4L PART II Kerr Black llole As A Gravitational Lens 4 Introduction 4.1 Geodesics in the Kerr space-time 60 4.2 The equations of motion 64 5 Solving the Equations of Motion 5.1 Solution for 0 in the case m - a'= 0 68 5.2 Solution for / in the case m: a = O 76 5.3 Relating À and 7 to the position of the ìmage .. .. .82 5.4 Solution for 0 ... 89 5.5 Solution for / 104 5.6 Solution for ú. .. ..109 5.7 Quality of the approximations 115 6 Numerical investigation . .. ... tt7 References 122 STATEMENT This thesis contains no material which has been accepted for the award of any degree, and to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference is made in the text. The author consents to the thesis being made available for photocopying and loan if applicable if accepted for the award of the degree. -
Gravitational Lensing
Gravitational Lensing Diana Streng Phy 495 December 2006 Topics Light deflection, and how spacetime curvature dictates gravitational lensing (GL) A brief history about the GL phenomenon Types of GL Effects Applications Preliminary Notes ¾ 1 parsec = “the distance from the Earth to a star that has a parallax of 1 arcsecond” = 3.08567758×1016 m = 3.26156378 light years Preliminary Notes 1 Arcminute = (1/60) of 1 degree Æ 1’ 1 Arcsecond = (1/60) of 1 arcminute Æ 1” = (1/3600) of 1 degree Hubble’s Law v = H 0d where H0 = 70 km/s/Mpc v Redshift 1+ λ − λ z = obs emit = c λ v emit 1− c Gravitational Lensing Gravitational Lensing A product of Einstein’s general theory of relativity, but first predicted by A. Einstein in 1912 Occurs in any accelerated frame of reference. Details governed by spacetime curvature. Early thoughts on Gravitational Lensing… “Of course there is not hope in observing this phenomenon directly. First, we shall scarcely ever approach closely enough to such a central line. Second, the angle beta will defy the resolving power of our instruments.” -- Albert Einstein, in his letter to Science magazine, 1936 Timeline 1919 – Arthur Eddington – multiple images may occur during a solar eclipse. 1936 – R.W. Mandl wrote Einstein on the possibility of G.L. by single stars. Einstein published discussion in Science magazine, volume 84, No. 2188, December 4, 1936, pg. 506-507 1937 – Fritz Zwicky considered G.L. by galaxies and calculated Deflection angles Image strengths (Timeline) 1963 – Realistic scenarios for using G.L. Quasi-stellar objects Distant galaxies Determining distances and masses in lensing systems. -
No Sign of Gravitational Lensing in the Cosmic Microwave Background
Perspectives No sign of gravitational lensing in the ., WFPC2, HST, NASA ., WFPC2, HST, cosmic microwave et al background Ron Samec ravitational lensing is a Ggravitational-optical effect whereby a background object like a distant quasar is magnified, distorted Andrew Fruchter (STScI) Image by and brightened by a foreground galaxy. It is alleged that the cluster of galaxies Abell 2218, distorts and magnifies It is one of the consequences of general light from galaxies behind it. relativity and is so well understood that fectly smooth black body spectrum of sioned by Hoyle and Wickramasinghe it now appears in standard optics text 5,6 books. Objects that are too far to be 2.725 K with very tiny fluctuations in and by Hartnett. They showed that seen are ‘focused’ by an intervening the pattern on the 70 μK level. These a homogeneous cloud mixture of car- concentration of matter and bought ‘bumps’ or patterns in the CMB are bon/silicate dust and iron or carbon into view to the earth based astronomer. supposedly the ‘seeds’ from which whiskers could produce such a back- One of the most interesting photos of the galaxies formed. Why is it so ground radiation. If the CMB is not the effects of gravitational lensing smooth? Alan Guth ‘solved’ this puz- of cosmological origin, all the ad hoc ideas that have been added to support is shown in the HST image of Abell zle by postulating that the universe was the big bang theory (like inflation) 2218 by Andrew Fruchter1 (Space originally a very tiny entity in thermal fall apart. -
First Results from the High-Cadence Monitoring of M31 with Pan-STARRS 1
PAndromeda: first results from the high-cadence monitoring of M31 with Pan-STARRS 1 C.-H. Lee – ASIAA seminar 29 Feb. 2012 PIs: S. Seitz, R. Bender A. Rifeser, J. Koppenhoefer, U. Hopp, C. Goessl, R. P. Saglia, J. Snigula (Max Planck Institute for Extraterrestrial Physics, Germany) W. E. Sweeney (Institute for Astronomy, University of Hawaii, USA) and the PS1 Science Consortium Outline 1. Introduction to microlensing 2. Pan-STARRS and PAndromeda 3. First results from PAndromeda 4. Prospects - Breaking the microlensing degeneracy - Beyond microlensing Introduction Image1 Image2 Observer Lens Source Credit: NASA, ESA, and Johan Richard (Caltech, USA) Microlensing Basics Angular Einstein ring radius Image Credit: Gould (2000) Position of the image Amplification of the image Image Credit: Scott Gaudi Searching for Dark Matter Paczynski(1986) proposed to use microlensing to search for massive compact halo object (MACHO) as dark matter candidates Triggered numerous experiments towards Galactic Bulge and Magellanic Clouds Thousands of events have been detected since 1993. OGLE and MOA report ~1000 events/yr nowadays Results from LMC/SMC M < 0.1 solar mass: - f < 10% (MACHO, EROS, OGLE) M between 0.1-1 solar mass: - f ~ 20% (MACHO 2000, Bennett 2005) - self-lensing (EROS 2007, OGLE II-III, 2009-2011) Caveats of LMC/SMC lensing experiments: - Single line-of-sight - Unknown self-lensing (star lensed by star) rate => M31 provides a solution to both 1 and 2 M31 microlensing 1. Why M31? - Various lines of sight - Asymmetric halo-lensing signal 2. Previous studies on M31 - POINT-AGAPE (2005): evidence for a MACHO signal - MEGA (2006): self-lensing and upper limit for f - WeCAPP (2008): PA-S3/GL1, a bright candidate attributed to MACHO lensing Too few events to constrain f => requires large area survey Outline 1. -
12 Strong Gravitational Lenses
12 Strong Gravitational Lenses Phil Marshall, MaruˇsaBradaˇc,George Chartas, Gregory Dobler, Ard´ısEl´ıasd´ottir,´ Emilio Falco, Chris Fassnacht, James Jee, Charles Keeton, Masamune Oguri, Anthony Tyson LSST will contain more strong gravitational lensing events than any other survey preceding it, and will monitor them all at a cadence of a few days to a few weeks. Concurrent space-based optical or perhaps ground-based surveys may provide higher resolution imaging: the biggest advances in strong lensing science made with LSST will be in those areas that benefit most from the large volume and the high accuracy, multi-filter time series. In this chapter we propose an array of science projects that fit this bill. We first provide a brief introduction to the basic physics of gravitational lensing, focusing on the formation of multiple images: the strong lensing regime. Further description of lensing phenomena will be provided as they arise throughout the chapter. We then make some predictions for the properties of samples of lenses of various kinds we can expect to discover with LSST: their numbers and distributions in redshift, image separation, and so on. This is important, since the principal step forward provided by LSST will be one of lens sample size, and the extent to which new lensing science projects will be enabled depends very much on the samples generated. From § 12.3 onwards we introduce the proposed LSST science projects. This is by no means an exhaustive list, but should serve as a good starting point for investigators looking to exploit the strong lensing phenomenon with LSST. -
Gravitational Lensing in a Black-Bounce Traversable Wormhole
Gravitational lensing in black-bounce spacetimes J. R. Nascimento,1, ∗ A. Yu. Petrov,1, y P. J. Porf´ırio,1, z and A. R. Soares1, x 1Departamento de F´ısica, Universidade Federal da Para´ıba, Caixa Postal 5008, 58051-970, Jo~aoPessoa, Para´ıba, Brazil In this work, we calculate the deflection angle of light in a spacetime that interpolates between regular black holes and traversable wormholes, depending on the free parameter of the metric. Afterwards, this angular deflection is substituted into the lens equations which allows to obtain physically measurable results, such as the position of the relativistic images and the magnifications. I. INTRODUCTION The angular deflection of light when passing through a gravitational field was one of the first predictions of the General Relativity (GR). Its confirmation played a role of a milestone for GR being one of the most important tests for it [1,2]. Then, gravitational lenses have become an important research tool in astrophysics and cosmology [3,4], allowing studies of the distribution of structures [5,6], dark matter [7] and some other topics [8{15]. Like as in the works cited earlier, the prediction made by Einstein was developed in the weak field approximation, that is, when the light ray passes at very large distance from the source which generates the gravitational lens. Under the phenomenological point of view, the recent discovery of gravitational waves by the LIGO-Virgo collaboration [16{18] opened up a new route of research, that is, to explore new cosmological observations by probing the Universe with gravitational waves, in particular, studying effects of gravitational lensing in the weak field approximation (see e.g. -
Multiple Images of a Highly Magnified Supernova Formed
Multiple Images of a Highly Magnified Supernova Formed by an Early-Type Cluster Galaxy Lens Patrick L. Kelly1∗, Steven A. Rodney2, Tommaso Treu3, Ryan J. Foley4, Gabriel Brammer5, Kasper B. Schmidt6, Adi Zitrin7, Alessandro Sonnenfeld3, Louis-Gregory Strolger5,8, Or Graur9, Alexei V. Filippenko1, Saurabh W. Jha10, Adam G. Riess2,5, Marusa Bradac11, Benjamin J. Weiner12, Daniel Scolnic2, Matthew A. Malkan3, Anja von der Linden13, Michele Trenti14, Jens Hjorth13, Raphael Gavazzi15, Adriano Fontana16, Julian Merten7, Curtis McCully6, Tucker Jones6, Marc Postman5, Alan Dressler17, Brandon Patel10, S. Bradley Cenko18, Melissa L. Graham1, and Bradley E. Tucker1 1Department of Astronomy, University of California, Berkeley, CA 94720 2Department of Astronomy, The Johns Hopkins University, Baltimore, MD 21218 3Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 4University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 6Department of Physics, University of California, Santa Barbara, CA 93106 7California Institute of Technology, MC 249-17, Pasadena, CA 91125 8Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101 9CCPP, New York University, 4 Washington Place, New York, NY 10003 10Rutgers, The State University of New Jersey, Piscataway, NJ 08854 11Department of Physics, University of California, Davis, CA 95616 12Steward Observatory, University of Arizona, Tucson, AZ 85721 arXiv:1411.6009v1 [astro-ph.CO] 21 Nov 2014 13Dark Cosmology Centre, Juliane Maries Vej 30, 2100 Copenhagen, Demark 14School of Physics, University of Melbourne, VIC 3010, Australia 15Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris, France 16INAF-OAR, Via Frascati 33, 00040 Monte Porzio - Rome, Italy 17Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 18NASA/Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 ∗To whom correspondence should be addressed; E-mail: [email protected].