Development of an Automated Debris Detection System for Wild Blueberry Harvesters Using a Convolutional Neural Network to Improve Fruit Quality

Total Page:16

File Type:pdf, Size:1020Kb

Development of an Automated Debris Detection System for Wild Blueberry Harvesters Using a Convolutional Neural Network to Improve Fruit Quality DEVELOPMENT OF AN AUTOMATED DEBRIS DETECTION SYSTEM FOR WILD BLUEBERRY HARVESTERS USING A CONVOLUTIONAL NEURAL NETWORK TO IMPROVE FRUIT QUALITY by Anup Kumar Das Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia October 2020 © Copyright by Anup Kumar Das, 2020 DEDICATION I would like to dedicate my M.Sc dissertation to my parents (Bablu Kumar Das and Fulkumary Das). Author Anup Kumar Das ii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................... viii LIST OF FIGURES ....................................................................................................................... xi ABSTRACT ................................................................................................................................. xiii LIST OF ABBREVIATIONS USED .......................................................................................... xiv ACKNOWLEDGEMENTS ........................................................................................................ xvii CHAPTER 1: INTRODUCTION ................................................................................................... 1 1.1 Objectives ................................................................................................................................. 3 CHAPTER 2: REVIEW OF LITERATURE .................................................................................. 4 2.0 Wild Blueberry Cropping System ............................................................................................. 4 2.1 Wild Blueberry Harvesting System .......................................................................................... 4 2.2 Factors Affecting Wild Blueberry Fruit Quality ....................................................................... 5 2.2 Machine Learning Over Deep Learning ................................................................................... 6 2.2.1 Supervised Deep Learning ..................................................................................................... 7 2.3 Convolutional Neural Network ................................................................................................. 8 2.3.1 AlexNet .................................................................................................................................. 8 2.3.2 ZFNet ..................................................................................................................................... 9 2.3.3 GoogleNet .............................................................................................................................. 9 2.3.4 VGGNet ............................................................................................................................... 10 2.3.5 ResNet .................................................................................................................................. 10 iii 2.3.6 DenseNet .............................................................................................................................. 11 2.4 Modern Object Detection Algorithm YOLOv3 ...................................................................... 12 3.0 Conclusion .............................................................................................................................. 14 CHAPTER 3: TRAINING AND OPTIMIZING A CNN FOR DEBRIS DETECTION DURING MECHANICAL WILD BLUEBERRY HARVESTING ............................................................. 15 Abstract ......................................................................................................................................... 15 3.0 Introduction ............................................................................................................................. 16 3.1 Materials and Methodology .................................................................................................... 19 3.1.1 Data Collection and Preparation .......................................................................................... 19 3.1.2 Image Augmentation ............................................................................................................ 20 3.1.3 You Only Look Once Version 3 (YOLOv3) Family ........................................................... 23 3.1.4 YOLO Parameter Settings ................................................................................................... 24 3.1.5 YOLO Training and Testing ................................................................................................ 25 3.1.6 Model Evaluation ................................................................................................................. 26 3.1.7 Statistical Analysis ............................................................................................................... 27 3.0 Result and Discussion ............................................................................................................. 27 3.2.1 Effects of Data Augmentation on Accuracy ........................................................................ 30 3.2.2 T-test on Testing Images of T1 Dataset ............................................................................... 31 3.2.3 T-test on Testing Images of T2 Dataset ............................................................................... 32 3.0 Conclusions ............................................................................................................................. 34 iv CHAPTER 4: DEVELOPMENT OF A REAL-TIME DEBRIS DETECTION SYSTEM (HARDWARE & SOFTWARE) FOR MECHANICAL WILD BLUEBERRY HARVESTER . 36 Abstract ......................................................................................................................................... 36 4.0 Introduction ............................................................................................................................. 37 4.1 Material and Methodology ...................................................................................................... 40 4.1.1 Video Acquisition Hardware Development ......................................................................... 40 4.1.2 Camera Acquisition Software Development ....................................................................... 41 4.1.3 Determine the Minimum Processing Time Required for a Debris Detection System to Perform in Real-time..................................................................................................................... 43 4.1.4 Determine Detection Speed of CNNs for Developing Debris Detection System ................ 44 4.1.4.1 Data Collection and Preparation ....................................................................................... 44 4.1.4.2 Hardware Setup ................................................................................................................. 46 4.1.4.3 Darknet Installation ........................................................................................................... 47 4.1.4.4 Measurement of Prediction Time...................................................................................... 48 4.1.4.5 Statistical Analysis for Determining the Effect of Models and Hardwire on Prediction Time ....................................................................................................................................................... 48 4.1.5 Validation of Models ........................................................................................................... 49 4.1.6 Development of a Debris Detection System ........................................................................ 50 4.2 Result and Discussion ............................................................................................................. 51 4.2.1 Validation of Models ........................................................................................................... 53 4.2.1.1 Evaluation of Model-1 Under Different IoU and Confidence Thresholds ....................... 53 4.2.1.2 Evaluation of the Model-2 Under Different IoU and Confidence Thresholds ................. 55 v 4.3 Conclusion .............................................................................................................................. 58 CHAPTER 5: EVALUATION OF OPTIMIZED CNN MODEL FOR DEBRIS DETECTION ON THE IMAGES CAPTURED DURING HARVESTING ............................................................. 60 Abstract ......................................................................................................................................... 60 5.0 Introduction ............................................................................................................................. 60 5.1 Material and Methodology ...................................................................................................... 62 5.1.1 Data Collection .................................................................................................................... 62 5.1.3 Statistical Analysis ............................................................................................................... 64 5.2 Results and Discussion ........................................................................................................... 64 5.3 Conclusion .............................................................................................................................
Recommended publications
  • Python Qt Tutorial Documentation Release 0.0
    Python Qt tutorial Documentation Release 0.0 Thomas P. Robitaille Jun 11, 2018 Contents 1 Installing 3 2 Part 1 - Hello, World! 5 3 Part 2 - Buttons and events 7 4 Part 3 - Laying out widgets 9 5 Part 4 - Dynamically updating widgets 13 i ii Python Qt tutorial Documentation, Release 0.0 This is a short tutorial on using Qt from Python. There are two main versions of Qt in use (Qt4 and Qt5) and several Python libraries to use Qt from Python (PyQt and PySide), but rather than picking one of these, this tutorial makes use of the QtPy package which provides a way to use whatever Python Qt package is available. This is not meant to be a completely exhaustive tutorial but just a place to start if you’ve never done Qt development before, and it will be expanded over time. Contents 1 Python Qt tutorial Documentation, Release 0.0 2 Contents CHAPTER 1 Installing 1.1 conda If you use conda to manage your Python environment (for example as part of Anaconda or Miniconda), you can easily install Qt, PyQt5, and QtPy (a common interface to all Python Qt bindings) using: conda install pyqt qtpy 1.2 pip If you don’t make use of conda, an easy way to install Qt, PyQt5, and QtPy is to do: pip install pyqt5 qtpy 3 Python Qt tutorial Documentation, Release 0.0 4 Chapter 1. Installing CHAPTER 2 Part 1 - Hello, World! To start off, we need to create a QApplication object, which represents the overall application: from qtpy.QtWidgets import QApplication app= QApplication([]) You will always need to ensure that a QApplication object exists, otherwise your Python script will terminate with an error if you try and use any other Qt objects.
    [Show full text]
  • Testing Pyside/Pyqt Code Using the Pytest Framework and Pytest-Qt
    Testing PySide/PyQt Code Using the pytest framework and pytest-qt Florian Bruhin “The Compiler” Bruhin Software 06. November 2019 Qt World Summit, Berlin About me • 2011: Started using Python • 2013: Started using PyQt and developing qutebrowser • 2015: Switched to pytest, ended up as a maintainer • 2017: qutebrowser v1.0.0, QtWebEngine by default • 2019: 40% employed, 60% open-source and freelancing (Bruhin Software) Giving trainings and talks at various conferences and companies! Relevant Python features Decorators registered_functions: List[Callable] = [] def register(f: Callable) -> Callable: registered_functions.append(f) return f @register def func() -> None: .... Relevant Python features Context Managers def write_file() -> None: with open("test.txt", "w") as f: f.write("Hello World") Defining your own: Object with special __enter__ and __exit__ methods. Relevant Python features Generators/yield def gen_values() -> Iterable[int] for i in range(4): yield i print(gen_values()) # <generator object gen_values at 0x...> print(list(gen_values())) # [0, 1, 2, 3] PyQt • Started in 1998 (!) by Riverbank Computing • GPL/commercial • Qt4 $ PyQt4 Qt5 $ PyQt5 PySide / Qt for Python • Started in 2009 by Nokia • Unmaintained for a long time • Since 2016: Officially maintained by the Qt Company again • LGPL/commercial • Qt4 $ PySide Qt5 $ PySide2 (Qt for Python) Qt and Python import sys from PySide2.QtWidgets import QApplication, QWidget, QPushButton if __name__ == "__main__": app = QApplication(sys.argv) window = QWidget() button = QPushButton("Don't
    [Show full text]
  • A Pyqt GUI for a Soc Design a Pyqt GUI for a Soc Design SMR3249
    Jose´ Antonio de la Torre las Heras Universidad de Castilla-La Mancha SMR3249 A PyQT GUI for a SoC design A PyQT GUI for a SoC design SMR3249 Contents 1 Vivado and SDK 4 2 main.c 9 3 Opening development environment 9 4 Designing the interface 11 4.1 Design in QtDesigner . 11 4.2 Exporting the interface . 18 5 Programming the controller 19 6 Testing the design 26 7 Optional exercises 31 7.1 Add controls to select a serial device and baudrate (easy) . 31 7.2 Use layouts to make tabs responsive . 31 7.3 Modify how pyqtgraph looks (easy) . 31 7.4 Modify how data is sent . 31 1 A PyQT GUI for a SoC design SMR3249 Introduction In this tutorial, you will learn how to communicate external devices like pmods sensors, and leds from Zedboard to a PC (frontend). In order to avoid privative software like: Matlab, Visual Basic, Labview. In this laboratory, we are going to use Python and different libraries which are completely free and open source. The advantages of using these kind of technologies are the following ones: you have control over all parts of your system and you don't need to trust in external companies and private design cycles. In this project, you will learn how to integrate a fully functional project from a reconfigurable part to high level programming in Python. The main objective of the project is that the student, at the end, understands how to integrate all the parts to create a final product. Objectives • To design a fully functional GUI (Graphical User Interface) • To create a controller of the GUI • To connect a Zedboard to the GUI • To control a Zedboard from the GUI • To get data and plot from Zedboard Procedure This project has different parts.
    [Show full text]
  • Download Pyqt Tutorial (PDF Version)
    PyQt About the Tutorial PyQt is a GUI widgets toolkit. It is a Python interface for Qt, one of the most powerful, and popular cross-platform GUI library. PyQt is a blend of Python programming language and the Qt library. This introductory tutorial will assist you in creating graphical applications with the help of PyQt. Audience This tutorial is designed for software programmers who are keen on learning how to develop graphical applications using PyQt. Prerequisites You should have a basic understanding of computer programming terminologies. A basic understanding of Python and any of the programming languages is a plus. Disclaimer & Copyright Copyright 2015 by Tutorials Point (I) Pvt. Ltd. All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher. We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at [email protected]. i PyQt Table of Contents About the Tutorial ..............................................................................................................................................
    [Show full text]
  • Introduction to GUI Development Using Qt
    Introduction to GUI development using Qt Paolo Quadrani – [email protected] Andrea Negri – [email protected] SuperComputing Applications and Innovation Department What is Qt ● Qt is a cross-platform development framework written in C++ ● Can be used in several programming languages through bindings ● Ruby ● Java ● Perl ● Python → PyQt ● The Qt Toolkit is a collection of classes for various purposes ● Database management ● XML ● WebKit ● Multimedia ● Networking ● ... ● For desktop, mobile and embedded development ● Used by more than 350,000 commercial and open source developers ● Backed by Qt consulting, support and training ● Trusted by over 6,500 companies worldwide Qt modules Qt brief timeline ● Qt Development Frameworks founded in 1994 ● Trolltech acquired by Nokia in 2008 ● Qt Commercial business acquired by Digia in 2011 ● Qt business acquired by Digia from Nokia in 2012 Why Qt • Write code once to target multiple platforms • Produce compact, high-performance applications • Focus on innovation, not infrastructure coding • Choose the license that fits you • Commercial, LGPL or GPL • Count on professional services, support and training PyQt ● PyQt is a set of Python bindings for Qt framework ● Bindings implemented as Python modules (620+ classes) ● Almost the entire Qt library is available ● Take advantage of both languages key strength ● Python: easy to learn, lot of extensions, no compilation required ● Qt: abstraction of platform-specific details, GUI designer “Hello world” in PyQt 1/2 from PyQt4.QtCore import * from PyQt4.QtGui
    [Show full text]
  • Our Journey from Java to Pyqt and Web for Cern Accelerator Control Guis I
    17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUCPR03 OUR JOURNEY FROM JAVA TO PYQT AND WEB FOR CERN ACCELERATOR CONTROL GUIS I. Sinkarenko, S. Zanzottera, V. Baggiolini, BE-CO-APS, CERN, Geneva, Switzerland Abstract technology choices for GUI, even at the cost of not using Java – our core technology – for GUIs anymore. For more than 15 years, operational GUIs for accelerator controls and some lab applications for equipment experts have been developed in Java, first with Swing and more CRITERIA FOR SELECTING A NEW GUI recently with JavaFX. In March 2018, Oracle announced that Java GUIs were not part of their strategy anymore [1]. TECHNOLOGY They will not ship JavaFX after Java 8 and there are hints In our evaluation of GUI technologies, we considered that they would like to get rid of Swing as well. the following criteria: This was a wakeup call for us. We took the opportunity • Technical match: suitability for Desktop GUI to reconsider all technical options for developing development and good integration with the existing operational GUIs. Our options ranged from sticking with controls environment (Linux, Java, C/C++) and the JavaFX, over using the Qt framework (either using PyQt APIs to the control system; or developing our own Java Bindings to Qt), to using Web • Popularity among our current and future developers: technology both in a browser and in native desktop little (additional) learning effort, attractiveness for new applications.
    [Show full text]
  • Web Development India
    WEB DEVELOPMENT INDIA Similar sites like www.tutorialspoint.com www.w3schools.com www.java2s.com www.tizag.com www.mkyong.com www.codecademy.com www.roseindia.net docs.oracle.com/javase/tutorial/ www.stackoverflow.com tutorials.jenkov.com imp……………………………………………….. http://www.xislegraphix.com/website-types.html http://orthodoxdaily.com/types-of-websites/ http://webstyleguide.com/wsg3/1-process/6-types-of-sites.html http://www.virtualmv.com/wiki/index.php?title=Internet:Types_of_Website http://www.marketingcharts.com/wp/online/which-types-of-websites-do-most-americans-visit- frequently-37970/ http://www.2createawebsite.com/prebuild/website-needs.html http://www.tomakewebsite.com/types-of-websites.html http://one-blog-wonder.tumblr.com/post/29818346464/what-types-of-websites-are-there http://www.roseindia.net/services/webdesigning/corporatewebsitedesign/Different-Kinds-of- Website.shtml http://www.marketingprofs.com/charts/2013/12083/which-types-of-websites-are-visited-most- frequently http://webdesignpeeps.com/types-of-websites/ http://www.webdesignerdepot.com/2011/11/navigation-patterns-for-ten-common-types-of- websites/ http://www.teach-ict.com/gcse_new/software/web_design/miniweb/pg2.htm http://www.methodandclass.com/article/what-are-the-different-types-of-web-site http://www.webmasterview.com/2013/03/three-types-of-website/ http://www.chinkin.com/Web-Design/Types-of-Website http://www.designer-daily.com/8-types-of-sites-you-can-build-with-drupal-13924 http://www.mediatopia.co.uk/types-of-websites .................................................................................WEB
    [Show full text]
  • Advanced Wxpython Nuts and Bolts Robin Dunn O'reilly Open
    Advanced wxPython Nuts and Bolts Robin Dunn Software Craftsman O’Reilly Open Source Convention July 21–25, 2008 Slides available at http://wxPython.org/OSCON2008/ wxPython: Cross Platform GUI Toolkit 1 Presentation Overview • Introduction • Widget Inspection Tool • wx.ListCtrl • Keeping the UI Updated • Virtual wx.ListCtrl • Sizers and more sizers • wx.TreeCtrl • XML based resource system • wx.gizmos.TreeListCtrl • Data transfer • CustomTreeCtrl – data objects • wx.grid.Grid – clipboard • ScrolledPanel – drag and drop • wx.HtmlWindow • Creating custom widgets • Double buffered drawing wxPython: Cross Platform GUI Toolkit 2 Introduction to wxPython • wxPython is a GUI toolkit for Python, built upon the wxWidgets C++ toolkit. (See http://wxWidgets.org/) – Cross platform: Windows, Linux, Unix, OS X. – Uses native widgets/controls, plus many platform independent widgets. • Mature, well established projects. – wxWidgets: 1992 – wxPython: 1996 wxPython: Cross Platform GUI Toolkit 3 Introduction: architecture wxPython Library Proxy classes wxPython Extension Modules wxWidgets Toolkit Platform GUI Operating System wxPython: Cross Platform GUI Toolkit 4 Introduction: partial class hierarchy wx.Object wx.EvtHandler wx.Window wx.TopLevelWindow wx.Panel wx.Control wx.Frame wx.Dialog wx.ScrolledWindow wxPython: Cross Platform GUI Toolkit 5 wx.ListCtrl • Presents a list of items with one of several possible views – List – Report – Icon • Supports various attributes and operations on the list data – Icons, and colors – Sorting – multiple selection •
    [Show full text]
  • Raritas: a Program for Counting High Diversity Categorical Data with Highly Unequal Abundances
    Raritas: a program for counting high diversity categorical data with highly unequal abundances David B. Lazarus1, Johan Renaudie1, Dorina Lenz2, Patrick Diver3 and Jens Klump4 1 Museum für Naturkunde, Berlin, Germany 2 Leibniz-Institut für Zoo- und Wildtierforschung, Berlin, Germany 3 Divdat Consulting, Wesley, AR, USA 4 CSIRO, Mineral Resources, Kensington, NSW, Australia ABSTRACT Acquiring data on the occurrences of many types of difficult to identify objects are often still made by human observation, for example, in biodiversity and paleontologic research. Existing computer counting programs used to record such data have various limitations, including inflexibility and cost. We describe a new open-source program for this purpose—Raritas. Raritas is written in Python and can be run as a standalone app for recent versions of either MacOS or Windows, or from the command line as easily customized source code. The program explicitly supports a rare category count mode which makes it easier to collect quantitative data on rare categories, for example, rare species which are important in biodiversity surveys. Lastly, we describe the file format used by Raritas and propose it as a standard for storing geologic biodiversity data. ‘Stratigraphic occurrence data’ file format combines extensive sample metadata and a flexible structure for recording occurrence data of species or other categories in a series of samples. Subjects Biodiversity, Bioinformatics, Ecology, Paleontology Keywords Software, Point-counting, Rarity, Data standards, Micropaleontology, Biostratigraphy, Submitted 5 April 2018 Biodiversity, Ecology, Python, Range chart Accepted 26 July 2018 Published 9 October 2018 Corresponding author INTRODUCTION David B. Lazarus, Human observations as a source of scientific data [email protected] Quantitative data about many aspects of the natural world are collected in modern Academic editor Donald Baird science with the use of instruments, but a substantial amount of observational data is still Additional Information and collected by human observation.
    [Show full text]
  • Python Guide Documentation Publicación 0.0.1
    Python Guide Documentation Publicación 0.0.1 Kenneth Reitz 17 de May de 2018 Índice general 1. Empezando con Python 3 1.1. Eligiendo un Interprete Python (3 vs. 2).................................3 1.2. Instalando Python Correctamente....................................5 1.3. Instalando Python 3 en Mac OS X....................................6 1.4. Instalando Python 3 en Windows....................................8 1.5. Instalando Python 3 en Linux......................................9 1.6. Installing Python 2 on Mac OS X.................................... 10 1.7. Instalando Python 2 en Windows.................................... 12 1.8. Installing Python 2 on Linux....................................... 13 1.9. Pipenv & Ambientes Virtuales...................................... 14 1.10. Un nivel más bajo: virtualenv...................................... 17 2. Ambientes de Desarrollo de Python 21 2.1. Your Development Environment..................................... 21 2.2. Further Configuration of Pip and Virtualenv............................... 26 3. Escribiendo Buen Código Python 29 3.1. Estructurando tu Proyecto........................................ 29 3.2. Code Style................................................ 40 3.3. Reading Great Code........................................... 49 3.4. Documentation.............................................. 50 3.5. Testing Your Code............................................ 53 3.6. Logging.................................................. 57 3.7. Common Gotchas...........................................
    [Show full text]
  • Up & Running with Wxpython Robin Dunn Patrick O'brien O'reill
    wxPython in a Nutshell Robin Dunn http://wxPython.org/ O’Reilly Open Source Convention July 26–30, 2004 wxPython: Cross Platform GUI Toolkit 1 The best way to eat an elephant… wxPython: Cross Platform GUI Toolkit 2 …is one bite at a time wxPython: Cross Platform GUI Toolkit 3 Introduction to wxPython • wxPython is a GUI toolkit for Python, built upon the wxWidgets C++ toolkit. – Cross platform: Windows, Linux, Unix, OS X. – Uses native widgets/controls, plus many platform independent widgets. • Mature, well established projects. – wxWidgets: 1992 – wxPython: 1996 wxPython: Cross Platform GUI Toolkit 4 Introduction: architecture wxPython Library Proxy classes wxPython Extension Modules wxWidgets Toolkit Platform GUI Operating System wxPython: Cross Platform GUI Toolkit 5 Introduction: partial class hierarchy wx.Object wx.EvtHandler wx.Window wx.TopLevelWindow wx.Panel wx.Control wx.Frame wx.Dialog wx.ScrolledWindow wxPython: Cross Platform GUI Toolkit 6 Getting started with wxPython • Installation is simple -- binary installers are available at SourceForge and via http://wxPython.org/download.php for: – Windows: *.exe – Linux: *.rpm (and *.deb’s are available separately.) – OS X: *.dmg, a disk image that contains an Installer package. • Can be built from source for other Unix-like systems. wxPython: Cross Platform GUI Toolkit 7 Getting started with wxPython • Choose an installer. • Which version of Python do you use? – 2.2, or 2.3 • Unicode? – Windows, but be careful with Win9x/ME – Linux/Unix, with the GTK2 build – OS X, soon • or ANSI? – All platforms wxPython: Cross Platform GUI Toolkit 8 Getting started with wxPython • Choose an editor or development environment: – Boa Constructor – WingIDE – PyAlaMode – SCiTE – Emacs, vi, etc.
    [Show full text]
  • Hard Real Time Quick EXAFS Data Acquisition with All Open Source Software on a Commodity Personal Computer Brookhaven National L
    BNL-79366-2007-CP Hard Real Time Quick EXAFS Data Acquisition With All Open Source Software On A Commodity Personal Computer I. So, D.P. Siddons, W.A. Caliebe and S. Khalid Proceedings of Synchrotron Radiation Instrumentation (SRI 2007) Baton Rouge, LA / April 25 - 27, 2007 October 2007 National Synchrotron Light Source Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. BNL-79366-2007-CP DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]