Safety Measures Pyrethroid Insecticides Recommended for Treatment of Mosquito Nets Are Relatively Non-Toxic to Humans, Mammals and Birds

Total Page:16

File Type:pdf, Size:1020Kb

Safety Measures Pyrethroid Insecticides Recommended for Treatment of Mosquito Nets Are Relatively Non-Toxic to Humans, Mammals and Birds 88 CHAPTER 1 • MOSQUITOS AND OTHER BITING DIPTERA Safety measures Pyrethroid insecticides recommended for treatment of mosquito nets are relatively non-toxic to humans, mammals and birds. A distinction should be made between safety for people using treated fabric and safety for people who carry out the treatment. Fabric treated at the recommended dosage is not hazardous after drying. During treatment the insecticide mixture should not come into contact with the skin, particularly the lips, mouth, eyes and any open wounds. Rubber gloves should be used during the treatment process, and care should be taken to avoid splashing solution into the eyes and inhaling fumes. When many treatments are to be done it is better to work outdoors or in a well ventilated space and use open, shallow containers. People who inhale the fumes of the insecticide mixture may develop a headache or irritation of the nose or eyes. This occurs more frequently with deltamethrin or lambdacyhalothrin than with permethrin or cyfluthrin. A tingling sensation in the skin of the hands may be felt when treatment is carried out without gloves. These side-effects disappear within a few hours. If the eyes are contaminated or the skin shows an irritant reaction, the affected part should be rinsed thoroughly with clean water. Medical advice must be sought if pyrethroids are swallowed. Safety of treated nets After drying, care should be taken to prevent small children who sleep under a net from putting part of it in their mouths. Synthetic nets (nylon, polyester) freshly treated with a relatively high dose (0.030 g/m2) of lambdacyhalothrin may cause cold-like symptoms, such as sneezing and a runny nose during the first 1–2 weeks of use. At the lower dosage of 0.010 g/m2, which still has a prolonged insecticidal effect, the side-effects last only a day (93). No side-effects have been reported with synthetic or cotton nets treated with permethrin or with cyfluthrin as an oil-in- water emulsion. How to prepare the appropriate solution and treat and dry the fabric The fabric to be treated should first be thoroughly cleaned or washed if it is dirty; it should be completely dry by the day of treatment. This is of special importance when bednets belonging to different people are impregnated in the same mixture. When several nets are treated at the same time, they should be marked with a waterproof marker to allow each to be returned to its owner. 1. Calculate the surface area of the fabric to be treated (Fig. 1.70). 2. Determine the amount of water needed to completely soak the fabric (Table 1.4): Partially fill a bowl or bucket with a known quantity of water (Fig. 1.71). • Soak the fabric in the water. • Wring it out gently and/or allow it to finish dripping, collecting the run- • off in the container. Measure the difference between the initial and the remaining amount of • water. You can do this with a large measuring cylinder, or by finding the difference in weight of fabric before and after soaking and dripping. The difference in grams is equal to the number of millilitres (ml) of water BiologyCONTROL MEASURES 89 Fig. 1.70 The surface area of a rectangular bednet is calculated using the formula: S = 2(a × c) + 2(b × c) + (a × b). absorbed by the fabric. This gives the amount of water needed to prepare the solution. 3. Prepare the solution for treatment: • Calculate the total weight of insecticide needed (T) as: T = D × S where D = the chosen dosage (g/m2) S = the total surface area of fabric (m2). The amount of insecticide concentrate needed to prepare the solution (I) can be calculated as follows: I = T/C where C = the amount of active ingredient in the insecticide concentrate (g/ml). For example, 25% emulsifiable concentrate contains 25 g per 100 ml, thus 1 ml contains 0.25 g of active ingredient. Measure out the volume needed with a small measuring cylinder or pipette (Fig. 1.72). Measure out the required quantity of diluting water with a large measur- • ing cylinder (or measuring can), as calculated in step 2. • Mix the emulsifiable concentrate with water in a suitable container. 90 CHAPTER 1 • MOSQUITOS AND OTHER BITING DIPTERA Table 1.4 The quantity of water absorbed by different types of netting material and the amount of permethrin required to treat netting at a rate of 0.5 g/m2a Quantity Amount of water (ml) Amount of 10% Amount of 25% Amount of 55% of netting permethrin (ml) permethrin (ml) permethrin (ml) material Polyethylene Nylon/ Cotton netting polyester netting netting (den. 100/ mesh 156) 1m2 14 30 130 5 2 0.9 1 net 175 375 1625 62.5 25 11.5 (12.5m2) 4 nets 700 1500 6500 250 100 45.5 12 nets 2100 4500 19500 750 300 136.5 20 nets 3500 7500 32500 1250 500 227.5 a This table is based on field data from Dr R. Montanari, WHO, Papua New Guinea and from Dr C. Curtis, London School of Hygiene and Tropical Medicine, London, England. Fig. 1.71 Utensils and equipment needed for treating fabrics with insecticide. Fig. 1.72 Pouring emulsion concentrate into a measuring cylinder. BiologyCONTROL MEASURES 91 To make sure the fabric is completely impregnated, it may be advisable to prepare some excess mixture. The excess, as well as the run-off liquid after wringing out, can be reused to impregnate other fabrics. 4. After calculating the amount of water absorbed (step 2), dry the fabric. Submerge the clean dry fabric in the mixture, pressing and squeezing thoroughly to remove air and make sure the fabric is completely soaked (Fig. 1.73). Large articles such as bednets should be folded into a neat package to facilitate removal of air and penetration of the mixture. This is especially important with stiff, non-elastic bednets made of polyethylene. The container in which the articles are treated should be large enough to allow them to be handled and turned over without spilling the mixture. Buckets, dustbins, washing-up bowls or plastic bags may be suitable, de- pending on the number and size of the items to be treated. If a plastic bag is used, it should be filled with the amount of mixture needed to saturate the fabric without leaving any excess. After putting the item into the bag, seal the top by tying or twisting. Shake and knead the bag vigorously for 10 minutes (Fig. 1.74). Then remove the fabric and allow to dry without wringing it out. 5. Take the wet item out of the treatment container, gently wring out any excess liquid or allow it to drip back into the container. Place the fabric on a plastic sheet or other clean, non-absorbent surface to dry, e.g. banana leaves (Fig. 1.75). If a plastic bag is used for treatment it can be cut open to make a drying sheet. During the drying process the fabric should be turned over from time to time. The drying time depends, among other factors, on the thickness of the fabric, the quantity of water absorbed and the surface area exposed to sun and wind. A cotton mosquito net takes several hours to dry. Exposure to bright sunlight may partially destroy pyrethroid insecticides, so it is preferable to keep wet fabrics away from sunshine. Generally, items should not be hung up to dry immediately because insecticide will be lost as a result of dripping and will spread unevenly in the Fig. 1.73 Treatment of a fabric by pressing and soak- ing. Rubber gloves should be used to protect the hands. 92 CHAPTER 1 • MOSQUITOS AND OTHER BITING DIPTERA Fig. 1.74 Impregnation of fabric in a plastic bag. Fig. 1.75 Dry the treated material on a plastic sheet or other clean non- absorbent surface, avoiding di- rect sunshine. Fig. 1.76 When a freshly impregnated fabric has been drying for some time on a horizontal surface, it can be hung up to speed up the process. fabric. When they have been drying for some time on the ground they may then be hung up to speed up the process (Fig. 1.76). Cotton is less likely than synthetic materials to drip when hung up to dry after being wrung out. In some instances a gradient of insecticide in a fabric may be useful, for example in hammock nets because the lower part is where the net comes into contact with the body (see p. 72). Such a gradient can be achieved by hanging up the item at an early stage in the drying process (Fig. 1.77). BiologyCONTROL MEASURES 93 Fig. 1.77 Devices made of poles and plastic sheeting for large-scale treatment of mosquito nets. Bowls collect the excess liquid running down from a plastic sheet (design: S. Meek). To treat a single (rectangular) net To treat a single family-size (12.5m2) mosquito net made of nylon/polyester material at 0.5g/m2, mix 375ml of water with 25ml of permethrin 25% emulsifiable concentrate. Stir the mixture and pour it into a plastic bag. Put the net into the bag and seal it by tying or twisting. Shake and knead the bag vigorously for 10 minutes (see Fig. 1.74). Then remove the net and place it on the bag (cut open to make a sheet) to dry. To treat 20 nets To treat 20 standard family-size (12.5m2) mosquito nets made of nylon/ polyester material at 0.5g/m2, fill a plastic dustbin with 7.5 litres of water and 500ml of permethrin 25% emulsifiable concentrate.
Recommended publications
  • Behavior of the Use of Mosquito Net As a Prevention of Malaria in Ondorea Village, Nanga Panda Sub-District
    Scientific Foundation SPIROSKI, Skopje, Republic of Macedonia Open Access Macedonian Journal of Medical Sciences. 2021 Aug 10; 9(E):620-623. https://doi.org/10.3889/oamjms.2021.6518 eISSN: 1857-9655 Category: E - Public Health Section: Epidemiology Behavior of the Use of Mosquito Net as a Prevention of Malaria in Ondorea Village, Nanga Panda Sub-district Yustina PM Paschalia1* , Anatolia K. Doondori1 , Irfan Irfan1 , Norma Tiku Kambuno2 1Department of Nursing, Poltekkes Kemenkes Kupang, Kupang, Indonesia; 2Department of Medical Laboratory Technology, Poltekkes Kemenkes Kupang, Kupang, Indonesia Abstract Edited by: Slavica Hristomanova-Mitkovska BACKGROUND: Malaria is an infectious disease that is still a world public health problem, especially in developing Citation: Paschalia YPM, Doondori AK, Irfan I, Kambuno NT. Behavior of the Use of Mosquito Net as a countries with tropical climates, including Indonesia. Ondorea Village in Nangapanda Subdistrict, Ende Regency, is Prevention of Malaria in Ondorea Village, Nanga Panda one of the villages in East Nusa Tenggara, which is a province with academic performance indicators (APIs) above Sub-district. Open Access Maced J Med Sci. 2021 Aug 10; the national average. 9(E):620-623. https://doi.org/10.3889/oamjms.2021.6518 Keywords: Behavior; Mosquito nets; Malaria *Correspondence: Yustina Pacifica Maria Paschalia, AIM: The objective of the study is to determine family behavior in using mosquito nets as an effort to prevent malaria Department of Nursing, Poltekkes Kemenkes Kupang, in Ondorea Village, Nangapanda District. Kupang, Indonesia. E-mail: [email protected] Received: 24-May-2021 METHODS: This research is a survey research type with descriptive research design, the design used is “cross Revised: 27-Jun-2021 Accepted: 31-Jul-2021 sectional”.
    [Show full text]
  • Downloaded from the 'Ciraccio - INAPROCI2' Weather Station Using the Weather Underground
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.431954; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Aedes albopictus bionomics in Procida Island, a promising Mediterranean site 2 for the assessment of innovative and community-based integrated pest 3 management methods. 4 5 Caputo, B.1, Langella, G.2, Petrella, V.3, Virgillito, C.1,4, Manica, M.4, Filipponi, F.1, Varone, M.3, 6 Primo, P.3, Puggioli, A.5, Bellini, R.5, D’Antonio, C.6, Iesu, L.3, Tullo, L.3, Rizzo, C.3, Longobardi, 7 A.3, Sollazzo, G.3, Perrotta, M. M.3, Fabozzi, M.3, Palmieri, F.3, Saccone, G3, Rosà, R.4,7, della 8 Torre, A.1, Salvemini, M.3,* 9 10 1Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Italy 11 2Department of Agriculture, University of Naples Federico II, Italy 12 3Department of Biology, University of Naples Federico II, Italy 13 4Department of Biodiversity and Molecular Ecology, Edmund Mach Foundation, San Michele 14 all’Adige, Italy 15 5Centro Agricoltura Ambiente “Giorgio Nicoli”, Crevalcore, Italy 16 6Ministry of Education, University and Research, Italy 17 7Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN), Italy 18 19 *Corresponding author. E-mail address: [email protected] 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.19.431954; this version posted February 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Backyard Mosquito Management Practices That Do Not Poison You Or the Environment by Becky Crouse
    A BEYOND PESTlClDES FACT SHEET O A BEYOND PESTlClDES FACT SHEET O A BEYOND PESTlClDES FACT SHEET Backyard Mosquito Management Practices that do not poison you or the environment By Becky Crouse irst and foremost, let’s get a couple of things straight. (1995), pgs. 17-29). He has continually questioned the effi- Mosquito management does NOT mean dousing your- cacy of spray-based strategies against mosquitoes, conduct- Fself and your kin in your favorite DEET product and ing research for several cities in the mid-1980s. then stepping out to enjoy the local wildlife. It is not swat- ting at the suckers as they bite you. And it is not investing in Life Cycle of a Skeeter one of those full-body net suits for your next camping trip. To manage mosquitoes, you have to get rid of the situa- There are more than 2,500 different species of mosquitoes in the tions that are attracting them to your world, 150 of which occur in the U.S. property, and, if you detect any and a only small fraction of which ac- breeding activity, kill them before tually transmit disease. they become adults. That’s called Mosquitoes go through four LARVACIDE! stages in their life cycle – egg, larva, So what then do mosquitoes pupa, and adult. Eggs can be laid ei- need? Why are they finding your ther one at a time or in rafts and float backyard so darn attractive? They on the surface of the water. Culex and need suitable aquatic breeding habi- Culiseta species stick their eggs to- tats in order to complete their life gether in rafts of 200 or more, which cycle (a.k.a they need water).
    [Show full text]
  • Mosquito Action Plan
    MOSQUITO ACTION PLAN March 2019 1.0 PURPOSE OF THE MOSQUITO ACTION PLAN The purpose of the Mosquito Action Plan is to provide clear guidelines to City Council and City staff, and information to stakeholders regarding the various responses made to prevent and control mosquito- borne diseases. 2.0 INTRODUCTION In 2012, West Nile Virus (WNV) caused the largest outbreak in Dallas County history, with a total of 388 WNV human cases, including 18 deaths. WNV is now considered endemic in the United States and some level of WNV infection can be expected every year. Following the WNV outbreak of 2012, the Dallas County Health and Human Services (DCHHS) along with its municipal partners anticipates the need for a coordinated and proactive plan to address WNV in its communities. The City of Rowlett has contracted with DCHHS for vector control and City of Garland for health services within its City boundaries. DCHHS will work alongside the City of Rowlett to help develop strategies to protect residents from mosquito-borne illness. Both entities are committed to working together to suppress mosquito populations through mosquito surveillance and control. DCHHS will also provide assistance to the City of Rowlett with regard to response activities in the event of a vector borne disease outbreak. The City of Garland will provide investigation and notification of all occurrences of all cases of mosquito-borne illness that occur in the City of Rowlett to DCHHS Environmental Health Division. The City of Rowlett along with its partnering agencies recognizes that the main contributing factor to the success of mosquito control response measures is the effective cooperation and communication among collaborative agencies.
    [Show full text]
  • Setting up a Mosquito Control Program
    SETTING UP A MOSQUITO CONTROL PROGRAM JEROME GODDARD, Ph.D. MEDICAL ENTOMOLOGIST BUREAU OF GENERAL ENVIRONMENTAL SERVICES MISSISSIPPI STATE DEPARTMENT OF HEALTH P. O. BOX 1700 JACKSON, MISSISSIPPI 39215-1700 601-576-7689 UPDATED JUNE 2003 PREFACE Mosquito control is undergoing major changes in Mississippi. Instead of just routinely spraying malathion or a pyrethroid out of trucks several nights weekly, mosquito control personnel are now trying to get the most control with the least amount of pesticides. This involves source reduction to eliminate mosquito breeding areas, larviciding areas of standing water, and carefully timed, strategically placed insecticides aimed at the adult mosquitoes. This booklet outlines the components of an integrated mosquito control program with emphasis on incorporating surveillance and larviciding into existing programs. General information is provided as a review of control and surveillance techniques commonly used. In addition, this booklet describes some problem mosquitoes found in Mississippi and discusses their importance as public health and pest problems. NOTE: Much of this publication was originally compiled and illustrated by the former medical entomologist with the Mississippi State Department of Health, Mr. Ed Bowles. It has been revised several times by myself and Dr. Brigid Elchos, State Public Health Veterinarian. Jerome Goddard, Ph.D. Medical Entomologist MOSQUITO CONTROL AND PUBLIC HEALTH Mosquitoes and the diseases they carry have played an important role in our history. Epidemics of mosquito-borne diseases were once common in the United States. Outbreaks of yellow fever occurred as far north as Philadelphia during the colonial period, and epidemics took many lives in New Orleans until 1905.
    [Show full text]
  • MOSQUITO BEHAVIOR and VECTOR CONTROL Helen Pates
    27 Oct 2004 14:10 AR AR234-EN50-03.tex AR234-EN50-03.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.ento.50.071803.130439 Annu. Rev. Entomol. 2005. 50:53–70 doi: 10.1146/annurev.ento.50.071803.130439 Copyright c 2005 by Annual Reviews. All rights reserved First published online as a Review in Advance on July 13, 2004 MOSQUITO BEHAVIOR AND VECTOR CONTROL Helen Pates and Christopher Curtis London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom; email: [email protected]; [email protected] KeyWords endophily, biting time, oviposition site choice, mosquito dispersal, competitive mating, monogamy ■ Abstract Effective indoor residual spraying against malaria vectors depends on whether mosquitoes rest indoors (i.e., endophilic behavior). This varies among species and is affected by insecticidal irritancy. Exophilic behavior has evolved in certain popu- lations exposed to prolonged spraying programs. Optimum effectiveness of insecticide- treated nets presumably depends on vectors biting at hours when most people are in bed. Time of biting varies among different malaria vector species, but so far there is inconclusive evidence for these evolving so as to avoid bednets. Use of an untreated net diverts extra biting to someone in the same room who is without a net. Understand- ing choice of oviposition sites and dispersal behavior is important for the design of successful larval control programs including those using predatory mosquito larvae. Prospects for genetic control by sterile males or genes rendering mosquitoes harmless to humans will depend on competitive mating behavior. These methods are hampered by the immigration of monogamous, already-mated females.
    [Show full text]
  • Mosquito Net Coverage and Utilisation for Malaria Control in Tanzania
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Library of the Tanzania Health Community Final Report ____________________________________ Mosquito net Coverage and Utilisation for Malaria Control in Tanzania Prepared by: Leonard E.G. Mboera Benjamin K. Mayala Kesheni P. Senkoro National Institute for Medical Research Stephen M. Magesa P.O. Box 9653, Dar es Salaam,Tanzania www.nimr.or.tz Andrew Y. Kitua July 2008 Mosquito net coverage and utilisation for malaria control in Tanzania Recommended Citation Mboera, L.E.G., Mayala, B.K., Senkoro, K.P., Magesa, S.M., Kitua, A.Y., Temu, M.M., Nkya, T., Kitau, J., Nkya, G.M., Mbilu, T., Manga, C., Kabula, B.I., Emidi, B., Kalinga, A.K., Emmanuel, E. and Kaluwa, B. (2008) Mosquito net Coverage and Utilisation for Malaria Control in Tanzania. National Institute for Medical Research, Dar es Salaam, Tanzania. National Institute for Medical Research, P.O. Box 9653, Dar es Salaam, Tanzania Website: nimr.or.tz July 2008 TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................................................................ i EXECUTIVE SUMMARY ......................................................................................................................................... ii CHAPTER 1: INTRODUCTION...............................................................................................................................1 1.1. Malaria burden in Tanzania ..........................................................................................................................1
    [Show full text]
  • Maps and Metrics of Insecticide-Treated Net Coverage in Africa: Access, Use, and Nets-Per- Capita, 2000-2020
    Maps and Metrics of Insecticide-Treated Net Coverage in Africa: Access, Use, and Nets-Per- Capita, 2000-2020 Amelia Bertozzi-Villa ( [email protected] ) Institute for Disease Modeling https://orcid.org/0000-0003-1616-0028 Caitlin Bever Institute for Disease Modeling Hannah Koenker Tropical Health Daniel Weiss Telethon Kids Institute Camilo Vargas-Ruiz Telethon Kids Institute Anita Nandi University of Oxford https://orcid.org/0000-0002-5087-2494 Harry Gibson University of Oxford https://orcid.org/0000-0001-6779-3250 Joseph Harris Telethon Kids Institute Katherine Battle Institute For Disease Modeling Susan Rumisha Telethon Kids Institute Suzanne Keddie Telethon Kids Institute Punam Amratia Telethon Kids Institute Rohan Arambepola Telethon Kids Institute Ewan Cameron Telethon Kids Institute Elisabeth Chestnutt University of Oxford Emma Collins University of Oxford Justin Millar University of Oxford Swapnil Mishra Imperial College London https://orcid.org/0000-0002-8759-5902 Jennifer Rozier Telethon Kids Institute, Perth Children's Hospital Tasmin Symons Telethon Kids Institute Katherine Twohig University of Oxford Deirdre Hollingsworth University of Oxford https://orcid.org/0000-0001-5962-4238 Peter Gething University of Oxford https://orcid.org/0000-0001-6759-5449 Samir Bhatt Imperial College London Article Keywords: insecticide-treated nets (ITNs), malaria, interventions Posted Date: February 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-199628/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International
    [Show full text]
  • Environmental Strategies to Replace DDT and Control Malaria
    Environmental strategies to replace DDT and control malaria A healthy world for all. Protect humanity and the enviroment from pesticides. Promote alternatives. © Pestizid Aktions-Netzwerk (PAN) e.V. Nernstweg 32, 22765 Hamburg Tel. +49 (0)40 - 3991910 - 0 E-mail: [email protected] www.pan-germany.org Hamburg, December 2009 Editor: Carina Weber Author: Vanessa Laumann Layout: Ulrike Sommer, grafik:sommer, Hamburg ISBN: 978-3-9812334-5-2 Photos front page: Mosquito: CDC/James Gathany; farmer group: van den Berg; workers: CDC; Gambusia: CDC; neem: J.M. Garg This project was supported by: The supporting institutions accept no responsibility for the correctness, accuracy or completeness of the information, or for the observance of the private rights of third parties. The views and opinions expressed herein do not necessarily reflect those of the supporting institutions. Environmental strategies to replace DDT and control malaria 5 . Preface 6 . Summary 7 . S e c t i o n 1 Malaria – A deadly disease 9 . S e c t i o n 2 Parasites and vectors – Favourable conditions increase populations 11 . S e c t i o n 3 The current anti-malaria approach 13 . S e c t i o n 4 List of pesticides recommended for malaria control – A list of concern 14 . S e c t i o n 5 Non-pesticidal interventions 14 . Environmental management 16 . Biological control 19 . S e c t i o n 6 Messages from the field 19 . Malaya/Zambia Lessons from history 21 . Kenya Environmentally friendly malaria control in Malindi and Nyabondo 22 . Sri Lanka Farmer Field Schools – A case study of integrated pest and vector management 24 .
    [Show full text]
  • Common Malaria Mosquito Anopheles Quadrimaculatus Say (Insecta: Diptera: Culicidae)1 Leslie M
    EENY 491 Common Malaria Mosquito Anopheles quadrimaculatus Say (Insecta: Diptera: Culicidae)1 Leslie M. Rios and C. Roxanne Connelly2 Introduction Anopheles quadrimaculatus Say is historically the most important vector of malaria in the eastern United States. Malaria was a serious plague in the United States for centuries until its final eradication in the 1950s (Rutledge et al. 2005). Despite the ostensible eradication, there are occasional cases of autochthonous (local) transmission in the U.S. vectored by An. quadrimaculatus (CDC 2003). In addition to being a vector of pathogens, An. quadri- maculatus can also be a pest species (O’Malley 1992). This species has been recognized as a complex of five sibling species (Reinert et al. 1997) and is commonly referred to as An. quadrimaculatus (sensu lato) when in a collection or identified in the field. The most common hosts are large mammals including humans. Synonymy Anopheles annulimanus Van der Wulp Figure 1. Adult female common malaria mosquito, Anopheles quadrimaculatus Say. (From Systematic Catalog of the Culicidae, Walter Reed Credits: Sean McCann, University of Florida Biosystematics Unit) Distribution Anopheles quadrimaculatus mosquitoes are primarily seen in eastern North America. They are found in the eastern United States, the southern range of Canada, and parts of Mexico south to Vera Cruz. The greatest abundance occurs 1. This document is EENY 491, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date February 2009. Revised August 2015. Reviewed October 2018. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
    [Show full text]
  • Sterile Insect Technique (SIT) Against Aedes Species Mosquitoes: a Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials
    insects Review Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials Clélia F. Oliva 1,2 , Mark Q. Benedict 3, C Matilda Collins 4 , Thierry Baldet 5, Romeo Bellini 6 , Hervé Bossin 7, Jérémy Bouyer 5,8 , Vincent Corbel 9, Luca Facchinelli 10 , Florence Fouque 11, Martin Geier 12, Antonios Michaelakis 13 , David Roiz 9 , Frédéric Simard 9, Carlos Tur 14 and Louis-Clément Gouagna 9,* 1 Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), Centre Opérationnel de Balandran, 751 Chemin de Balandran, 30127 Bellegarde, France; clelia.oliva@ctifl.fr 2 Collectif TIS (Technique de l’Insecte Stérile), 751 Chemin de Balandran, 30127 Bellegarde, France 3 Mosquito Hunters, 620 Peachtree St, Atlanta, GA 30308, USA; [email protected] 4 Centre for Environmental Policy, Imperial College London, London SW7 1NE, UK; [email protected] 5 ASTRE (Animal, Santé, Territoires, Risques, Ecosystèmes), Cirad, Univ. Montpellier, 34398 Montpellier, France; [email protected] (T.B.); [email protected] (J.B.) 6 Centro Agricoltura Ambiente “Giorgio Nicoli”, S.r.l. Via Sant’Agata, 835, 40014 Crevalcore, Italy; [email protected] 7 Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia; [email protected] 8 Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400 Vienna, Austria Citation: Oliva, C.F.; Benedict, M.Q.; 9 UMR MIVEGEC (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), Collins, CM.; Baldet, T.; Bellini, R.; IRD-CNRS-Univ. Montpellier, 34394 Montpellier, France; [email protected] (V.C.); [email protected] (D.R.); Bossin, H.; Bouyer, J.; Corbel, V.; [email protected] (F.S.) Facchinelli, L.; Fouque, F.; et al.
    [Show full text]
  • The Big Debate Teachers’ Notes
    The Big Debate Teachers’ notes Overview of the activity Students use the Malaria Challenge resource to research one of five different stages of the malaria lifecycle. Working in groups they will identify different intervention methods that are used to target their chosen stage and discuss the pros and cons of these methods, considering their efficiency and cost. Once familiar with their chosen stage and its related interventions, students from each group form a new “expert group”. Here each student discusses their thoughts on their stage of the malaria lifecycle and then, as a group of “experts”, discuss what are the best strategies or intervention methods that could eradicate malaria. Each group feeds back their thoughts and finds out if their conclusions are the same as professional malaria researchers. Estimated duration: 60-90 minutes If class time is limited, students can be allocated to their groups before the lesson and prepare for the activity as a homework task by accessing the Malaria Challenge resource online to gather information on their allocated life cycle stage. Running the activity To run the activity you will require: • Malaria Challenge resource • Lifecycle Stage cards • Teachers notes (one per teacher/facilitator) • Student worksheet • Expert group worksheet (one per group) • Introductory PowerPoint or video • Can malaria be eradicated? video • Group discussion guidelines Step 1: Introduction to malaria Using either the Malaria Challenge video or PowerPoint presentation provided in the resource, introduce the students to the topic of malaria. Both resources provide information covering the key points of: • what malaria is • where it is a problem • who is affected and why.
    [Show full text]