Copyright by Gregory Blair Pauly 2008

Total Page:16

File Type:pdf, Size:1020Kb

Copyright by Gregory Blair Pauly 2008 Copyright by Gregory Blair Pauly 2008 The Dissertation Committee for Gregory Blair Pauly Certifies that this is the approved version of the following dissertation: Phylogenetic Systematics, Historical Biogeography, and the Evolution of Vocalizations in Nearctic Toads (Bufo) Committee: David C. Cannatella, Co-Supervisor David M. Hillis, Co-Supervisor James J. Bull Michael J. Ryan Robin R. Gutell Phylogenetic Systematics, Historical Biogeography, and the Evolution of Vocalizations in Nearctic Toads (Bufo) by Gregory Blair Pauly, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Dedication To my parents, Matthew and Georgia, for many years of support and encouragement. Acknowledgements Many people have contributed to my dissertation research and to the earlier path that brought me to this point. First, I thank my parents, Matthew and Georgia, for their lifelong support and constant encouragement of my interests in science, the outdoors, and all things herpetological. I also thank my sister, Sara, and extended family for their encouragement. My family's appreciation of education, hard work, and the natural world has strongly influenced my career choices and contributed to my love of biology. I am truly grateful to the research opportunities provided to me by Brad Shaffer and Arthur Shapiro during my undergraduate career. Their mentorship was critical to my development as an academic biologist. In particular, in my first month as an undergraduate researcher in Brad Shaffer's lab, I went from a stressed out senior with no idea of what I would do after graduating to knowing what I would do for the rest of my life. This is a gift for which I will always be grateful. And to Art Shapiro, who threatened to stop paying me until I talked with Brad, thanks for recognizing what I should be doing when I had not yet figured it out for myself. My advisors and committee members (David Cannatella, David Hillis, Mike Ryan, Jim Bull, and Robin Gutell) have been excellent teachers, mentors, and friends. As my advisors, David Cannatella and David Hillis, have been extremely supportive of my work, spent countless hours critiquing drafts of manuscripts and grants, and also v introduced me to the culinary treats of Christmas Gumbo and venison. Though not formally my advisor, Mike Ryan kindly welcomed me into his lab and has served as an unofficial and very active advisor throughout my time in Austin. My work on sexual selection and mating signals has greatly benefited from interactions with Mike and his students. Over the course of my undergraduate and graduate career, I have met many friends who have contributed to my research and scientific growth. For setting excellent examples of how to succeed in graduate school and academia, and for friendships that extended well beyond Storer Hall and Patterson Labs, I am tremendously thankful to Rafe Brown, Cat Darst, Tracy Heath, Jeff Oliver, Katy Prudic, and the Baja Boys—Mike Benard, Darrin Hulsey, and Tom Near. My great aunt, Elizabeth H. Swope, my good friend and early mentor, Warren Brown, and my friend, mentor, and collaborator, A. Stanley Rand, each passed while I was in graduate school. These individuals are from different parts of my life, but each has been a great source of inspiration and encouragement. I am fortunate to have been able to call them friends and grateful for their years of support. As an official or unofficial member of the Cannatella, Hillis, Bull, and Ryan labs, I have had the chance to interact with many great people and talented graduate students. I thank the members of these labs for their contributions to my work and their friendships. There are too many names to list them all here, but they have helped make Texas a great place to be a graduate student. Below, I acknowledge some of these individuals for their contributions to specific chapters. vi For Chapter 1, I thank my collaborators on this research, David Cannatella and David Hillis. We thank Rafe Brown, Cat Darst, Ben Evans, Alisha Holloway, and especially Derrick Zwickl for assistance in the lab and/or with analysis; Chris Bell, Gabe Bever, Susan Masta, Dan Mulcahy, and Jenny Pramuk for insightful conversations about Bufo; Ulrich Mueller and Rachelle Adams for access to an automated sequencer; Nestor Basso, Rafe Brown, Jonathan Campbell, Carla Cicero and David Wake (Museum of Vertebrate Zoology, University of California, Berkeley), Joe Collins, Anna Graybeal, Ron Heyer and Roy McDiarmid (United States National Museum), Randy Jennings, Travis LaDuc, Dan Mulcahy, Andy Price, Michelle VanVleet (US Fish and Wildlife Service), and Jens Vindum (California Academy of Sciences) for providing tissue samples; and Carla Cicero, Meredith Mahoney, and David Wake (Museum of Vertebrate Zoology, University of California, Berkeley) for providing access to voucher specimens. The curatorial assistance provided by Travis LaDuc and Jessica Rosales (Texas Memorial Museum) is gratefully acknowledged. Previous versions of the manuscript were improved by comments from the Cannatella lab group, Rafe Brown, Joe Mendelson, Anne Yoder, Derrick Zwickl, and an anonymous reviewer. The use of Phylocluster for computational analyses was made possible by a NSF IGERT grant in Computational Phylogenetics and Applications to Biology (DGE-0114387). We also acknowledge the National Science Foundation for funding from NSF grant DEB-9981631. For Chapters 2 and 3, I thank Mike Ryan, David Cannatella, and David Hillis for helpful advice on this research and for providing comments that greatly improved these chapters. I am grateful to Mike Ryan and Thomas Keller for developing programs used for call analyses. Tracy Heath and Jeremy Brown provided assistance with the vii phylogenetic analyses. Santiago Ron, Emily Moriarty Lemmon, Ximena Bernal, and Rachel Page are fellow frog voyeurs who were always up for talking about frogs, sexual selection, phonotaxis, and mating signal evolution. Access to preserved specimens was provided by Jim McGuire and David Wake (MVZ), Jens Vindum (CAS), Brad Hollingsworth and Angelo Soto-Centeno (SDSNH), Roy McDiarmid and Steve Gotte (USNM), David E. Green and Stephanie Steinfeldt (USGS-NWHC), Wayne Roberts (UAMZ), Brad Shaffer (UCDMZ), Gavin Hanke (RBCM), Rafe Brown (KU), Steve Rogers (CM), John Friel (CU), and David Cannatella and Travis LaDuc (TNHC). Access to critical localities and/or logistical support was provided by Blake Hossack and Steve Corn (Aldo Leopold Institute, USGS), Lynn Verlanic and Ray Washtak (Lost Trail National Wildlife Refuge, Montana), Rebecca Wahl (University of Montana), Gale Bustillos (USFS), Ross Chapman (Elk Island National Park, Alberta), the kind staff of Meanook Biological Research Station (University of Alberta), and Cynthia Paszkowski, Connie Browne, Brian Eaton, and Cameron Stevens (University of Alberta). I especially thank the Spence and Miller families of Meanook, Alberta and Ron and Genevieve Bowman of Descanso, California who kindly provided access to their property; without their generosity this research would not have been possible. Bob Armstrong, Rod Brown, Richard Carstensen, Charlie Crisafulli, Joe Cook, Gary Fellers, Paul Hamby, Blake Hossack, Lance Lerum, Stephen MacDonald, John McDermott, Sam Sweet, and Sandra Talbot provided field assistance and/or tissue samples. This work was supported by a NSF Doctoral Dissertation Improvement Grant (No. 0508542) under IACUC protocol 02112201 and an NSF IGERT Fellowship in Computational Phylogenetics and Applications to Biology (DGE-0114387). Additional support was provided by the viii Society for the Study of Amphibians and Reptiles, the American Society of Ichthyologists and Herpetologists, The Explorer’s Club, and fellowships from the University of Texas, Austin. For Chapter 4, I thank my collaborators on this research, Robin Gutell and Jamie Cannone, who provided much insight into RNA secondary structure and methods for its analysis. David Cannatella and David Hillis provided helpful insights and discussions on this research and have encouraged all aspects of my research on bufonids. Funding was provided by a NSF IGERT fellowship in Computational Phylogenetics and Applications to Biology (DGE-0114387). ix Phylogenetic Systematics, Historical Biogeography, and the Evolution of Vocalizations in Nearctic Toads (Bufo) Publication No._____________ Gregory Blair Pauly, Ph.D. The University of Texas at Austin, 2008 Supervisors: David C. Cannatella and David M. Hillis The evolution of mating signals has long interested biologists because changes in mating signal production and/or reception can lead to reproductive isolation and speciation. Here, I examine the evolution of the male mating signal (the advertisement call) and the female preference for this call in the Western Toad, Bufo boreas. Call surveys and a morphological study for the occurrence of vocal sacs, which are necessary for producing these calls, reveal that only populations in the northeastern corner of this species’ range produce long, high-amplitude advertisement calls. This is the first study to report among-population variation in the presence of the major mating signal in any animal. Although populations vary in whether or not males call, phonotaxis tests demonstrate that female B. boreas in calling and non-calling populations have the preference for this call. Phylogenetic analyses indicate that the call
Recommended publications
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Caudata Ambystoma ordinarium. Predation by a Black-necked Gartersnake (Thamnophis cyrtopsis). The Michoacán Stream Salamander (Ambystoma ordinarium) is a facultatively paedomorphic ambystomatid species. Paedomorphic adults and larvae are found in montane streams, while metamorphic adults are terrestrial, remaining near natal streams (Ruiz-Martínez et al., 2014). Streams inhabited by this species are immersed in pine, pine-oak, and fir for- ests in the central part of the Trans-Mexican Volcanic Belt (Luna-Vega et al., 2007). All known localities where A. ordinarium has been recorded are situated between the vicinity of Lake Patzcuaro in the north-central portion of the state of Michoacan and Tianguistenco in the western part of the state of México (Ruiz-Martínez et al., 2014). This species is considered Endangered by the IUCN (IUCN, 2015), is protected by the government of Mexico, under the category Pr (special protection) (AmphibiaWeb; accessed 1April 2016), and Wilson et al. (2013) scored it at the upper end of the medium vulnerability level. Data available on the life history and biology of A. ordinarium is restricted to the species description (Taylor, 1940), distribution (Shaffer, 1984; Anderson and Worthington, 1971), diet composition (Alvarado-Díaz et al., 2002), phylogeny (Weisrock et al., 2006) and the effect of habitat quality on diet diversity (Ruiz-Martínez et al., 2014). We did not find predation records on this species in the literature, and in this note we present information on a predation attack on an adult neotenic A. ordinarium by a Thamnophis cyrtopsis. On 13 July 2010 at 1300 h, while conducting an ecological study of A.
    [Show full text]
  • Water Mites of the Genus Arrenurus (Acari; Hydrachnida) from Europe and North America
    Department of Animal Morphology Institute of Environmental Biology Adam Mickiewicz University Mariusz Więcek EFFECTS OF THE EVOLUTION OF INTROMISSION ON COURTSHIP COMPLEXITY AND MALE AND FEMALE MORPHOLOGY: WATER MITES OF THE GENUS ARRENURUS (ACARI; HYDRACHNIDA) FROM EUROPE AND NORTH AMERICA Mentors: Prof. Jacek Dabert – Institute of Environmental Biology, Adam Mickiewicz University Prof. Heather Proctor – Department of Biological Sciences, University of Alberta POZNAŃ 2015 1 ACKNOWLEDGEMENTS First and foremost I want to thank my mentor Prof. Jacek Dabert. It has been an honor to be his Ph.D. student. I would like to thank for his assistance and support. I appreciate the time and patience he invested in my research. My mentor, Prof. Heather Proctor, guided me into the field of behavioural biology, and advised on a number of issues during the project. She has been given me support and helped to carry through. I appreciate the time and effort she invested in my research. My research activities would not have happened without Prof. Lubomira Burchardt who allowed me to work in her team. Many thanks to Dr. Peter Martin who introduced me into the world of water mites. His enthusiasm was motivational and supportive, and inspirational discussions contributed to higher standard of my research work. I thank Dr. Mirosława Dabert for introducing me in to techniques of molecular biology. I appreciate Dr. Reinhard Gerecke and Dr. Harry Smit who provided research material for this study. Many thanks to Prof. Bruce Smith for assistance in identification of mites and sharing his expert knowledge in the field of pheromonal communication. I appreciate Dr.
    [Show full text]
  • Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
    Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes.
    [Show full text]
  • The Evolution of Mate Preferences, Sensory Biases, and Indicator Traits. in H
    UCLA UCLA Previously Published Works Title The Evolution of Mate Preferences, Sensory Biases, and Indicator Traits Permalink https://escholarship.org/uc/item/9kt923rv Journal Advances in the Study of Behavior, 41 Author Grether, Gregory F Publication Date 2010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in the Study of Behavior, Vol. 41, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Gregory F. Grether, The Evolution of Mate Preferences, Sensory Biases, and Indicator Traits. In H. Jane Brockmann, editor: Advances in the Study of Behavior, Vol. 41, Burlington: Academic Press, 2010, pp. 35-76. ISBN: 978-0-12-380892-9 © Copyright 2010 Elsevier Inc. Academic Press. Author's personal copy ADVANCES IN THE STUDY OF BEHAVIOR, VOL. 41 The Evolution of Mate Preferences, Sensory Biases, and Indicator Traits Gregory F.
    [Show full text]
  • Rhacophorus Nigropalmatus
    EDITOR Ron Skylstad Leaf Litter VOLUME 2 | ISSUE 2 ASSISTANT EDITORS Ed Kowalski 1 FROM THE EDITOR Nathanial Paull 3 EDITORIAL Jason Konopinski 5 FOLIUM 9 AMPHIBIAN HEALTH & NUTRITION LAYOUT Elizabeth Brock FEATURES 12 Herping In Anytown, USA • 15 Further Impressions from Tarapoto: EXECUTIVE DIRECTOR Frogs and Art Ron Skylstad 19 When Father Chimborazo Took PROGRAMS DIRECTOR the Frogs Away Brent L. Brock 29 Notes on the Husbandry, Captive Reproduction, and Distinct Juvenile DIRECTOR OF PROJECT SUPPORT Form of Wallace’s Flying Frog, Marcos Osorno Rhacophorus nigropalmatus MISSION STATEMENT 41 Solace of Untouched Wilderness Tree Walkers International supports the protection, conservation, and restoration of wild amphibian populations through hands-on action both locally and internationally. We foster personal relationships between people and nature by providing opportunities for citizens of all ages to become directly involved in global amphibian conservation. Through this involvement, our volunteers become part of a growing and passionate advocacy for the protection and restoration of wild amphibian populations and the environmental on which they depend. COVER Rhacophorus nigropalmatus photo © Michael Ready from the editor When one tugs at a single thing in nature, he finds it attached to the rest of the world. - John Muir - Connection. If we have eyes to see it, it’s everywhere: in the roles organisms play in their ecosystems, in the way our habits and decisions impact our environments (for better or worse) and the species that inhabit them, in the amphibians we choose to keep and the systems of trade and collection we inevitably support through our buying habits. This thread of connection, of interrelatedness and influence, is woven throughout this issue of Leaf Litter.
    [Show full text]
  • The Role of the Visual Train Ornament in the Courtship of Peafowl, Pavo
    The role of the visual train ornament in the courtship of peafowl, Pavo cristatus by ROSLYN DAKIN A thesis submitted to the Department of Biology in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada September, 2008 Copyright © Roslyn Dakin, 2008 ii ABSTRACT The peacock (Pavo cristatus) has long been considered the quintessential example of a sexually selected animal, and in the last two decades, peafowl have provided widely-cited evidence for female mate choice as well as the genetic benefits of mate preferences for ornamented males. However, previous studies have failed to reach a consensus with respect to the importance of various signaling modalities in peafowl courtship. In this thesis, I repeat two previous studies of peacock train morphology and I describe the use of light by males during their courtship displays, to clarify the role of visual signaling. I confirm previous reports that removing a large number of eyespots decreases male mating success, yet I find substantial variation in mating success among normal males that cannot be explained by eyespot number. I show that these two apparently conflicting results are not contradictory, since the removal treatment modifies males beyond the normal range of eyespot number. Next, I describe the two display behaviours used by males during courtship. When males perform their pre-copulatory “train-rattling” display, they are oriented at about 45° relative to the sun on average, with females directly in front. This directional pattern suggests that train-rattling is involved in the communication of a visual signal. The “wing-shaking” display, on the other hand, is performed with females positioned behind males, and is always elicited when a model female is positioned on the shaded side of a male.
    [Show full text]
  • Catálogo De Autoridades Taxonómicas De Arachnidae
    Catálogo de Autoridades Taxonómicas de Arachnidae Tomado de: Jiménez y Nieto 2005. Biodiv. del orden Araneae de las Islas del G. de Cal. (BK006); Kury y Cokendolpher (Opiliones); Lourenco y Sissom (Scorpiones). 2000. En: Llorente, et al., (eds.). Biodiv., taxon. y biog. de artróp. Méx. II. e ITIS, 2005 Araneae Opisthothelae Araneomorphae Anyphaenidae Hibana (Chamberlin, 1919) Hibana incursa (Chamberlin, 1919) Sinónimo Hibana johnstoni (Chamberlin, 1924) Hibana nigrifrons (Chamberlin & Woodbury, 1929) Araneidae Argiope (Fabricius, 1775) Argiope argentata (Fabricius, 1775) Sinónimo Argiope carinata C. L. Koch, 1871 Argiope cuyunii Hingston, 1932 Argiope filiargentata Hingston, 1932 Argiope filinfracta Hingston, 1932 Argiope gracilenta (Roewer, 1942) Argiope hirta Taczanowski, 1879 Argiope indistincta Mello-Leitão, 1944 Argiope panamensis (Chamberlin, 1917) Argiope submaronica Strand, 1916 Argiope waughi Simon, 1896 Argiope trifasciata (Forskål, 1775) Sinónimo Argiope abalosi Mello-Leitão, 1942 Argiope avara Thorell, 1859 Argiope plana L. Koch, 1867 Argiope platycephala (Caporiacco, 1947) Argiope pradhani Sinha, 1952 Argiope seminola Chamberlin & Ivie, 1944 Argiope stenogastra Mello-Leitão, 1945 Cyclosa (Walckenaer, 1842) Cyclosa turbinata (Walckenaer, 1842) Sinónimo Cyclosa culta O. P.-Cambridge, 1893 Cyclosa glomosa (Walckenaer, 1842) Cyclosa index O. P.-Cambridge, 1889 Cyclosa nanna Ivie & Barrows, 1935 Cyclosa tuberculifera O. P.-Cambridge, 1898 Cyclosa vanbruyseli (Becker, 1879) Cyclosa walckenaeri (O. P.-Cambridge, 1889) Sinónimo Cyclosa
    [Show full text]
  • Anew Species of the Genus Oreophrynella
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Cadernos Espinosanos (E-Journal) Volume 45(6):61-67, 2005 A NEW SPECIES OF THE GENUS OREOPHRYNELLA (ANURA; BUFONIDAE) FROM THE GUIANA HIGHLANDS JOSEFA CELSA SEÑARIS1,2 CARLOS DONASCIMIENTO1,3 OSVALDO VILLARREAL1,4 ABSTRACT Oreophrynella weiassipuensis sp. nov. is described from Wei-Assipu-tepui on the Guyana-Brazil border. The new species is distinguished from other species of the genus by the presence of well developed post-orbital crests, toe webbing, dorsal skin minutely granular with scattered large tubercles, and reddish brown dorsal and ventral coloration. KEYWORDS: Anura, Bufonidae, Oreophrynella, new species, Pantepui, Guiana Shield, Guyana, Brazil. INTRODUCTION was described from the summit of Cerro El Sol (Diego-Aransay and Gorzula, 1987), a tepui which is The bufonids of the genus Oreophrynella are a not part of the Roraima formation. Señaris et al. group of noteworthy small toads, endemic to the (1994) reviewed the Guiana highland bufonids and highlands of the Guiana Region in northeastern South described two additional species, O. nigra from America. Members of this genus are frogs of small Kukenán and Yuruaní tepuis, and O. vasquezi from Ilú- size (< 26 mm SVL), characterized by opposable digits tepui. Finally Señaris (1995) described O. cryptica from of the foot, tuberculate dorsal skin, and direct Auyán-tepui. development (McDiarmid, 1971; McDiarmid and On July 2000 a speleological expedition to Wei- Gorzula, 1989; Señaris et al., 1994). Assipu-tepui, conducted by members of the Italian and The genus was created by Boulenger (1895a, b) Venezuelan speleological societies (Carreño et al., 2002; for the newly described species O.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Global Diversity of Amphibians (Amphibia) in Freshwater
    Hydrobiologia (2008) 595:569–580 DOI 10.1007/s10750-007-9032-2 FRESHWATER ANIMAL DIVERSITY ASSESSMENT Global diversity of amphibians (Amphibia) in freshwater Miguel Vences Æ Jo¨rn Ko¨hler Ó Springer Science+Business Media B.V. 2007 Abstract This article present a review of species amphibians is very high, with only six out of 348 numbers, biogeographic patterns and evolutionary aquatic genera occurring in more than one of the major trends of amphibians in freshwater. Although most biogeographic divisions used herein. Global declines amphibians live in freshwater in at least their larval threatening amphibians are known to be triggered by phase, many species have evolved different degrees of an emerging infectious fungal disease and possibly by independence from water including direct terrestrial climate change, emphasizing the need of concerted development and viviparity. Of a total of 5,828 conservation efforts, and of more research, focused on amphibian species considered here, 4,117 are aquatic both their terrestrial and aquatic stages. in that they live in the water during at least one life- history stage, and a further 177 species are water- Keywords Amphibia Á Anura Á Urodela Á dependent. These numbers are tentative and provide a Gymnophiona Á Species diversity Á Evolutionary conservative estimate, because (1) the biology of many trends Á Aquatic species Á Biogeography Á Threats species is unknown, (2) more direct-developing spe- cies e.g. in the Brachycephalidae, probably depend directly on moisture near water bodies and (3) the Introduction accelerating rate of species discoveries and descrip- tions in amphibians indicates the existence of many Amphibians are a textbook example of organisms more, yet undescribed species, most of which are living at the interface between terrestrial and aquatic likely to have aquatic larvae.
    [Show full text]
  • Pre-Copulatory Sexual Cannibalism in Fishing Spiders: the Ecology of an Extreme Sexual Conflict
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2003 PRE-COPULATORY SEXUAL CANNIBALISM IN FISHING SPIDERS: THE ECOLOGY OF AN EXTREME SEXUAL CONFLICT J. Chadwick Johnson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Johnson, J. Chadwick, "PRE-COPULATORY SEXUAL CANNIBALISM IN FISHING SPIDERS: THE ECOLOGY OF AN EXTREME SEXUAL CONFLICT" (2003). University of Kentucky Doctoral Dissertations. 265. https://uknowledge.uky.edu/gradschool_diss/265 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION J. Chadwick Johnson The Graduate School University of Kentucky 2003 PRE-COPULATORY SEXUAL CANNIBALISM IN FISHING SPIDERS: THE ECOLOGY OF AN EXTREME SEXUAL CONFLICT ________________________________________ ABSTRACT OF DISSERTATION ________________________________________ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By J. Chadwick Johnson Lexington, Kentucky Director: Dr. Andrew Sih, Professor of Biological Sciences Lexington, Kentucky 2003 Copyright © J. Chadwick Johnson 2003 ABSTRACT OF DISSERTATION PRE-COPULATORY SEXUAL CANNIBALISM IN FISHING SPIDERS: THE ECOLOGY OF AN EXTREME SEXUAL CONFLICT Pre-copulatory sexual cannibalism (pre-SC), or predation of a potential mate before sperm transfer, provides an ideal model system for behavioral ecology’s current focus on inter- sexual conflict.
    [Show full text]
  • Agonistic Signals Received by an Arthropod Filiform Hair Allude to the Prevalence of Near-Field Sound Communication
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 1-1-2008 Agonistic signals received by an arthropod filiform hair allude ot the prevalence of near-field sound communication Roger D. Santer University of Nebraska - Lincoln, [email protected] Eileen Hebets University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscihebets Part of the Behavior and Ethology Commons Santer, Roger D. and Hebets, Eileen, "Agonistic signals received by an arthropod filiform hair allude ot the prevalence of near-field sound communication" (2008). Eileen Hebets Publications. 24. https://digitalcommons.unl.edu/bioscihebets/24 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Proceedings of the Royal Society B 275 (2008), pp. 363-368; doi 10.1098/rspb.2007.1466 Copyright © 2007 The Royal Society. Used by permission. http://publishing.royalsociety.org/index.cfm?page=1569 Submitted October 24, 2007; accepted November 16, 2007; published online December 5, 2007 Agonistic signals received by an arthropod filiform hair allude to the prevalence of near-field sound communication Roger D. Santer* and Eileen A. Hebets School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE 68588, USA * Corresponding author: [email protected] Abstract Arthropod filiform hairs respond to air particle movements and are among the most sensitive animal sensory organs. In many spe- cies, they are tuned to detect predators or prey and trigger escape or prey capture behaviours.
    [Show full text]