Introduction to Speckle Tracking in Cardiac Ultrasound Imaging Damien Garcia1, Pierre Lantelme1,2 and E´ Ric Saloux3

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Speckle Tracking in Cardiac Ultrasound Imaging Damien Garcia1, Pierre Lantelme1,2 and E´ Ric Saloux3 Chapter 26 Introduction to speckle tracking in cardiac ultrasound imaging Damien Garcia1, Pierre Lantelme1,2 and E´ ric Saloux3 In this chapter, we will first recall some basic principles of speckle tracking. The fundamentals of speckle tracking in a wider context are essentially described in Chapter 13. We will then treat speckle-tracking echocardiography and echo- cardiographic particle image velocimetry (echo-PIV) and indicate a number of clinical applications in the context of evaluation of cardiac function. We will then briefly introduce color Doppler approaches complementary to speckle tracking. We will finally present how speckle-tracking techniques could benefit from high- frame-rate echocardiography (also called ‘‘ultrafast echocardiography’’). We will conclude with the expected contribution of high-frame-rate ultrasound for speckle tracking in three-dimensional (3-D) echocardiography. 26.1 Speckle formation and speckle tracking The word ‘‘speckle’’ refers to the granular appearance of an image generated by a coherent imaging system, such as laser, optical coherence tomography, and ultra- sound. As explained in detail in Chapter 2, speckles appear when a random col- lection of scatterers is illuminated by waves whose wavelength is larger than the size of the individual scatterers. The grainy aspect of a speckle pattern is produced by the multiple backscattered signals of similar frequency that interfere con- structively and destructively, depending on their relative phases and amplitudes (Figure 26.1). In medical ultrasound imaging, as soft tissues contain many scat- terers, the ultrasound waveforms detected by the transducer are the combination (interference) of the different wave reflections induced by the distinct scatterers. The resulting speckles are visible in the unfiltered gray-level (B-mode) images as dark and bright specks. 1INSERM. CREATIS, UMR 5220, U1206, Universite´de Lyon, INSA-Lyon, Universite´Claude Bernard Lyon 1, UJM-Saint E´ tienne, France 2Fe´de´ration de Cardiologie Croix-Rousse, Lyon-Sud, Hospices Civils de Lyon, Universite´ de Lyon, France 3Department of Cardiology, CHU de Caen. EA 4650, SEILIRM, Universite´de Normandie, France Loizou-6990339 29 November 2017; 12:16:26 572 Handbook of speckle filtering and tracking Figure 26.1 Speckle formation. Left: interferences produced by two scatterers. Right: speckles produced by the interference of backscattered waves generated by randomly distributed scatterers (white dots) When the individual contributions of the scatterers are independent, the speckle patterns can be accurately modeled by various statistical distributions whose phy- sical meanings have been thoroughly discussed in [1]. Chapter 3 also provides an overview of the statistical models introduced since the pioneering work of Burc- khardt in 1978 [2]. Because medical ultrasound images are made exclusively of speckles, they can significantly affect visualization quality or postprocessing tasks, and in turn negatively impact the diagnostic potential of medical ultrasound [3]. Despeckling can thus be a necessary task in some specific imaging situations. This angle is a main theme of this handbook and is largely addressed in the chapters devoted to speckle filtering (i.e., part II). On the contrary, in the present chapter, we consider the speckle patterns as intrinsic signatures of the insonated medium. In such a case, these distinctive imprints must be sufficiently preserved from one frame to the next one to allow analysis of tissue dynamics through speckle tracking. Speckle tracking for ultrasound imaging has been introduced by Trahey et al. [4], from Duke University, North Carolina, United States, to produce a blood flow velocity vector field in a human vein (Figure 26.2, left). Although it does not appear in the paper’s references, it is likely that Trahey et al.’s approach has been influ- enced by two-dimensional (2-D) speckle velocimetry, a former speckle photography technique to measure 2-D velocity fields in unsteady flows [6]. Since then, speckle tracking in medical ultrasound imaging has been the subject of a yearly increasing number of investigations (Figure 26.3), mainly in the field of myocardial strain imaging (deformation imaging of the cardiac muscle). Another strong interest for speckle tracking later emerged in contrast echocardiography (cardiac ultrasound imaging with contrast agents) to display 2-D blood velocity vector fields in the cardiac left ventricular cavity, a technique often called ‘‘echocardiographic particle image velocimetry’’ (or echo-PIV). The following paragraphs will describe these two common applications of speckle tracking in cardiac ultrasound imaging. Although strain imaging and echo-PIV are also of interest in ultrasound vascular imaging, the vascular field will not be discussed in the present chapter. We invite the Loizou-6990339 29 November 2017; 12:16:26 Speckle tracking echocardiography 573 Blood flow Myocardial motion Trahey et al., 1987 Mailloux et al., 1987 Figure 26.2 First applications of speckle tracking. Left: Venous blood velocity profile obtained with a cross-correlation-based block-matching approach [4]. Right: Myocardial motion from a global Horn– Schunck optical flow method [5] Occurrence of “speckle tracking” 600 in MEDLINE (title/abstract) 500 400 300 200 100 1 1991 1995 2000 2005 2010 2015 Figure 26.3 Yearly occurrence of ‘‘speckle tracking’’ in abstracts and/or titles of MEDLINE-referred papers. The first occurrence of ‘‘speckle tracking’’ is in [7] Loizou-6990339 29 November 2017; 12:16:29 574 Handbook of speckle filtering and tracking interested reader to refer to the chapters that address these specific topics. One of the reasons for focusing on cardiac imaging is that speckle tracking is mostly used clinically in the context of cardiac evaluation. In summary—Speckles are issued from the interference of the wave reflections induced by the tissue scatterers. Although considered as noise in some imaging applications, speckle patterns also represent local signatures of the insonified tissues. These speckles can be tracked to determine frame-to-frame motion. 26.2 Basic principles of speckle tracking As explained earlier, speckles can be considered as acoustic markers of the inso- nified tissues. In a time series of ultrasound images, these markers are sufficiently preserved from one frame to the next if the frame rate is high enough. In this latter condition, it is therefore possible to locally track the speckle patterns and thus deduce the local tissue displacements with a frame-wise approach as explained in detail in Part III. For example, in the current clinical practice, a frame rate of 50–80 frames/s is recommended to obtain optimal conditions for speckle tracking in the resting heart [8]. Ultrasound speckles can be tracked frame to frame by various approaches, such as differential optical-flow methods [9,10] or block-matching algorithms [10–12]. A block-matching algorithm is a method used to estimate motion in a video sequence by locating similar blocks between two successive images. It is generally well adapted to retrieve relatively large frame-to-frame displacements. A simple though standard block-matching method is to compare the intensities of the pixels using the sum of absolute/squared differences measure [13]. Among a number of similarity criteria, the normalized cross-correlation was his- torically the first [7], and is still one of the most applied methods, in medical ultrasound imaging [14–17]. In the following, although different similarity criteria can be used, we thus focus on the normalized cross-correlation without loss of generality. The normalized cross-correlation can be evaluated directly in the spatial domain by using small subwindows in one frame, and search areas of larger size in a subsequent frame [18]. Another possibility is to calculate the normalized cross- correlation in the Fourier domain (Figure 26.4), a consequence of the Wiener– Khinchin theorem [19]. The latter approach is often called ‘‘phase correlation’’ [20]. The peak location of the normalized cross-correlation corresponds to the local displacement with a pixel precision. A subpixel precision can be returned from 2-D fitting of the correlation peak [19]. In its simplest form, speckle tracking by cross- correlation can be summed up by the following three-step process: (1) division of two successive B-mode images into small subwindows, (2) normalized cross-cor- relation of the subwindow pairs, and (3) peak fitting and estimation of the dis- placements. In the Fourier domain (phase correlation), it boils down to the following steps (see also Figure 26.4): Let I1 and I2 represent two successive gray-level B-mode images. These two  k images are both subdivided into evenly-spaced subwindows of size (m n), w1 and Loizou-6990339 29 November 2017; 12:16:30 Speckle tracking echocardiography 575 k w1 w k W k 1 FFT 1 k k W1 W2 B-mode image #1 Subwindowing FFT –1 k k W1 W2 k w2 Normalized Displacement FFT k cross-correlation W2 k w2 B-mode image #2 Figure 26.4 Speckle tracking using the normalized cross-correlation implemented in the Fourier domain. This block-matching scheme can be generalized with other similarity criteria, such as the SAD or SSD (sum of absolute/squared differences) k ¼ w2, with k 1...M, M denoting the total number of subwindows. Size and overlap of the subwindows must be adapted to adjust the precision/accuracy compromise,ÀÁ as W k ¼ F k well as theÀÁ resolution of the output displacement field. Let 1 w1 and W k ¼ F k 1 w1 be the 2-D Fourier transforms of two paired subwindows. The Fast Fourier Transform (FFT)-based normalized cross-correlation for each subwindow k is given by ! wk wk NCCk ¼ FÀ1 1 2 : jwkwk j 1 2 The inverse Fourier transform is denoted by FÀ1, and the overbar denotes the complex conjugate. The divisions and multiplications are elementwise. The relative D k D k k k translation ( i , j ) between the two subwindows w1 and w2 is given by the location of the peak in NCCk: ÀÁ ÀÁ k k k Di ; Dj ¼ arg maxðÞi;j NCC To determine the translation with subpixel accuracy, a simple and robust method is to fit the correlation peak to some function, such as a paraboloid or Gaussian sur- face [19].
Recommended publications
  • Myocardial Strain Imaging: How Useful Is It in Clinical Decision Making?
    European Heart Journal (2016) 37, 1196–1207 REVIEW doi:10.1093/eurheartj/ehv529 Imaging Myocardial strain imaging: how useful is it in clinical decision making? Otto A. Smiseth1*, Hans Torp2, Anders Opdahl1, Kristina H. Haugaa1, and Stig Urheim1 1Division of Cardiovascular and Pulmonary Diseases, Department of Cardiology and Institute for Surgical Research, Center for Heart Failure Research, Center for Cardiological Innovation and KG Jebsen Cardiac Research Centre Oslo, Oslo University Hospital, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway; and 2Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7489 Trondheim, Norway Downloaded from Received 30 June 2015; revised 13 September 2015; accepted 21 September 2015; online publish-ahead-of-print 27 October 2015 Myocardial strain is a principle for quantification of left ventricular (LV) function which is now feasible with speckle-tracking echocardiography. The best evaluated strain parameter is global longitudinal strain (GLS) which is more sensitive than left ventricular ejection fraction (LVEF) as a http://eurheartj.oxfordjournals.org/ measure of systolic function, and may be used to identify sub-clinical LV dysfunction in cardiomyopathies. Furthermore, GLS is recommended as routine measurement in patients undergoing chemotherapy to detect reduction in LV function prior to fall in LVEF. Intersegmental variability in timing of peak myocardial strain has been proposed as predictor of risk of ventricular arrhythmias. Strain imaging may be applied to guide place- ment of the LV pacing lead in patients receiving cardiac resynchronization therapy. Strain may also be used to diagnose myocardial ischaemia, but the technology is not sufficiently standardized to be recommended as a general tool for this purpose.
    [Show full text]
  • The Prognostic Importance of Right Ventricular Longitudinal Strain In
    diagnostics Review The Prognostic Importance of Right Ventricular Longitudinal Strain in Patients with Cardiomyopathies, Connective Tissue Diseases, Coronary Artery Disease, and Congenital Heart Diseases Marijana Tadic 1,* , Johannes Kersten 1 , Nicoleta Nita 1, Leonhard Schneider 1, Dominik Buckert 1, Birgid Gonska 1, Dominik Scharnbeck 1, Tilman Dahme 1, Armin Imhof 1, Evgeny Belyavskiy 2, Cesare Cuspidi 3 and Wolfgang Rottbauer 1 1 Klinik für Innere Medizin II, Universitätsklinikum Ulm, Albert-Einstein Allee 23, 89081 Ulm, Germany; [email protected] (J.K.); [email protected] (N.N.); [email protected] (L.S.); [email protected] (D.B.); [email protected] (B.G.); [email protected] (D.S.); [email protected] (T.D.); [email protected] (A.I.); [email protected] (W.R.) 2 Department of Cardiology, Charité—Universitätsmedizin Berlin (Campus Virchow-Klinikum), 13353 Berlin, Germany; [email protected] 3 Department of Medicine and Surgery, University of Milan-Bicocca, 20126 Milan, Italy; [email protected] Citation: Tadic, M.; Kersten, J.; Nita, * Correspondence: [email protected]; Tel.: +49-17632360011 N.; Schneider, L.; Buckert, D.; Gonska, B.; Scharnbeck, D.; Dahme, T.; Imhof, Abstract: Right ventricular (RV) systolic function represents an important independent predictor A.; Belyavskiy, E.; et al. The of adverse outcomes in many cardiovascular (CV) diseases. However, conventional parameters Prognostic Importance of Right of RV systolic function (tricuspid annular plane excursion (TAPSE), RV myocardial performance Ventricular Longitudinal Strain in Patients with Cardiomyopathies, index (MPI), and fractional area change (FAC)) are not always able to detect subtle changes in Connective Tissue Diseases, Coronary RV function.
    [Show full text]
  • Evaluation of Coronary Artery Disease Using Myocardial Elastography
    Ultrasound in Med. & Biol., Vol. -, No. -, pp. 1–10, 2017 Ó 2017 World Federation for Ultrasound in Medicine & Biology Printed in the USA. All rights reserved 0301-5629/$ - see front matter http://dx.doi.org/10.1016/j.ultrasmedbio.2017.01.001 d Original Contribution EVALUATION OF CORONARY ARTERY DISEASE USING MYOCARDIAL ELASTOGRAPHY WITH DIVERGING WAVE IMAGING: VALIDATION AGAINST MYOCARDIAL PERFUSION IMAGING AND CORONARY ANGIOGRAPHY y y1 JULIEN GRONDIN,* MARC WAASE, ALOK GAMBHIR, ETHAN BUNTING,* VINCENT SAYSENG,* z and ELISA E. KONOFAGOU* *Department of Biomedical Engineering, Columbia University, New York, New York, USA; y Department of Medicine, Columbia University, New York, New York, USA; and z Department of Radiology, Columbia University, New York, New York, USA (Received 3 November 2016; revised 19 December 2016; in final form 4 January 2017) Abstract—Myocardial elastography (ME) is an ultrasound-based technique that can image 2-D myocardial strains. The objectives of this study were to illustrate that 2-D myocardial strains can be imaged with diverging wave imaging and differ, on average, between normal and coronary artery disease (CAD) patients. In this study, 66 patients with symptoms of CAD were imaged with myocardial elastography before a nuclear stress test or an invasive coronary angiography. Radial cumulative strains were estimated in all patients. The end-systolic radial strain in the total cross section of the myocardium was significantly higher in normal patients (17.9 ± 8.7%) than in patients with reversible perfusion defect (6.2 ± 9.3%, p , 0.001) and patients with significant (20.9 ± 7.4%, p , 0.001) and non-significant (3.7 ± 5.7%, p , 0.01) lesions.
    [Show full text]
  • Right Bundle Branch Block and Impaired Left Ventricular Function As Evidence of a Left Ventricular Conduction Delay
    Circ J 2008; 72: 120–126 Right Bundle Branch Block and Impaired Left Ventricular Function as Evidence of a Left Ventricular Conduction Delay Hiroto Takamatsu, MD; Hiroshi Tada, MD; Hiroki Okaniwa, RDMS; Hiroyuki Toide, RDMS; Hiroko Maruyama, RDMS; Rumi Higuchi, RDMS; Kenichi Kaseno, MD; Shigeto Naito, MD; Masahiko Kurabayashi, MD*; Shigeru Oshima, MD; Koichi Taniguchi, MD Background The indications and efficacy of cardiac resynchronization therapy (CRT) have not been suffi- ciently clarified in patients with right bundle branch block (RBBB). Methods and Results This study included 55 patients with normal QRS morphology and duration (Control- Gr) and 49 patients with complete RBBB (CRBBB-Gr). Using tissue Doppler imaging, the time difference (TD) between the electromechanical delay of the septal wall, left ventricular (LV) lateral wall, and right ventricular free wall were measured. Using tissue tracking imaging, the coefficient of the time variation from the beginning of the QRS to the peak displacement time of 6 regions of the LV (CV-PMDLV) was calculated. The TD between the septal wall and that of the LV lateral wall (TDSEPT-LAT) did not differ between the Control-Gr and RBBB-Gr. However, a significant difference was found in the TDSEPT-LAT between the CRBBB patients with LV systolic dysfunction (ejection fraction (EF) ≤50%) and those with normal LV function (EF >50%; p<0.001). The CV- PMDLV was greater in the CRBBB patients with LV systolic dysfunction than in those with a normal LV function (p<0.05). The RBBB-Gr patients with LV dysfunction and a great TDSEPT-LAT, improved clinically after the CRT.
    [Show full text]
  • Evaluation of Left Ventricular Function with Strain/Strain Rate Imaging in Patients with Rheumatic Mitral Stenosis
    328 Original Investigation Özgün Araşt›rma Evaluation of left ventricular function with strain/strain rate imaging in patients with rheumatic mitral stenosis Romatizmal mitral darlığı olan hastalarda sol ventrikül fonksiyonlarının strain/strain rate görüntüleme ile değerlendirilmesi Ziya Şimşek, Şule Karakelleoğlu1, Fuat Gündoğdu1, Enbiya Aksakal , Serdar Sevimli 1, Şakir Arslan1, Yekta Gürlertop1, Hüseyin Şenocak1 Department of Cardiology, Erzurum Regional Training and Research Hospital, Erzurum 1Department of Cardiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey ABS TRACT Objective: The most important sequel of acute rheumatic fever is mitral stenosis in long-term. The aim of the study is to determine left ventricular (LV) functions by tissue Doppler imaging (TDI) and strain/strain rate echocardiography (SE/SRE) in mitral stenosis patients who had no clinical signs of heart failure. Methods: Our study was designed as cross-sectional study. The study population consisted of 32 patients with isolated mitral stenosis and mitral valve area < 2.0 cm2 (Group 1) and 25 healthy control subjects (Group 2). In addition to standard echocardiographic methods, TDI and SE/ SRE were performed to assess LV functions in all participants. Student’s t-test was used to compare continuous variables. Fisher- exact test was used to compare categorical variables. Results: Systolic myocardial velocity (Sm) were significantly lower in Group 1 than in Group 2 (6.0±1.4 cm/sec vs 7.9±1.8 cm/sec, p<0.001) also, early diastolic myocardial velocity (Em) were significantly lower in Group 1 than in Group 2 (4.4±1.5 cm/sec vs 10.8±2.1 cm/sec, p<0.001).
    [Show full text]
  • Hypertrophic Cardiomyopathy
    GUIDELINES AND STANDARDS American Society of Echocardiography Clinical Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy Endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography Sherif F. Nagueh, MD, FASE, Chair,* S. Michelle Bierig, RDCS, FASE,* Matthew J. Budoff, MD,§ Milind Desai, MD,* Vasken Dilsizian, MD,† Benjamin Eidem, MD, FASE,* Steven A. Goldstein, MD,* Judy Hung, MD, FASE,* Martin S. Maron, MD,‡ Steve R. Ommen, MD,* and Anna Woo, MD,* Houston, Texas; St. Louis, Missouri; Los Angeles, California; Cleveland, Ohio; Baltimore, Maryland; Rochester, Minnesota; Washington, District of Columbia; Boston, Massachusetts; Toronto, Ontario, Canada (J Am Soc Echocardiogr 2011;24:473-98.) Keywords: Hypertrophic cardiomyopathy, Echocardiography, Nuclear imaging, Cardiovascular magnetic res- onance, Cardiac computed tomography TABLE OF CONTENTS From the Methodist DeBakey Heart and Vascular Center, Houston, Texas (S.F.N.); St. Anthony’s Medical Center, St. Louis, Missouri (S.M.B.); Los Angeles Biomedical Research Institute, Torrance, California (M.J.B.); Cleveland Clinic, Abbreviations 474 Cleveland, Ohio (M.D.); the University of Maryland School of Medicine, Organization of the Writing Group and Evidence Review 474 Baltimore, Maryland (V.D.); Mayo Clinic, Rochester, Minnesota (B.E., S.R.O.); 1. Introduction 474 Washington Hospital Center, Washington, District of Columbia (S.A.G.); 2. Echocardiography 474 Massachusetts General Hospital, Boston, Massachusetts (J.H.); Tufts Medical A. Cardiac Structure 474 Center, Boston, Massachusetts (M.S.M.); and Toronto General Hospital, B. Assessment of LV Systolic Function 475 University of Toronto, Toronto, Ontario, Canada (A.W.). C. Assessment of LV Diastolic Function 477 D.
    [Show full text]
  • Longitudinal and Circumferential Strain Rate, Left Ventricular Remodeling, and Prognosis After Myocardial Infarction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 56, No. 22, 2010 © 2010 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.06.044 Cardiac Imaging Longitudinal and Circumferential Strain Rate, Left Ventricular Remodeling, and Prognosis After Myocardial Infarction Chung-Lieh Hung, MD,*ʈ¶# Anil Verma, MD,* Hajime Uno, PHD,** Sung-Hee Shin, MD,* Mikhail Bourgoun, MD,* Amira H. Hassanein, MD,* John J. McMurray, MD,† Eric J. Velazquez, MD,‡ Lars Kober, MD,§ Marc A. Pfeffer, MD, PHD,* Scott D. Solomon, MD,* for the VALIANT Investigators Boston, Massachusetts; Durham, North Carolina; Copenhagen, Denmark; and Taipei, Taiwan Objectives We sought to investigate the clinical prognostic value of longitudinal and circumferential strain (S) and strain rate (SR) in patients after high-risk myocardial infarction (MI). Background Left ventricular (LV) contractile performance after MI is an important predictor of long-term outcome. Tissue deforma- tion imaging might more closely reflect myocardial contractility than traditional measures of systolic functions. Methods The VALIANT (Valsartan in Acute Myocardial Infarction Trial) Echo study enrolled 603 patients with LV dysfunc- tion, heart failure, or both 5 days after MI. We measured global peak longitudinal S and systolic SR (SRs) from apical 4- and 2-chamber views and global circumferential S and SRs from parasternal short-axis view with speckle tracking software (Velocity Vector Imaging, Siemens, Inc., Mountain View, California). We related global S and SRs to LV remodeling at 20-month follow-up and to clinical outcomes.
    [Show full text]
  • Utility of Longitudinal Strain Imaging by Speckle Tracking in Predicting Obstructive Coronary Artery Disease in Patients Without
    Jebmh.com Original Research Article Utility of Longitudinal Strain Imaging by Speckle Tracking in Predicting Obstructive Coronary Artery Disease in Patients without Regional Wall Motion Abnormality on 2D Echocardiography Kiran Gopinath1, Sajan Zulfikar Ahmad2, Sunitha Viswanathan3, George Alummoottil Koshy4 1Consultant Cardiologist, Department of Cardiology, NIMS Hospital, Trivandrum, Kerala, India. 2Assistant Professor, Department of Cardiology, Pushpagiri Medical College, Thiruvalla, Kerala, India. 3Professor and Head, Department of Cardiology, Medical College, Trivandrum, Kerala, India. 4Professor, Department of Cardiology, Medical College, Trivandrum, Kerala, India. ABSTRACT BACKGROUND Strain imaging by speckle tracking is a well-established method to assess left Corresponding Author: ventricular function. The objective of this study was to define the utility of strain Dr. Sajan Ahmad Z, imaging in predicting obstructive coronary artery disease (CAD) in a subset of #16 FG, Skyline Edge, Thirumoolapuram, patients who do not have regional wall motion abnormality (RWMA) on routine 2D Thiruvalla- 689115, echocardiography. Kerala, India. E-mail: [email protected] METHODS DOI: 10.18410/jebmh/2019/683 This is a prospective study. Consecutive patients with no RWMA scheduled to undergo coronary angiography (CAG) for clinical indications were included in the Financial or Other Competing Interests: None. study. Longitudinal strain imaging by speckle tracking using automated functional imaging (AFI) was done by a single investigator prior to CAG. All angiograms were How to Cite This Article: reported by a second investigator who was blinded to the strain imaging findings. Gopinath K, Sajan Ahmad Z, Obstructive CAD was defined as ≥ 70% luminal stenosis of epicardial coronary Viswanathan S, et al. Utility of arteries and/or ≥ 50% luminal stenosis of LMCA.
    [Show full text]
  • Ultrasound Frame Rate Requirements for Cardiac Elastography: Experimental and in Vivo Results
    Ultrasonics 49 (2009) 98–111 Contents lists available at ScienceDirect Ultrasonics journal homepage: www.elsevier.com/locate/ultras Ultrasound frame rate requirements for cardiac elastography: Experimental and in vivo results Hao Chen a,c, Tomy Varghese a,*, Peter S. Rahko b, J.A. Zagzebski a a Department of Medical Physics, University of Wisconsin-Madison, 1300 University Avenue, 1530 MSC, Madison, WI 53706, USA b Cardiovascular Medicine, UW Hospital and Clinics, University of Wisconsin-Madison, 1300 University Avenue, 1530 MSC, Madison, WI 53706, USA c Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1300 University Avenue, 1530 MSC, Madison, WI 53706, USA article info abstract Article history: Cardiac elastography using radiofrequency echo signals can provide improved 2D strain information Received 28 February 2008 compared to B-mode image data, provided data are acquired at sufficient frame rates. In this paper, Received in revised form 15 May 2008 we evaluate ultrasound frame rate requirements for unbiased and robust estimation of tissue displace- Accepted 31 May 2008 ments and strain. Both tissue-mimicking phantoms under cyclic compressions at rates that mimic the Available online 20 June 2008 contractions of the heart and in vivo results are presented. Sinusoidal compressions were applied to the phantom at frequencies ranging from 0.5 to 3.5 cycles/sec, with a maximum deformation of 5% of Keywords: the phantom height. Local displacements and strains were estimated using both a two-step one-dimen- Cardiac imaging sional and hybrid two-dimensional cross-correlation method. Accuracy and repeatability of local strains Displacement Echocardiography were assessed as a function of the ultrasound frame rate based on signal-to-noise ratio values.
    [Show full text]
  • New Universal Strain Software Accurately Assesses Cardiac Systolic and Diastolic Function Using Speckle Tracking Echocardiography
    © 2014, Wiley Periodicals, Inc. DOI: 10.1111/echo.12512 Echocardiography New Universal Strain Software Accurately Assesses Cardiac Systolic and Diastolic Function Using Speckle Tracking Echocardiography Theodore J. Kolias, M.D.,* Peter G. Hagan, M.B.,* Stanley J. Chetcuti, M.D.,* Diane L. Eberhart, B.S., R.D.C.S.,* Nicole M. Kline, B.S., R.D.C.S.,* Sean D. Lucas, M.S.,† and James D. Hamilton, Ph.D.† *Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Cardiovascular Center, Ann Arbor, Michigan; and †Epsilon Imaging Incorporated, Ann Arbor, Michigan Background: We have developed new universal strain software (USS) that can be used to perform speckle tracking of any Digital Imaging and Communications in Medicine (DICOM) image, regardless of the ultrasound system used to obtain it. Methods: Fifty patients prospectively underwent echocardi- ography immediately prior to cardiac catheterization. Biplane peak global longitudinal strain (GLS), peak systolic longitudinal strain rate (SSR), peak early diastolic longitudinal strain rate (DSR), and peak early diastolic circumferential strain rate (DCSR) were determined using conventional strain software (CSS) that uses raw data, and using the new USS applied to DICOM images. Results: Universal strain software correlated with CSS for GLS (r = 0.78, P < 0.001), SSR (r = 0.78, P < 0.001), DSR (r = 0.54, P < 0.001), and DCSR (r = 0.43, P = 0.019). GLS and SSR using USS correlated with left ventricular ejection fraction (LVEF) (r = À0.67 and À0.71, respectively) as well as using CSS (r = À0.66 and À0.71). Patients with diastolic dysfunction had significantly lower DSR (0.61 vs.
    [Show full text]
  • Measurement of Strain and Strain Rate by Echocardiography Ready for Prime Time?
    Journal of the American College of Cardiology Vol. 47, No. 7, 2006 © 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.11.063 STATE-OF-THE-ART PAPER Measurement of Strain and Strain Rate by Echocardiography Ready for Prime Time? Thomas H. Marwick, MD, PHD Brisbane, Australia Strain and strain rate (SR) are measures of deformation that are basic descriptors of both the nature and the function of cardiac tissue. These properties may now be measured using either Doppler or two-dimensional ultrasound techniques. Although these measurements are feasible in routine clinical echocardiography, their acquisition and analysis nonetheless presents a number of technical challenges and complexities. Echocardiographic strain and SR imaging has been applied to the assessment of resting ventricular function, the assessment of myocardial viability using low-dose dobutamine infusion, and stress testing for ischemia. Resting function assessment has been applied in both the left and the right ventricles, and may prove particularly valuable for identifying myocardial diseases and following up the treatment response. Although the evidence base is limited, SR imaging seems to be feasible and effective for the assessment of myocardial viability. The use of the technique for the detection of ischemia during stress echocardiography is technically challenging and likely to evolve further. The clinical availability of strain and SR measurement may offer a solution to the ongoing need
    [Show full text]
  • The Role of Left-Atrial Mechanics Assessed by Two-Dimensional
    diagnostics Article The Role of Left-Atrial Mechanics Assessed by Two-Dimensional Speckle-Tracking Echocardiography to Differentiate Hypertrophic Cardiomyopathy from Hypertensive Left-Ventricular Hypertrophy Nicoleta-Monica Popa-Fotea 1,2 , Miruna Mihaela Micheu 2,* , Nicoleta Oprescu 2, Adriana Alexandrescu 2, Maria Greavu 3, Sebastian Onciul 1,2, Roxana Onut 2, Ioana Petre 1,2, Alina Scarlatescu 2 , Monica Stoian 2, 3 2 1,2 Razvan Ticulescu , Diana Zamfir and Maria Dorobant, u 1 Cardio-thoracic Department, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania; [email protected] (N.-M.P.-F.); [email protected] (S.O.); [email protected] (I.P.); [email protected] (M.D.) 2 Department of Cardiology, Clinical Emergency Hospital of Bucharest, Calea Floreasca 8, 014461 Bucharest, Romania; [email protected] (N.O.); [email protected] (A.A.); [email protected] (R.O.); [email protected] (A.S.); [email protected] (M.S.); [email protected] (D.Z.) 3 Cardiomyopathy Center, Monza Hospital, Tony Bulandra Street, No. 27, 021967 Bucharest, Romania; [email protected] (M.G.); [email protected] (R.T.) * Correspondence: [email protected]; Tel.: +40-072-245-1755 Citation: Popa-Fotea, N.-M.; Micheu, Abstract: Hypertrophic cardiomyopathy (HCM) and arterial hypertension (HTN) are conditions with M.M.; Oprescu, N.; Alexandrescu, A.; different pathophysiology, but both can result in left-ventricular hypertrophy (LVH). The role of left- Greavu, M.; Onciul, S.; Onut, R.; Petre, atrial (LA) functional changes detected by two-dimensional speckle-tracking echocardiography (STE) I.; Scarlatescu, A.; Stoian, M.; et al. in indicating LVH etiology is unknown.
    [Show full text]