A Numerical Groundwater Flow Model of the Upper and Middle Trinity Aquifer, Hill Country Area ______

Total Page:16

File Type:pdf, Size:1020Kb

A Numerical Groundwater Flow Model of the Upper and Middle Trinity Aquifer, Hill Country Area ______ A Numerical Groundwater Flow Model of the Upper and Middle Trinity Aquifer, Hill Country Area __________________________________________ Open-file report 00-02 Robert E. Mace1 Ali H. Chowdhury Roberto Anaya Shao-Chih (Ted) Way Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231 1(512) 936-0861, [email protected] February 2000 Table of Contents Abstract.............................................................................................................................. 1 Introduction ....................................................................................................................... 2 Study Area ......................................................................................................................... 3 Physiography and Climate..................................................................................... 5 Geology ................................................................................................................... 8 Previous Work................................................................................................................. 10 Hydrogeologic Setting..................................................................................................... 12 Hydrostratigraphy ............................................................................................... 13 Structure .............................................................................................................. 14 Water levels and Regional Groundwater Flow .................................................. 15 Recharge .............................................................................................................. 21 Rivers, Streams, and Springs .............................................................................. 24 Hydraulic properties ............................................................................................ 25 Discharge ............................................................................................................. 28 Conceptual Model of Groundwater Flow in the Aquifer ............................................ 31 Model Design ................................................................................................................... 33 Code and Processor ............................................................................................. 33 Layers and Grid ................................................................................................... 34 Model Parameters ............................................................................................... 38 Modeling Approach ........................................................................................................ 42 Steady-State Model ......................................................................................................... 43 Calibration ........................................................................................................... 43 Sensitivity Analysis .............................................................................................. 47 Transient Model .............................................................................................................. 48 Calibration and Verification ............................................................................... 48 Limitations of the Model................................................................................................. 49 Input data ............................................................................................................. 51 Assumptions ......................................................................................................... 52 Scale of Application ............................................................................................ 53 Future Work .................................................................................................................... 54 Conclusions ...................................................................................................................... 56 Acknowledgments............................................................................................................ 57 Acronyms ......................................................................................................................... 58 References ........................................................................................................................ 58 ii List of Figures Figure 1. Location of the study area .............................................................................. 4 Figure 2. Location of the major aquifers ....................................................................... 6 Figure 3. Location of the Regional Water Planning Groups ......................................... 7 Figure 4. Stratigraphic and hydrostratigraphic section.................................................. 9 Figure 5. Surface geology............................................................................................ 11 Figure 6. Elevation of the top of the Upper Trinity aquifer......................................... 16 Figure 7. Elevation of the top of the Middle Trinity aquifer....................................... 17 Figure 8. Elevation of the top of the Hammett Shale and the Lower Trinity.............. 18 Figure 9. Water-level elevations in the Middle Trinity for fall, 1975 ......................... 20 Figure 10. Distribution of hydraulic conductivity in the Middle Trinity ...................... 29 Figure 11. Active cells in Layer 1 ................................................................................. 35 Figure 12. Active cells in Layer 2 ................................................................................. 36 Figure 13. Active cells in Layer 3 ................................................................................. 37 Figure 14. Comparison of simulated and measured water levels .................................. 45 Figure 15. Crossplot of simulated and measured water levels ...................................... 46 Figure 16. Comparison of simulated and measured water-level fluctuations ............... 50 iii A Numerical Groundwater Flow Model of the Upper and Middle Trinity Aquifer, Hill Country Area __________________________________________ Abstract _______________________________________________________________________ We developed a three-dimensional, numerical groundwater flow model of the Upper and Middle Trinity aquifer in the Hill Country area to help estimate groundwater availability and water levels in response to pumping and potential future droughts. The model includes historical information on the aquifer and incorporates results of new studies on water levels, structure, hydraulic properties, and recharge rates. We calibrated a steady-state model for 1975 hydrologic conditions when water levels in the aquifer were near equilibrium and a transient model for 1996 through 1997 when the climate transitioned from a dry to a wet period. Using the model, we calibrated values of vertical hydraulic conductivity, specific storage, and specific yield for the aquifer and adequately matched measured water levels. Water levels in the model are most sensitive to recharge, the horizontal hydraulic conductivity of the Middle Trinity aquifer, and the vertical hydraulic conductivity of the Upper Trinity aquifer. Water-level changes are most sensitive to the specific yield of each layer. Model calibrated recharge is four percent of mean annual precipitation. Model results suggest that 20 percent of the recharge moves from the Trinity aquifer to the south towards the Edwards (Balcones Fault Zone) aquifer. Future work includes (1) developing predictive datasets for pumping and recharge including the drought of record, (2) enhancing the recharge, structure, hydraulic property 1 datasets, (3) using the model to predict water levels in the aquifer for various climatic scenarios, and (4) estimating groundwater availability in the area. ________________________________________________________________________ Introduction ________________________________________________________________________ The Trinity aquifer in south-central Texas is an important source of groundwater to municipalities and individuals in the Hill Country area (fig. 1). Although the Trinity aquifer is recognized by the State as a major aquifer (Ashworth and Hopkins, 1995), yields in the aquifer can be comparatively lower than other major aquifers. For example, average yields in the Trinity aquifer in the Hill Country are about 250 times lower than average yields in the Edwards (Balcones Fault Zone [BFZ]) aquifer immediately to the south. New development and recent droughts have increased interest in the Trinity aquifer and have heightened concerns about groundwater availability in the aquifer. Many want to know how current and future pumping and future droughts will affect water levels over the long term and impact groundwater resources and the environment. We developed a three-dimensional finite-difference groundwater flow model for the Trinity aquifer in the Hill Country as a tool to (1) evaluate groundwater availability, (2) improve our conceptual understanding of groundwater flow in the region, and (3) develop a management tool to support Senate Bill 1 regional water planning efforts for the Plateau, Lower Colorado, and South Central Texas Regional Water Planning Groups. This interim report describes
Recommended publications
  • A GIS-Based Software to Simulate Groundwater Nitrate Load from Septic Systems to Surface Water Bodies
    Computers & Geosciences 52 (2013) 108–116 Contents lists available at SciVerse ScienceDirect Computers & Geosciences journal homepage: www.elsevier.com/locate/cageo ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies J. Fernando Rios a, Ming Ye b,n, Liying Wang b, Paul Z. Lee c, Hal Davis d, Rick Hicks c a Department of Geography, State University of New York at Buffalo, Buffalo, NY, USA b Department of Scientific Computing, Florida State University, Tallahassee, FL, USA c Florida Department of Environmental Protection, Tallahassee, FL, USA d 2625 Vergie Court, Tallahassee, FL 32303, USA article info abstract Article history: Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates Received 17 June 2012 in groundwater and surface water. The adverse effects that nitrates have on human and environmental Received in revised form health have given rise to the need to estimate the actual or potential level of nitrate contamination. 4 October 2012 With the goal of reducing data collection and preparation costs, and decreasing the time required to Accepted 5 October 2012 produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Available online 16 October 2012 Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information Keywords: systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in ground- Nitrate transport water and estimating long-term nitrate loads from groundwater to surface water bodies. Data Screening model requirements are reduced by using simplified models of groundwater flow and nitrate transport which Denitrification consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial Septic system Nitrogen variability in the hydraulic parameters and septic tank distribution.
    [Show full text]
  • Climate Models and Their Evaluation
    8 Climate Models and Their Evaluation Coordinating Lead Authors: David A. Randall (USA), Richard A. Wood (UK) Lead Authors: Sandrine Bony (France), Robert Colman (Australia), Thierry Fichefet (Belgium), John Fyfe (Canada), Vladimir Kattsov (Russian Federation), Andrew Pitman (Australia), Jagadish Shukla (USA), Jayaraman Srinivasan (India), Ronald J. Stouffer (USA), Akimasa Sumi (Japan), Karl E. Taylor (USA) Contributing Authors: K. AchutaRao (USA), R. Allan (UK), A. Berger (Belgium), H. Blatter (Switzerland), C. Bonfi ls (USA, France), A. Boone (France, USA), C. Bretherton (USA), A. Broccoli (USA), V. Brovkin (Germany, Russian Federation), W. Cai (Australia), M. Claussen (Germany), P. Dirmeyer (USA), C. Doutriaux (USA, France), H. Drange (Norway), J.-L. Dufresne (France), S. Emori (Japan), P. Forster (UK), A. Frei (USA), A. Ganopolski (Germany), P. Gent (USA), P. Gleckler (USA), H. Goosse (Belgium), R. Graham (UK), J.M. Gregory (UK), R. Gudgel (USA), A. Hall (USA), S. Hallegatte (USA, France), H. Hasumi (Japan), A. Henderson-Sellers (Switzerland), H. Hendon (Australia), K. Hodges (UK), M. Holland (USA), A.A.M. Holtslag (Netherlands), E. Hunke (USA), P. Huybrechts (Belgium), W. Ingram (UK), F. Joos (Switzerland), B. Kirtman (USA), S. Klein (USA), R. Koster (USA), P. Kushner (Canada), J. Lanzante (USA), M. Latif (Germany), N.-C. Lau (USA), M. Meinshausen (Germany), A. Monahan (Canada), J.M. Murphy (UK), T. Osborn (UK), T. Pavlova (Russian Federationi), V. Petoukhov (Germany), T. Phillips (USA), S. Power (Australia), S. Rahmstorf (Germany), S.C.B. Raper (UK), H. Renssen (Netherlands), D. Rind (USA), M. Roberts (UK), A. Rosati (USA), C. Schär (Switzerland), A. Schmittner (USA, Germany), J. Scinocca (Canada), D. Seidov (USA), A.G.
    [Show full text]
  • Fully Conservative Coupling of HEC-RAS with MODFLOW to Simulate Stream–Aquifer Interactions in a Drainage Basin
    Journal of Hydrology (2008) 353, 129– 142 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jhydrol Fully conservative coupling of HEC-RAS with MODFLOW to simulate stream–aquifer interactions in a drainage basin Leticia B. Rodriguez a,*, Pablo A. Cello b,1, Carlos A. Vionnet a,2, David Goodrich c a Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ USA b Facultad de Ingenierı`a y Ciencias Hı`dricas, Universidad Nacional del Litoral, CC 217, 3000 Santa Fe, Argentina c Southwest Watershed Research, Agricultural Research Service, U.S. Department of Agriculture, 2000 East Allen Road, Tucson, AZ 85719, USA Received 20 September 2007; received in revised form 10 January 2008; accepted 6 February 2008 KEYWORDS Summary This work describes the application of a methodology designed to improve the Groundwater–surface representation of water surface profiles along open drain channels within the framework water interaction; of regional groundwater modelling. The proposed methodology employs an iterative pro- Hydrologic modelling; cedure that combines two public domain computational codes, MODFLOW and HEC-RAS. In MODFLOW; spite of its known versatility, MODFLOW contains several limitations to reproduce eleva- HEC-RAS tion profiles of the free surface along open drain channels. The Drain Module available within MODFLOW simulates groundwater flow to open drain channels as a linear function of the difference between the hydraulic head in the aquifer and the hydraulic head in the drain, where it considers a static representation of water surface profiles along drains. The proposed methodology developed herein uses HEC-RAS, a one-dimensional (1D) com- puter code for open surface water calculations, to iteratively estimate hydraulic profiles along drain channels in order to improve the aquifer/drain interaction process.
    [Show full text]
  • Streamflow-Routing (SFR2) Package with Unsaturated Flow Beneath Streams (MODFLOW 2005 Version 1.12.00)
    Streamflow-Routing (SFR2) Package with Unsaturated Flow beneath Streams (MODFLOW 2005 Version 1.12.00) MODFLOW Name File The Streamflow-Routing Package is activated automatically by including a record in the MODFLOW-2005 name file using the file type (Ftype) “SFR” to indicate that relevant calculations are to be made in the model and to specify the related input data file. The user can optionally specify that stream gages and monitoring stations are to be represented at one or more locations along a stream channel by including a record in the MODFLOW-2005 name file using the file type (Ftype) “GAGE” that specifies the relevant input data file giving locations of gages. Data input for SFR1 works without modification if unsaturated flow is not simulated. Input Data Instructions The modification of SFR2 to simulate unsaturated flow relies on the specific yield values as specified in the Layer Property Flow (LPF) Package, the Hydrogeologic-Unit Flow (HUF) Package, or the Block-Centered Flow (BCF) Package. If MODFLOW-2005 is run with the option to use vertical hydraulic conductivity in the LPF Package, the layer(s) that contain cells where unsaturated flow will be simulated must be specified as convertible. That is, the variable LAYTYP specified in LPF (or variable LTHUF in HUF) must not be equal to zero, otherwise the model will print an error message and stop execution. Additional variables that must be specified to define hydraulic properties of the unsaturated zone are all included within the SFR2 input file. All values are entered in as free format. Parameters can be used to define streambed hydraulic conductivity only when data input follows the SFR1 input structure (Prudic and others, 2004).
    [Show full text]
  • Review of the Monolith Materials Inc. Groundwater Flow Model
    Review of the Monolith Materials Inc. Groundwater Flow Model Prepared for: Lower Platte South Natural Resource District February 2021 The technical material in this report was prepared by or under the supervision and direction of the undersigned: ___________________________________________________ Jacob Bauer, P.G. (WY #3902) Hydrogeologist | Project Manager LRE Water Clinton Meyer – Staff Hydrogeologist, LRE Water Dave Hume P.G. (NE # 0186) – Sr. Project Manager and VP Midwest Operations, LRE Water Page | 2 Monolith Model Review- February 2021 TABLE OF CONTENTS Section 1: Introduction ................................................................................................................. 4 1.1 Purpose of Review ............................................................................................................... 4 1.2 Model Background ............................................................................................................... 5 Section 2: Model Objective and Choice of Modeling Code .................................................................... 5 Section 3: Model Inputs ................................................................................................................ 6 3.1 Extent, Spatial Discretization, and Temporal Discretization ............................................................ 6 3.2 Geology, Model Thickness, and Bedrock Flow Interactions ............................................................ 6 3.3 Wells and Targets ...............................................................................................................
    [Show full text]
  • Characterization of Groundwater Flow for Near Surface Disposal Facilities Iaea, Vienna, 2001 Iaea-Tecdoc-1199 Issn 1011–4289
    IAEA-TECDOC-1199 Characterization of groundwater flow for near surface disposal facilities February 2001 The originating Section of this publication in the IAEA was: Waste Technology Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria CHARACTERIZATION OF GROUNDWATER FLOW FOR NEAR SURFACE DISPOSAL FACILITIES IAEA, VIENNA, 2001 IAEA-TECDOC-1199 ISSN 1011–4289 © IAEA, 2001 Printed by the IAEA in Austria February 2001 FOREWORD The objective of adioactive waste disposal is to provide long term isolation of waste to protect humans and the environment while not imposing any undue burden on future generations. To meet this objective, establishment of a disposal system takes into account the characteristics of the waste and site concerned. In practice, low and intermediate level radioactive waste (LILW) with limited amounts of long lived radionuclides is disposed of at near surface disposal facilities for which disposal units are constructed above or below the ground surface up to several tens of meters in depth. Extensive experience in near surface disposal has been gained in Member States where a large number of such facilities have been constructed. The experience needs to be shared effectively by Member States which have limited resources for developing and/or operating near surface repositories. A set of technical reports is being prepared by the IAEA to provide Member States, especially developing countries, with technical guidance and current information on how to achieve the objective of near surface disposal through siting, design, operation, closure and post-closure controls. These publications are intended to address specific technical issues, which are important for the aforementioned disposal activities, such as waste package inspection and verification, monitoring, and long-term maintenance of records.
    [Show full text]
  • Hydrological Controls on Salinity Exposure and the Effects on Plants in Lowland Polders
    Hydrological controls on salinity exposure and the effects on plants in lowland polders Sija F. Stofberg Thesis committee Promotors Prof. Dr S.E.A.T.M. van der Zee Personal chair Ecohydrology Wageningen University & Research Prof. Dr J.P.M. Witte Extraordinary Professor, Faculty of Earth and Life Sciences, Department of Ecological Science VU Amsterdam and Principal Scientist at KWR Nieuwegein Other members Prof. Dr A.H. Weerts, Wageningen University & Research Dr G. van Wirdum Dr K.T. Rebel, Utrecht University Dr R.P. Bartholomeus, KWR Water, Nieuwegein This research was conducted under the auspices of the Research School for Socio- Economic and Natural Sciences of the Environment (SENSE) Hydrological controls on salinity exposure and the effects on plants in lowland polders Sija F. Stofberg Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 07 June 2017 at 4 p.m. in the Aula. Sija F. Stofberg Hydrological controls on salinity exposure and the effects on plants in lowland polders, 172 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2017) With references, with summary in English ISBN: 978-94-6343-187-3 DOI: 10.18174/413397 Table of contents Chapter 1 General introduction .......................................................................................... 7 Chapter 2 Fresh water lens persistence and root zone salinization hazard under temperate climate ............................................................................................ 17 Chapter 3 Effects of root mat buoyancy and heterogeneity on floating fen hydrology ..
    [Show full text]
  • 1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #1: Course Introduction, Water Balance Equation
    1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #1: Course Introduction, Water Balance Equation Where does water come from? It cycles. The total supply doesn’t change much. 39 Moisture over 100 land Precipitation on land 385 Precipitation on ocean 61 424 Evaporation Evaporation from from the land the ocean Surface runoff Infiltration Evapotranspiration and evaporation Groundwater 38 surface recharge discharge Groundwater flow 1 Groundwater discharge Low permeability strata Hydrologic cycle with yearly flow volumes based on annual surface precipitation on earth, ~119,000 km3/year. 3000 BC – Ecclesiastes 1:7 (Solomon) “All the rivers run into the sea; yet the sea is not full; unto the place from whence the rivers come, thither they return again.” Greek Philosophers (Plato, Aristotle) embraced the concept, but mechanisms were not understood. 17th Century – Pierre Perrault showed that rainfall was sufficient to explain flow of the Seine. 1.72, Groundwater Hydrology Lecture Packet 1 Prof. Charles Harvey Page 1 of 15 The earth’s energy (radiation) cycle Solar (shortwave) radiation Terrestrial (long-wave) radiation Reflected Outgoing Space Incoming 99.998 6 18 6 4 39 27 Backscattering by air Net radiant emission by greenhouse Reflection gases by clouds Net radiant Atmosphere emission by 11 Net clouds 4 absorption by Absorption greenhouse by clouds gasses & 20 clouds Absorption by Reflection atmosphere Net radiant Net by surface Net latent emission by sensible heat flux surface heat flux 46 15 7 24 Ocean and Absorption by Land surface Heating of surface 46 0.002 Circulation redistributes energy /yr) 2 20 0 cal cm 1 -20 -60 4.0 3.0 Total Flux Net radiation flux (10 flux Net radiation 2.0 Latent 1.0 Heat cal/yr) 22 0 Ocean -1.0 Currents Sensible Heat -2.0 Energy Transfer (10 Energy Transfer -3.0 -4.0 900 N 600 300 00 300 600 900 S Latitude 1.72, Groundwater Hydrology Lecture Packet 1 Prof.
    [Show full text]
  • A Study on Water and Salt Transport, and Balance Analysis in Sand Dune–Wasteland–Lake Systems of Hetao Oases, Upper Reaches of the Yellow River Basin
    water Article A Study on Water and Salt Transport, and Balance Analysis in Sand Dune–Wasteland–Lake Systems of Hetao Oases, Upper Reaches of the Yellow River Basin Guoshuai Wang 1,2, Haibin Shi 1,2,*, Xianyue Li 1,2, Jianwen Yan 1,2, Qingfeng Miao 1,2, Zhen Li 1,2 and Takeo Akae 3 1 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; [email protected] (G.W.); [email protected] (X.L.); [email protected] (J.Y.); [email protected] (Q.M.); [email protected] (Z.L.) 2 High Efficiency Water-saving Technology and Equipment and Soil Water Environment Engineering Research Center of Inner Mongolia Autonomous Region, Hohhot 010018, China 3 Faculty of Environmental Science and Technology, Okayama University, Okayama 700-8530, Japan; [email protected] * Correspondence: [email protected]; Tel.: +86-13500613853 or +86-04714300177 Received: 1 November 2020; Accepted: 4 December 2020; Published: 9 December 2020 Abstract: Desert oases are important parts of maintaining ecohydrology. However, irrigation water diverted from the Yellow River carries a large amount of salt into the desert oases in the Hetao plain. It is of the utmost importance to determine the characteristics of water and salt transport. Research was carried out in the Hetao plain of Inner Mongolia. Three methods, i.e., water-table fluctuation (WTF), soil hydrodynamics, and solute dynamics, were combined to build a water and salt balance model to reveal the relationship of water and salt transport in sand dune–wasteland–lake systems. Results showed that groundwater level had a typical seasonal-fluctuation pattern, and the groundwater transport direction in the sand dune–wasteland–lake system changed during different periods.
    [Show full text]
  • The Exact Groundwater Divide on Water Table Between Two Rivers: a Fundamental Model Investigation
    Article The Exact Groundwater Divide on Water Table between Two Rivers: A Fundamental Model Investigation Peng-Fei Han, Xu-Sheng Wang *, Li Wan, Xiao-Wei Jiang and Fu-Sheng Hu Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; [email protected] (P.-F.H.); [email protected] (L.W.); [email protected] (X.-W.J.); [email protected] (F.-S.H.) * Correspondence: [email protected]; Tel.: +86-010-82322008 Received: 13 March 2019; Accepted: 1 April 2019; Published: 2 April 2019 Abstract: The groundwater divide within a plane has long been delineated as a water table ridge composed of the local top points of a water table. This definition has not been examined well for river basins. We developed a fundamental model of a two-dimensional unsaturated–saturated flow in a profile between two rivers. The exact groundwater divide can be identified from the boundary between two local flow systems and compared with the top of a water table. It is closer to the river of a higher water level than the top of a water table. The catchment area would be overestimated (up to ~50%) for a high river and underestimated (up to ~15%) for a low river by using the top of the water table. Furthermore, a pass-through flow from one river to another would be developed below two local flow systems when the groundwater divide is significantly close to a high river. Keywords: groundwater divide; water table; unsaturated–saturated flow; catchment area; pass- through flow 1.
    [Show full text]
  • The Hydrogeology Challenge: Water for the World TEACHER’S GUIDE
    The Hydrogeology Challenge: Water for the World TEACHER’S GUIDE Why is learning about groundwater important? • 95% of the water used in the United States comes from groundwater. • About half of the people in the United States get their drinking water from groundwater. In the future, the water industry will need leaders that can understand, interpret and manipulate groundwater models to make informed decisions. Geologists, agricultural scientists, petroleum engineers, civil engineers, and environmental engineers play an important role in deciding how to use and protect groundwater. The Hydrogeology Challenge introduces students to groundwater modeling and the role it plays in groundwater management. It challenges students to use an interactive computer model to think critically about groundwater resources. The Hydrogeology Challenge has been successfully utilized in educational settings including as a Division C Science Olympiad event and a complement to standard lessons. INTRODUCTION The Hydrogeology Challenge introduces groundwater characteristics in a fun and easy to understand way. It leads students step-by-step through a series of simple calculations that reveal information about how groundwater moves. The Hydrogeology Challenge can be used in a variety of ways in the classroom: • a teacher-led activity • an independent student activity • a team activity This instruction guide demonstrates key principles of the computer program so you can comfortably use the Hydrogeology Challenge in your classroom. Additional features to enhance student learning are available (information on page 6). KEY TOPICS: Aquifer, Contamination/pollution prevention, Earth science/geology, Groundwater, Water use GRADE LEVEL: High School, Undergraduate DURATION: 20 consecutive minutes to complete the challenge, variable for application OBJECTIVES: Understand basic groundwater modeling | Determine groundwater characteristics through basic calculations | Understand assumptions of the computer model.
    [Show full text]
  • Application of MODFLOW with Boundary Conditions Analyses Based on Limited Available Observations: a Case Study of Birjand Plain in East Iran
    water Article Application of MODFLOW with Boundary Conditions Analyses Based on Limited Available Observations: A Case Study of Birjand Plain in East Iran Reza Aghlmand 1 and Ali Abbasi 1,2,* 1 Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; [email protected] 2 Faculty of Civil Engineering and Geosciences, Water Resources Section, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands * Correspondence: [email protected] or [email protected]; Tel.: +31-15-2781029 Received: 18 July 2019; Accepted: 9 September 2019; Published: 12 September 2019 Abstract: Increasing water demands, especially in arid and semi-arid regions, continuously exacerbate groundwater resources as the only reliable water resources in these regions. Groundwater numerical modeling can be considered as an effective tool for sustainable management of limited available groundwater. This study aims to model the Birjand aquifer using GMS: MODFLOW groundwater flow modeling software to monitor the groundwater status in the Birjand region. Due to the lack of the reliable required data to run the model, the obtained data from the Regional Water Company of South Khorasan (RWCSK) are controlled using some published reports. To get practical results, the aquifer boundary conditions are improved in the established conceptual method by applying real/field conditions. To calibrate the model parameters, including the hydraulic conductivity, a semi-transient approach is applied by using the observed data of seven years. For model performance evaluation, mean error (ME), mean absolute error (MAE), and root mean square error (RMSE) are calculated. The results of the model are in good agreement with the observed data and therefore, the model can be used for studying the water level changes in the aquifer.
    [Show full text]