Review of the Highly Versatile Cassiopea Xamachana System

Total Page:16

File Type:pdf, Size:1020Kb

Review of the Highly Versatile Cassiopea Xamachana System REVIEW published: 09 April 2018 doi: 10.3389/fevo.2018.00035 Upside-Down but Headed in the Right Direction: Review of the Highly Versatile Cassiopea xamachana Edited by: System Sandie M. Degnan, The University of Queensland, Aki H. Ohdera 1*, Michael J. Abrams 2, Cheryl L. Ames 3, David M. Baker 4, Australia Luis P. Suescún-Bolívar 5, Allen G. Collins 3,6, Christopher J. Freeman 7, Reviewed by: Edgar Gamero-Mora 8, Tamar L. Goulet 9, Dietrich K. Hofmann 10, Adrian Jaimes-Becerra 8, Adam Michael Reitzel, Paul F. Long 11, Antonio C. Marques 8,12, Laura A. Miller 13, Laura D. Mydlarz 14, University of North Carolina at Andre C. Morandini 8,12, Casandra R. Newkirk 15, Sastia P. Putri 16, Julia E. Samson 13, Charlotte, United States Sérgio N. Stampar 17, Bailey Steinworth 15, Michelle Templeman 18, Patricia E. Thomé 5, Lucas Leclere, Marli Vlok 19, Cheryl M. Woodley 20, Jane C.Y. Wong 4, Mark Q. Martindale 15, UMR7009 Laboratoire de Biologie du 21 1,22 Développement de Villefranche sur William K. Fitt and Mónica Medina * Mer, France 1 Department of Biology, Pennsylvania State University, University Park, PA, United States, 2 Division of Biology and Biological *Correspondence: Engineering, California Institute of Technology, Pasadena, CA, United States, 3 Department of Invertebrate Zoology, National Aki H. Ohdera Museum of Natural History, Smithsonian Institution, Washington, DC, United States, 4 School of Biological Sciences, The [email protected] Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong, 5 Unidad Académica de Sistemas Mónica Medina Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico [email protected] City, Mexico, 6 National Systematics Laboratory of NOAA’s Fisheries Service, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States, 7 Smithsonian Marine Station, Fort Piece, FL, United States, Specialty section: 8 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil, 9 Department of Biology, 10 This article was submitted to University of Mississippi, Oxford, MS, United States, Department of Zoology & Neurobiology, Ruhr-University Bochum, 11 Coevolution, Bochum, Germany, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom, 12 13 a section of the journal Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil, Biology Department, University of North 14 Frontiers in Ecology and Evolution Carolina at Chapel Hill, Chapel Hill, NC, United States, Department of Biology, University of Texas at Arlington, Arlington, TX, United States, 15 Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States, Received: 29 January 2018 16 Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan, 17 Departamento de Accepted: 20 March 2018 Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Unesp Universidade Estadual Paulista, Assis, Brazil, Published: 09 April 2018 18 TropWATER and College of Marine & Environmental Sciences, James Cook University, Townsville, QLD, Australia, Citation: 19 Department of Botany, University of British Columbia Vancouver, Vancouver, BC, Canada, 20 U.S. National Oceanic & Ohdera AH, Abrams MJ, Ames CL, Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Charleston, SC, Baker DM, Suescún-Bolívar LP, United States, 21 Odum School of Ecology, University of Georgia, Athens, GA, United States, 22 Smithsonian Tropical Collins AG, Freeman CJ, Research Institute, Smithsonian Institution, Washington, DC, United States Gamero-Mora E, Goulet TL, Hofmann DK, Jaimes-Becerra A, Long PF, Marques AC, Miller LA, The upside-down jellyfish Cassiopea xamachana (Scyphozoa: Rhizostomeae) has been Mydlarz LD, Morandini AC, predominantly studied to understand its interaction with the endosymbiotic dinoflagellate Newkirk CR, Putri SP, Samson JE, Stampar SN, Steinworth B, algae Symbiodinium. As an easily culturable and tractable cnidarian model, it is Templeman M, Thomé PE, Vlok M, an attractive alternative to stony corals to understanding the mechanisms driving Woodley CM, Wong JC, establishment and maintenance of symbiosis. Cassiopea is also unique in requiring the Martindale MQ, Fitt WK and Medina M (2018) Upside-Down but Headed in symbiont in order to complete its transition to the adult stage, thereby providing an the Right Direction: Review of the excellent model to understand symbiosis-driven development and evolution. Recently, Highly Versatile Cassiopea xamachana System. Front. Ecol. Evol. 6:35. the Cassiopea research system has gained interest beyond symbiosis in fields related to doi: 10.3389/fevo.2018.00035 embryology, climate ecology, behavior, and more. With these developments, resources Frontiers in Ecology and Evolution | www.frontiersin.org 1 April 2018 | Volume 6 | Article 35 Ohdera et al. Cassiopea xamachana System Review including genomes, transcriptomes, and laboratory protocols are steadily increasing. This review provides an overview of the broad range of interdisciplinary research that has utilized the Cassiopea model and highlights the advantages of using the model for future research. Keywords: jellyfish, symbiosis, toxinology, sleep, venom, scyphozoan systematics, bioindicator INTRODUCTION Medusa andromeda (published as a post mortem work; figures published only in Forskål (1776). The generic name Cassiopea The upside-down jellyfish Cassiopea is a benthic scyphozoan was proposed for all jellyfish with foliaceous appendages in 1810 (Rhizostomeae) commonly found in tropical and sub-tropical (Péron and Lesueur, 1810). Members of the genus Cassiopea shallow coastal ecosystems, such as mangroves and seagrass beds. were treated as a family by Tilesius (1831), and the current Cassiopea spp. are unique among scyphomedusae in that their spelling appeared ∼30 years later (Agassiz, 1862). The species- characteristic flat exumbrella rests on the sea bottom, while their level relationships of the genus Cassiopea are still unresolved convex subumbrella and oral arms face upwards. High light since most of the taxonomic studies are based on overlapping, penetrance is important for species within this genus, as the plastic, and polymorphic features (Table 1; Mayer, 1910; Kramp, jellyfish hosts one or more photosynthetic dinoflagellate species 1961). This is confounded by vague species descriptions with of the genus Symbiodinium (Hofmann et al., 1996; Lampert, species diagnoses that are descriptive rather than comparative, 2016). Similar to their coral relatives, nutrient exchange is a key although morphology has been useful in distinguishing some component supporting this cnidarian-dinoflagellate mutualism congeneric species, i.e., Cassiopea frondosa. In total, 24 nominal (Hofmann and Kremer, 1981; Welsh et al., 2009; Freeman et al., species, and varieties thereof, have been proposed to date 2016). In addition, Cassiopea spp. rely on the symbionts as a (Table 1), but only 10 species are presently considered to be developmental trigger (Hofmann et al., 1978; Colley and Trench, valid based on molecular data (Holland et al., 2004; Arai 1985). A fascination with these requisite traits of the upside- et al., 2017; Morandini et al., 2017). These studies show that down jellyfish has fueled studies on the Cassiopea-Symbiodinium populations of C. xamachana are potential introduction of interaction since the 1980s (see recent review by Lampert, 2016). Cassiopea andromeda from the Red Sea, thereby grouping While its efficacy as a system for symbiosis research is well the species into a single lineage. These species designations, known in the literature, Cassiopea is gaining momentum as a which are based on kimura 2-parameter pairwise distance, fall model species in other areas. In mathematics, the symmetric within previous estimations for other scyphozoans, ranging from morphology and relatively simple neuromuscular system of 0.00 to 0.034 for conspecifics, and 0.102–0.234 for congenerics the upside-down jellyfish make it an ideal system from which (Holland et al., 2004; Ortman et al., 2010; Gómez Daglio to develop computational fluid dynamic and neuromechanical and Dawson, 2017). Analyses with expanded taxon sampling models (Passano, 2004; Hamlet et al., 2011; Santhanakrishnan (Bayha et al., 2010; Kayal et al., 2013, 2017) have placed the et al., 2012). Additionally, Cassiopea has been presented as a monogeneric Cassiopea within the family Cassiopeidae, in an possible model organism for the study of behavioral biology unstable position within the clade Kolpophorae, along with as highlighted by recent developments with sleep behavior representatives of Mastigiidae, Thysanostomatidae, Versurigidae, (Nath et al., 2017; Figure 1). Likewise, this jellyfish genus has and Cepheidae (Figure 2). The Kolpophorae belongs to the order been gaining traction as a biomonitor/bioindicator species, with Rhizostomeae, a well-supported clade derived from within the applications for coastal ecosystem management (Templeman scyphozoan order Semaeostomeae (Bayha et al., 2010; Kayal et al., and Kingsford, 2012; Epstein et al., 2016; Klein et al., 2016a, 2013). 2017). The relative simplicity of culturing Cassiopea polyps While the polyp stage and strobilation of C. xamachana, and medusae makes this genus a highly amenable laboratory as well as the polyp stage of C. frondosa, were described by system. With newly established
Recommended publications
  • The Role of Temperature in Survival of the Polyp Stage of the Tropical Rhizostome Jelly®Sh Cassiopea Xamachana
    Journal of Experimental Marine Biology and Ecology, L 222 (1998) 79±91 The role of temperature in survival of the polyp stage of the tropical rhizostome jelly®sh Cassiopea xamachana William K. Fitt* , Kristin Costley Institute of Ecology, Bioscience 711, University of Georgia, Athens, GA 30602, USA Received 27 September 1996; received in revised form 21 April 1997; accepted 27 May 1997 Abstract The life cycle of the tropical jelly®sh Cassiopea xamachana involves alternation between a polyp ( 5 scyphistoma) and a medusa, the latter usually resting bell-down on a sand or mud substratum. The scyphistoma and newly strobilated medusa (5 ephyra) are found only during the summer and early fall in South Florida and not during the winter, while the medusae are found year around. New medusae originate as ephyrae, strobilated by the polyp, in late summer and fall. Laboratory experiments showed that nematocyst function, and the ability of larvae to settle and metamorphose change little during exposure to temperatures between 158C and up to 338C. However, tentacle length decreased and ability to transfer captured food to the mouth was disrupted at temperatures # 188C. Unlike temperate-zone species of scyphozoans, which usually over-winter in the polyp or podocyst form when medusae disappear, this tropical species has cold-sensitive scyphistomae and more temperature-tolerant medusae. 1998 Elsevier Science B.V. Keywords: Scyphozoa; Jelly®sh; Cassiopea; Temperature; Life history 1. Introduction The rhizostome medusae of Cassiopea xamachana are found throughout the Carib- bean Sea, with their northern limit of distribution on the southern tip of Florida. Unlike most scyphozoans these jelly®sh are seldom seen swimming, and instead lie pulsating bell-down on sandy or muddy substrata in mangroves or soft bottom bay habitats, giving rise to the common names ``mangrove jelly®sh'' or ``upside-down jelly®sh''.
    [Show full text]
  • Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia Sp at Kenya’S Gazi Bay
    American Journal of Life Sciences 2014; 2(6): 395-399 Published online December 31, 2014 (http://www.sciencepublishinggroup.com/j/ajls) doi: 10.11648/j.ajls.20140206.20 ISSN: 2328-5702 (Print); ISSN: 2328-5737 (Online) Population and spatial dynamics mangrove jellyfish Cassiopeia sp at Kenya’s Gazi bay Tsingalia H. M. Department of Biological Sciences, Moi University, Box 3900-30100, Eldoret, Kenya Email address: [email protected] To cite this article: Tsingalia H. M.. Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia sp at Kenya’s Gazi Bay. American Journal of Life Sciences. Vol. 2, No. 6, 2014, pp. 395-399. doi: 10.11648/j.ajls.20140206.20 Abstract: Cassiopeia, the upside-down or mangrove jellyfish is a bottom-dwelling, shallow water marine sycophozoan of the phylum Cnidaria. It is commonly referred to as jellyfish because of its jelly like appearance. The medusa is the dominant phase in its life history. They have a radial symmetry and occur in shallow, tropical lagoons, mangrove swamps and sandy mud falls in tropical and temperate regions. In coastal Kenya, they are found only in one specific location in the Gazi Bay of the south coast. There are no documented studies on this species in Kenya. The objective of this study was to quantify the spatial and size-class distribution, and recruitment of Cassiopeia at the Gazi Bay. Ten 50mx50m quadrats were randomly placed in an estimated study area of 6.4ha to cover about 40 percent of the total study area. A total of 1043 individual upside-down jellyfish were sampled. In each quadrat, all jellyfish encountered were sampled individually.
    [Show full text]
  • The Puzzling Occurrence of the Upside-Down Jellyfish Cassiopea
    ZOOLOGIA 37: e50834 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE The puzzling occurrence of the upside-down jellyfishCassiopea (Cnidaria: Scyphozoa) along the Brazilian coast: a result of several invasion events? Sergio N. Stampar1 , Edgar Gamero-Mora2 , Maximiliano M. Maronna2 , Juliano M. Fritscher3 , Bruno S. P. Oliveira4 , Cláudio L. S. Sampaio5 , André C. Morandini2,6 1Departamento de Ciências Biológicas, Laboratório de Evolução e Diversidade Aquática, Universidade Estadual Paulista “Julio de Mesquita Filho”. Avenida Dom Antônio 2100, 19806-900 Assis, SP, Brazil. 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14 101, 05508-090 São Paulo, SP, Brazil. 3Instituto do Meio Ambiente de Alagoas. Avenida Major Cícero de Góes Monteiro 2197, 57017-515 Maceió, AL, Brazil. 4Instituto Biota de Conservação, Rua Padre Odilon Lôbo, 115, 57038-770 Maceió, Alagoas, Brazil 5Laboratório de Ictiologia e Conservação, Unidade Educacional de Penedo, Universidade Federal de Alagoas. Avenida Beira Rio, 57200-000 Penedo, AL, Brazil. 6Centro de Biologia Marinha, Universidade de São Paulo. Rodovia Manoel Hypólito do Rego, km 131.5, 11612-109 São Sebastião, SP, Brazil. Corresponding author: Sergio N. Stampar ([email protected]) http://zoobank.org/B879CA8D-F6EA-4312-B050-9A19115DB099 ABSTRACT. The massive occurrence of jellyfish in several areas of the world is reported annually, but most of the data come from the northern hemisphere and often refer to a restricted group of species that are not in the genus Cassiopea. This study records a massive, clonal and non-native population of Cassiopea and discusses the possible scenarios that resulted in the invasion of the Brazilian coast by these organisms.
    [Show full text]
  • Cassiopea Xamachana (Upside-Down Jellyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION.
    [Show full text]
  • Indomethacin Reproducibly Induces Metamorphosis in Cassiopea Xamachana Scyphistomae
    Indomethacin reproducibly induces metamorphosis in Cassiopea xamachana scyphistomae Patricia Cabrales-Arellano2, Tania Islas-Flores1, Patricia E. Thome´1 and Marco A. Villanueva1 1 Unidad Acade´mica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnologı´a-UNAM, Puerto Morelos, Me´xico 2 Posgrado en Ciencias del Mar y Limnologı´a-UNAM, Instituto de Ciencias del Mar y Limnologı´a-UNAM, Ciudad de Me´xico, Me´xico ABSTRACT Cassiopea xamachana jellyfish are an attractive model system to study metamorphosis and/or cnidarian–dinoflagellate symbiosis due to the ease of cultivation of their planula larvae and scyphistomae through their asexual cycle, in which the latter can bud new larvae and continue the cycle without differentiation into ephyrae. Then, a subsequent induction of metamorphosis and full differentiation into ephyrae is believed to occur when the symbionts are acquired by the scyphistomae. Although strobilation induction and differentiation into ephyrae can be accomplished in various ways, a controlled, reproducible metamorphosis induction has not been reported. Such controlled metamorphosis induction is necessary for an ensured synchronicity and reproducibility of biological, biochemical, and molecular analyses. For this purpose, we tested if differentiation could be pharmacologically stimulated as in Aurelia aurita, by the metamorphic inducers thyroxine, KI, NaI, Lugol’s iodine, H2O2, indomethacin, or retinol. We found reproducibly induced strobilation by 50 mM indomethacin after six days of exposure, and 10–25 mM after 7 days. Strobilation under optimal conditions reached 80–100% with subsequent ephyrae release after exposure. Thyroxine yielded Submitted 20 September 2016 inconsistent results as it caused strobilation occasionally, while all other chemicals Accepted 10 January 2017 had no effect.
    [Show full text]
  • Cassiopea Andromeda (Forsskål, 1775) [Cnidaria: Scyphozoa: Rhizostomea]
    Aquatic Invasions (2006) Volume 1, Issue 3: 196-197 DOI 10.3391/ai.2006.1.3.18 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Short communication A new record of an alien jellyfish from the Levantine coast of Turkey - Cassiopea andromeda (Forsskål, 1775) [Cnidaria: Scyphozoa: Rhizostomea] Cem Çevik*, Itri Levent Erkol and Benin Toklu Çukurova University, Faculty of Fisheries,Department of Marine Biology, Adana, 01330, Turkey Email: [email protected] *Corresponding author Received 17 July 2006; accepted in revised form 5 September 2006 Abstract To date, three alien scyphozoan species were reported from the Eastern Mediterranean, but only one, Rhopilema nomadica, was reported from the Turkish coast. Recently, a second alien scyphozoan, Cassiopea andromeda, was collected on 20 July 2005 in Iskenderun Bay, SE Turkey. Key words: Cassiopea andromeda, Scyphozoa, Levant Sea, Turkey, Iskenderun Bay, alien species Cassiopea andromeda (Forsskål, 1775) is the Factory (36°11.200'N and 36°43.100'E) on first Erythrean scyphomedusan species reported 20.07.2005. The site was sampled monthly since from the Mediterranean following the opening of 2002. the Suez Canal. It had been collected in the Suez Two of the six individuals found which have a Canal in 1886 (Galil et al. 1990), and soon after mean umbrella length of 5 cm were taken for from Cyprus (Maas 1903). Nearly half a century further investigation in the laboratory, and were later it was found in Neokameni, a small determined as C. andromeda (Figure 1) volcanic island near Thira, in the southern according to the identification key given by Galil Aegean Sea (Schäffer 1955), and later in et al.
    [Show full text]
  • Biochemical Characterization of Cassiopea Andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea
    marine drugs Article Biochemical Characterization of Cassiopea andromeda (Forsskål, 1775), Another Red Sea Jellyfish in the Western Mediterranean Sea Gianluca De Rinaldis 1,2,† , Antonella Leone 1,3,*,† , Stefania De Domenico 1,4 , Mar Bosch-Belmar 5 , Rasa Slizyte 6, Giacomo Milisenda 7 , Annalisa Santucci 2, Clara Albano 1 and Stefano Piraino 3,4 1 Institute of Sciences of Food Production (CNR-ISPA, Unit of Lecce), National Research Council, Via Monteroni, 73100 Lecce, Italy; [email protected] (G.D.R.); [email protected] (S.D.D.); [email protected] (C.A.) 2 Department of Biotechnology Chemistry and Pharmacy (DBCF), Università Degli Studi Di Siena, Via A. Moro, 53100 Siena, Italy; [email protected] 3 Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Local Unit of Lecce), Via Monteroni, 73100 Lecce, Italy; [email protected] 4 Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Campus Ecotekne, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy 5 Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, 90128 Palermo, Italy; [email protected] 6 Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway; [email protected] 7 Centro Interdipartimentale della Sicilia, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo, 90142 Palermo, Italy; [email protected] Citation: De Rinaldis, G.; Leone, A.; * Correspondence: [email protected]; Tel.: +39-0832-422615 De Domenico, S.; Bosch-Belmar, M.; † These authors contributed equally to this work. Slizyte, R.; Milisenda, G.; Santucci, A.; Albano, C.; Piraino, S.
    [Show full text]
  • Bibliography on the Scyphozoa with Selected References on Hydrozoa and Anthozoa
    W&M ScholarWorks Reports 1971 Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa Dale R. Calder Virginia Institute of Marine Science Harold N. Cones Virginia Institute of Marine Science Edwin B. Joseph Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, and the Zoology Commons Recommended Citation Calder, D. R., Cones, H. N., & Joseph, E. B. (1971) Bibliography on the Scyphozoa with selected references on Hydrozoa and Anthozoa. Special scientific eporr t (Virginia Institute of Marine Science) ; no. 59.. Virginia Institute of Marine Science, William & Mary. https://doi.org/10.21220/V59B3R This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. BIBLIOGRAPHY on the SCYPHOZOA WITH SELECTED REFERENCES ON HYDROZOA and ANTHOZOA Dale R. Calder, Harold N. Cones, Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE. OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23012 AUGUST, 1971 BIBLIOGRAPHY ON THE SCYPHOZOA, WITH SELECTED REFERENCES ON HYDROZOA AND ANTHOZOA Dale R. Calder, Harold N. Cones, ar,d Edwin B. Joseph SPECIAL SCIENTIFIC REPORT NO. 59 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 w. J. Hargis, Jr. April 1971 Director i INTRODUCTION Our goal in assembling this bibliography has been to bring together literature references on all aspects of scyphozoan research. Compilation was begun in 1967 as a card file of references to publications on the Scyphozoa; selected references to hydrozoan and anthozoan studies that were considered relevant to the study of scyphozoans were included.
    [Show full text]
  • Cassiopea Xamachana
    ARTICLE https://doi.org/10.1038/s42003-020-0777-8 OPEN Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana Cheryl L. Ames1,2,3,12*, Anna M.L. Klompen 3,4,12, Krishna Badhiwala5, Kade Muffett3,6, Abigail J. Reft3,7, 1234567890():,; Mehr Kumar3,8, Jennie D. Janssen 3,9, Janna N. Schultzhaus1, Lauren D. Field1, Megan E. Muroski1, Nick Bezio3,10, Jacob T. Robinson5, Dagmar H. Leary11, Paulyn Cartwright4, Allen G. Collins 3,7 & Gary J. Vora11* Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epi- thelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water. 1 National Academy of Sciences, National Research Council, Postdoctoral Research Associate, US Naval Research Laboratory, Washington, DC 20375, USA. 2 Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
    [Show full text]
  • A Review of Toxins from Cnidaria
    marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1.
    [Show full text]
  • Checkpoints in the Life-Cycle of Cassiopea Spp.: Control of Metagenesis and Metamorphosis in a Tropical Jellyfish
    Int. J. Dc\'. BioI. ~O: 331-33R (1996) 331 Checkpoints in the life-cycle of Cassiopea spp.: control of metagenesis and metamorphosis in a tropical jellyfish# DIETRICH K. HOFMANN'*, WilLIAM K. FITT2 and JURGEN FLECK' 'Ruhr-University Bochum, Department of Zoology, Bochum, Germany and 2University of Georgia, Athens, Georgia, USA ABSTRACT Experimental data reveal that most, if not all, major events in the metagenetic life. cycle of Cassiopea spp. at these checkpoints depend on the interaction with specific biotic and physical cues. For medusa formation within a permissive temperature range by monodisk strobi. lation of the polyp, the presence of endosymbiotic dinoflagellates is indispensable. The priming effect of the algal symbionts is not primarily coupled with photosynthetic activity, but was found to be enhanced in the light. Budding of larva.like propagules by the polyp, however, is indepen- dent from such zooxanthellae. On the other hand the budding rate is influenced by various rear- ing conditions. Exogenous chemical cues control settlement and metamorphosis into scyphopolyps of both sexually produced planula larvae and asexual propagules. In laboratory experiments two classes of metamorphosis inducing compounds have been detected: a family of oligopeptides, featuring a proline-residue next to the carboxyterminal amino acid, and several phorbol esters. Using the peptide "C-DNS-GPGGPA, induction of metamorphosis has been shown to be receptor-mediated. Furthermore, activation of protein kinase C, a key enzyme within the inositolphospholipid-signalling pathway appears to be involved in initiating metamorphosis. In mangrove habitats of Cassiopea spp. planula larvae specifically settle and metamorphose on sub- merged, deteriorating mangrove leaves from which biologically active fractions have been isolat- ed.
    [Show full text]
  • Fieldable Environmental DNA Sequencing to Assess Jellyfish
    fmars-08-640527 April 13, 2021 Time: 12:34 # 1 ORIGINAL RESEARCH published: 13 April 2021 doi: 10.3389/fmars.2021.640527 Fieldable Environmental DNA Sequencing to Assess Jellyfish Biodiversity in Nearshore Waters of the Florida Keys, United States Cheryl Lewis Ames1,2,3*, Aki H. Ohdera3,4, Sophie M. Colston1, Allen G. Collins3,5, William K. Fitt6, André C. Morandini7,8, Jeffrey S. Erickson9 and Gary J. Vora9* 1 National Research Council, National Academy of Sciences, U.S. Naval Research Laboratory, Washington, DC, United States, 2 Graduate School of Agricultural Science, Faculty of Agriculture, Tohoku University, Sendai, Japan, 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States, 4 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States, 5 National Systematics Laboratory of the National Oceanic Atmospheric Administration Fisheries Service, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States, 6 Odum School of Ecology, University of Georgia, Athens, GA, United States, 7 Departamento de Zoologia, Instituto de Biociências, University of São Edited by: Paulo, São Paulo, Brazil, 8 Centro de Biologia Marinha, University of São Paulo, São Sebastião, Brazil, 9 Center Frank Edgar Muller-Karger, for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States University of South Florida, United States Recent advances in molecular sequencing technology and the increased availability Reviewed by: Chih-Ching Chung, of fieldable laboratory equipment have provided researchers with the opportunity to National Taiwan Ocean University, conduct real-time or near real-time gene-based biodiversity assessments of aquatic Taiwan ecosystems.
    [Show full text]