Pharmacological Studies of Passiflora Sp. and Their Bioactive Compounds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards an Understanding of the Evolution of Violaceae from an Anatomical and Morphological Perspective Saul Ernesto Hoyos University of Missouri-St
University of Missouri, St. Louis IRL @ UMSL Theses Graduate Works 8-7-2011 Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective Saul Ernesto Hoyos University of Missouri-St. Louis, [email protected] Follow this and additional works at: http://irl.umsl.edu/thesis Recommended Citation Hoyos, Saul Ernesto, "Towards an understanding of the evolution of Violaceae from an anatomical and morphological perspective" (2011). Theses. 50. http://irl.umsl.edu/thesis/50 This Thesis is brought to you for free and open access by the Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Theses by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. Saul E. Hoyos Gomez MSc. Ecology, Evolution and Systematics, University of Missouri-Saint Louis, 2011 Thesis Submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Master of Science July 2011 Advisory Committee Peter Stevens, Ph.D. Chairperson Peter Jorgensen, Ph.D. Richard Keating, Ph.D. TOWARDS AN UNDERSTANDING OF THE BASAL EVOLUTION OF VIOLACEAE FROM AN ANATOMICAL AND MORPHOLOGICAL PERSPECTIVE Saul Hoyos Introduction The violet family, Violaceae, are predominantly tropical and contains 23 genera and upwards of 900 species (Feng 2005, Tukuoka 2008, Wahlert and Ballard 2010 in press). The family is monophyletic (Feng 2005, Tukuoka 2008, Wahlert & Ballard 2010 in press), even though phylogenetic relationships within Violaceae are still unclear (Feng 2005, Tukuoka 2008). The family embrace a great diversity of vegetative and floral morphologies. Members are herbs, lianas or trees, with flowers ranging from strongly spurred to unspurred. -
Comparative Study of Passiflora Taxa Leaves: I. a Morpho-Anatomic Profile
Revista Brasileira de Farmacognosia 25 (2015) 328–343 www .sbfgnosia.org.br/revista Original Article Comparative study of Passiflora taxa leaves: I. A morpho-anatomic profile a b b,1 b Luma Wosch , Daniela Cristina Imig , Armando Carlos Cervi , Bárbara Baêsso Moura , c a,∗ Jane Manfron Budel , Cid Aimbiré de Moraes Santos a Programa de Pós-graduac¸ ão em Ciências Farmacêuticas, Laboratório de Farmacognosia, Universidade Federal do Paraná, Curitiba, PR, Brazil b Departamento de Botânica, Universidade Federal do Paraná, Curitiba, PR, Brazil c Departamento de Ciências Farmacêuticas, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil a a b s t r a c t r t i c l e i n f o Article history: Determining the authenticity and quality of plant raw materials used in the formulation of herbal Received 14 May 2015 medicines, teas and cosmetics is essential to ensure their safety and efficacy for clinical use. Some Pas- Accepted 26 June 2015 siflora species are officially recognized in the pharmaceutical compendia of various countries and have Available online 14 July 2015 therapeutic uses, particularly as sedatives and anxiolytics. However, the large number of Passiflora species, coupled with the fact that most species are popularly known as passion fruit, increases the misidenti- Keywords: fication problem. The purpose of this study is to make a pharmacognostic comparison between various Passiflora Passiflora species to establish a morpho-anatomical profile that could contribute to the quality control Morpho-anatomy of herbal drug products that contain passion fruit. This was conducted by collecting samples of leaves Passion fruit from twelve Passiflora taxa (ten species and two forms of P. -
Changes in the Content of Organic Acids and Expression Analysis of Citric Acid Accumulation-Related Genes During Fruit Development of Yellow (Passiflora Edulis F
International Journal of Molecular Sciences Article Changes in the Content of Organic Acids and Expression Analysis of Citric Acid Accumulation-Related Genes during Fruit Development of Yellow (Passiflora edulis f. flavicarpa) and Purple (Passiflora edulis f. edulis) Passion Fruits Xiaoxue Zhang 1,†, Xiaoxia Wei 2,†, Muhammad Moaaz Ali 1 , Hafiz Muhammad Rizwan 1, Binqi Li 1, Han Li 1, Kaijie Jia 1, Xuelian Yang 1, Songfeng Ma 1, Shaojia Li 3,* and Faxing Chen 1,* 1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (X.Z.); [email protected] (M.M.A.); [email protected] (H.M.R.); [email protected] (B.L.); [email protected] (H.L.); [email protected] (K.J.); [email protected] (X.Y.); [email protected] (S.M.) 2 Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350002, China; [email protected] 3 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China * Correspondence: [email protected] (S.L.); [email protected] (F.C.) † Equally contributed authors. Abstract: Organic acids are key components that determine the taste and flavor of fruits and play a Citation: Zhang, X.; Wei, X.; vital role in maintaining fruit quality and nutritive value. In this study, the fruits of two cultivars Ali, M.M.; Rizwan, H.M.; Li, B.; Li, H.; of passion fruit Yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) were Jia, K.; Yang, X.; Ma, S.; Li, S.; et al. harvested at five different developmental stages (i.e., fruitlet, green, veraison, near-mature and Changes in the Content of Organic mature stage) from an orchard located in subtropical region of Fujian Province, China. -
Passiflora Incarnata Family: the Passionflower Family, Passifloraceae
Of interest this week at Beal... Purple Passionflower Passiflora incarnata Family: the Passionflower family, Passifloraceae. Also called May-Pop, and Wild apricot W. J. Beal The purple passionflower, Passiflora incarnata,is an herbaceous vine, native to the Botanical Garden southeast quadrant of North America. It, and its fruit often are called maypops. It is the fruits of passionflowers that provide the most popular of the food uses for the plant, used in drinks and ice creams. But it is the flower, captivating by its complex beauty, and its history as an icon of Christian myth that generate the most interest. There are many passionflower species (Passiflora spp.) and all of them are native to the new world tropics, or near-tropics. Depending on which taxonomy you choose, there are between 400 and 600 species in this genus. The purple passionflower is found farther outside the tropics than any other passionflower. It has been found at least as far north as Missouri in the West and New Jersey in the eastern United States. Although the intricate and striking flowers are beautiful and fragrant, their connection to passion is not over love or romance. Passion, in this context, refers to the Passion of Christ. Spanish Christian missionaries, saw the numerological aspects of the flower as a sign from God that their mission in the New World was God’s will. When the Vatican received the first drawings of the flowers, the clerics reviewing them thought the illustrations were so fanciful as to not be real. It was not until much later, after many missionaries were interviewed, that these unmistakable flowers were accepted as a possibly real organism. -
Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem. -
Butterfly Plant List
Butterfly Plant List Butterflies and moths (Lepidoptera) go through what is known as a * This list of plants is seperated by host (larval/caterpilar stage) "complete" lifecycle. This means they go through metamorphosis, and nectar (Adult feeding stage) plants. Note that plants under the where there is a period between immature and adult stages where host stage are consumed by the caterpillars as they mature and the insect forms a protective case/cocoon or pupae in order to form their chrysalis. Most caterpilars and mothswill form their transform into its adult/reproductive stage. In butterflies this case cocoon on the host plant. is called a Chrysilas and can come in various shapes, textures, and colors. Host Plants/Larval Stage Perennials/Annuals Vines Common Name Scientific Common Name Scientific Aster Asteracea spp. Dutchman's pipe Aristolochia durior Beard Tongue Penstamon spp. Passion vine Passiflora spp. Bleeding Heart Dicentra spp. Wisteria Wisteria sinensis Butterfly Weed Asclepias tuberosa Dill Anethum graveolens Shrubs Common Fennel Foeniculum vulgare Common Name Scientific Common Foxglove Digitalis purpurea Cape Plumbago Plumbago auriculata Joe-Pye Weed Eupatorium purpureum Hibiscus Hibiscus spp. Garden Nasturtium Tropaeolum majus Mallow Malva spp. Parsley Petroselinum crispum Rose Rosa spp. Snapdragon Antirrhinum majus Senna Cassia spp. Speedwell Veronica spp. Spicebush Lindera benzoin Spider Flower Cleome hasslerana Spirea Spirea spp. Sunflower Helianthus spp. Viburnum Viburnum spp. Swamp Milkweed Asclepias incarnata Trees Trees Common Name Scientific Common Name Scientific Birch Betula spp. Pine Pinus spp. Cherry and Plum Prunus spp. Sassafrass Sassafrass albidum Citrus Citrus spp. Sweet Bay Magnolia virginiana Dogwood Cornus spp. Sycamore Platanus spp. Hawthorn Crataegus spp. -
Antibacterial Properties of Passiflora Foetida L. – a Common Exotic Medicinal Plant
African Journal of Biotechnology Vol. 6 (23), pp. 2650-2653, 3 December, 2007 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2007 Academic Journals Full Length Research Paper Antibacterial properties of Passiflora foetida L. – a common exotic medicinal plant C. Mohanasundari1, D. Natarajan2*, K. Srinivasan3, S. Umamaheswari4 and A. Ramachandran5 1Department of Microbiology, Kandaswami Kandar’s College, P. Velur, 638 182, Namakkal, Tamil Nadu, South India. 2Department of Botany, Periyar E.V.R. College (Autonomous), Tiruchirappalli 620 023, Tamil Nadu, South India. 3Department of Biology, Eritrea Institute of Technology, Mai Nefhi, Asmara, North East Africa. 4Department of Eco-Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, South India. 5Forest Utilization Division, Tamil Nadu Forests Department, Chennai 600 006, Tamil Nadu, South India Accepted 20 October, 2006 Passiflora foetida L. (stinking passion flower) is an exotic medicinal vine. The antibacterial properties of leaf and fruit (ethanol and acetone) extracts were screened against four human pathogenic bacteria i.e. Pseudomonas putida, Vibrio cholerae, Shigella flexneri and Streptococcus pyogenes by well-in agar method. The results showed the leaf extract having remarkable activity against all bacterial pathogens compared to fruits. This study supports, the traditional medicines (herbal extracts) to cure many diseases like diarrhea, intestinal tract, throat, ear infections, fever and skin diseases. Key words: Passiflora foetida, antibacterial activity, ethanol and acetone extracts, human pathogenic bacteria. INTRODUCTION Human infections particularly those involving micro- many unsafe and fatal side effects have recently been organisms i.e. bacteria, fungi, viruses, nematodes, they reported (Ikegami et al., 2003; Izzo, 2004). -
Passion Flower
University of Arizona Yavapai County Cooperative Extension Yavapai Gardens Master Gardener Newsletter September 2007 Can you believe??? Events & Activities by Nora Graf Egads, summer is almost over— MG Association Meeting, Recognition hard to believe we are approaching picnic, see pg 2. the end of another year. Soon Yavapai Rose Society - Sept. 17, 2:00 PM , (well maybe not real soon) we will 1230 Willow Creek Rd. For more information have the first hard frost and the to- call Bob or Nancy at 771-9300, matoes will be over, the basil will be black, and any hope of extend- Alta Vista Gardening Club, Prescott, fourth ing a few extra days of the summer Tuesday of the month, 12:30pm. Call 928-443- 0464 for location and information. season will be over. In their stead, you should be planting garlic, Prescott Area Gourd Society, third Tuesday of starting this month. You can also the month, 6:30 pm, at the Smoki Museum. be planting cool season crops like lettuce. Then there are flowers; cool season flowers will flourish this time of year and, of course, it’s Pond Club - Email aquaticgardens@esedona. net for more information. time to think of spring bulbs and next year’s garden. To plan next years garden it’s always a good thing to look back on past gardens. Prescott Orchid Society, meets 3rd Sunday of What did well, what didn’t. the month, 2pm at the Prescott Library, call Cyn- I planted all sorts of new tomatoes. Unfortunately, some thia for information. (928) 717-0623 were purchased from Walmart and they certainly weren’t what I ex- Prescott Area Iris Society call 928-445-8132 for pected. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Native Plants for Your Backyard
U.S. Fish & Wildlife Service Native Plants for Your Backyard Native plants of the Southeastern United States are more diverse in number and kind than in most other countries, prized for their beauty worldwide. Our native plants are an integral part of a healthy ecosystem, providing the energy that sustains our forests and wildlife, including important pollinators and migratory birds. By “growing native” you can help support native wildlife. This helps sustain the natural connections that have developed between plants and animals over thousands of years. Consider turning your lawn into a native garden. You’ll help the local environment and often use less water and spend less time and money maintaining your yard if the plants are properly planted. The plants listed are appealing to many species of wildlife and will look attractive in your yard. To maximize your success with these plants, match the right plants with the right site conditions (soil, pH, sun, and moisture). Check out the resources on the back of this factsheet for assistance or contact your local extension office for soil testing and more information about these plants. Shrubs Trees Vines Wildflowers Grasses American beautyberry Serviceberry Trumpet creeper Bee balm Big bluestem Callicarpa americana Amelanchier arborea Campsis radicans Monarda didyma Andropogon gerardii Sweetshrub Redbud Carolina jasmine Fire pink Little bluestem Calycanthus floridus Cercis canadensis Gelsemium sempervirens Silene virginica Schizachyrium scoparium Blueberry Red buckeye Crossvine Cardinal flower -
FLORA of PERU 91 Are Very Showy, and Their Structure Is Highly Complicated
90 FIELD MUSEUM OF NATURAL HISTORY BOTANY, VOL. XIII Huanuco: (Haenke). Lima: Above Matucana (Ball). In rock detritus, 1,700 meters, above St. Bartholome", Weberbauer 1690, type M. cylindrostachya. Purruchucho, Nee (type, as at Geneva); also between Obrajillo and San Buenaventura, Nee (Madrid). Malesherbia turbinea Macbr. Field Mus. Bot. 4: 118. 1927. Apparently allied to M. haemantha (only flowering branches known); calyx 12-15 mm. long, 7 mm. broad, sparsely pilose; crown 13 mm. high, irregularly denticulate-crenate; sepals 8-9 mm. long; pedicels nearly 15 mm. long; stamens scarcely exserted; capsules pilose, little exserted; seeds obscurely transversely but strongly longitudinally striate, about 1 mm. wide, nearly 2.5 mm. long. Flowers blood-red, the anthers apparently white or yellowish. The upper bract-like oblong-ovate leaves are merely crenate. Each leaf-crenation is tipped with one long cilium. Tacna: In rainy green shrubs and Cereus, Candarave, Weberbauer 7364, type. Malesherbia Weberbaueri Gilg, Bot. Jahrb. 50: Beibl. Ill: 11. 1913. Densely appressed silky-villous simple-stemmed shrub with crowded linear-lanceolate sessile leaves and long terminal racemes of leafy bracted greenish yellow or reddish tinged subtubular flowers; leaves subentire or obscurely crenate-serrulate, 8-12 cm. long, about 1 cm. wide, acute base and apex; calyx 3.5-4 cm. long, 8-10 mm. wide, sepals lanceolate, acuminate, 7-8 mm. long, 2 mm. wide at base, the petals shorter and narrower; crown irregularly and slightly dentate; capsule included or barely exserted; seeds minutely and obscurely striate. To about 1 meter high in steep, loose, rocky soils. Species distinctive in its closely appressed sericeous pubes- cence. -
Passiflora Tarminiana, a New Cultivated Species of Passiflora Subgenus
Novon 11(1): 8–15. 2001 Passiflora tarminiana, a new cultivated species of Passiflora subgenus Tacsonia. Geo Coppens d'Eeckenbrugge1, Victoria E. Barney1, Peter Møller Jørgensen2, John M. MacDougal2 1CIRAD-FLHOR/IPGRI Project for Neotropical Fruits, c/o CIAT, A.A. 6713, Cali Colombia 2Missouri Botanical Garden, P.O. Box 299, St Louis, Missouri 63166-0299, U.S.A. Abstract The new species Passiflora tarminiana differs from its closes relative by the character combination of very small acicular stipules and large almost reflexed petals and sepals. This species has escaped detection despite being widely cultivated. Naturalized populations, particularly on Hawa'ii, have created problems for conservation of the native flora. In Colombia it is more frequently adopted in industrial cultivation because of its rusticity and resistance to fungal diseases. Introduction Passifloras of the subgenus Tacsonia are cultivated by many small farmers, from Venezuela to Bolivia. Some species are cultivated in New Zealand. The main cultivated species is Passiflora mollissima (Kunth) Bailey (Escobar, 1980 & 1988), also called P. Coppens et al. 2000 Passiflora tarminiana 2 tripartita var. mollissima (Kunth) Holm-Nielsen & P. Jørgensen (Holm-Nielsen et al., 1988). It is called "curuba de Castilla" in Colombia, "tacso de Castilla" in Ecuador, and “banana passionfruit” in English-speaking countries.. The second species of importance in the Andes is "curuba india," "curuba ecuatoriana," or "curuba quiteña" in Colombia, called "tacso amarillo" in Ecuador (Pérez Arbeláez, 1978; A.A.A., 1992; Campos, 1992). It is most frequently found in private gardens, but some commercial growers have, because of its rusticity, started to grow it instead of the "curuba de Castilla." We describe this overlooked cultigen as a new species under the name Passiflora tarminiana, in recognition of Tarmín Campos, a Colombian agronomist who contributed with enthusiasm to the development of banana passion fruit cultivation and introduced the first author to the cultivated passifloras of the central Colombian highlands.