Mixed Ionic-Electronic Conducting Membranes (MIEC) for Their Application in Membrane Reactors: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Mixed Ionic-Electronic Conducting Membranes (MIEC) for Their Application in Membrane Reactors: a Review processes Review Mixed Ionic-Electronic Conducting Membranes (MIEC) for Their Application in Membrane Reactors: A Review Alba Arratibel Plazaola 1,2, Aitor Cruellas Labella 1, Yuliang Liu 1, Nerea Badiola Porras 1,2,3, David Alfredo Pacheco Tanaka 2 , Martin Van Sint Annaland 1 and Fausto Gallucci 1,* 1 Inorganic Membranes and Membrane Reactors, Sustainable Process Engineering, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Den Dolech 2, 5612AD, Eindhoven, The Netherlands; [email protected] (A.A.P.); [email protected] (A.C.L.); [email protected] (Y.L.); [email protected] (N.B.P.); [email protected] (M.V.S.A.) 2 TECNALIA, Energy and Environment Division, Mikeletegi Pasealekua 2, 20009, San Sebastian-Donostia, Spain; [email protected] 3 Chemical Engineering and Environmental Department, University of the Basque Country UPV/EHU, C/Alameda Urquijo s/n, Bilbao, 48013, Spain * Correspondence: [email protected] Received: 15 January 2019; Accepted: 12 February 2019; Published: 1 March 2019 Abstract: Mixed ionic-electronic conducting membranes have seen significant progress over the last 25 years as efficient ways to obtain oxygen separation from air and for their integration in chemical production systems where pure oxygen in small amounts is needed. Perovskite materials are the most employed materials for membrane preparation. However, they have poor phase stability and are prone to poisoning when subjected to CO2 and SO2, which limits their industrial application. To solve this, the so-called dual-phase membranes are attracting greater attention. In this review, recent advances on self-supported and supported oxygen membranes and factors that affect the oxygen permeation and membrane stability are presented. Possible ways for further improvements that can be pursued to increase the oxygen permeation rate are also indicated. Lastly, an overview of the most relevant examples of membrane reactors in which oxygen membranes have been integrated are provided. Keywords: oxygen separation; membrane; fluorite; perovskite; MIEC; membrane reactor 1. Introduction Oxygen, which is a key reactant in many industrial processes, is among the top five major chemicals produced worldwide [1]. Industrial oxygen production is performed mainly by cryogenic distillation and pressure swing adsorption (PSA), which both require high investments and operating costs [2–5]. Cryogenic distillation technology provides high purity oxygen (>99%), while, generally, the purity is lower for PSA at around 95% [6]. Recent international policies about energy security and greenhouse gas emissions are challenging the conventional oxygen production systems. Oxygen separation using membrane technology is less energy intensive [7] and can, thus, help reduce greenhouse gas emissions related to the chemical industries. When oxygen selective membranes are coupled with high temperature reactions (e.g., syngas production from natural gas) and even higher benefits can be achieved due to process integration [8]. Actually, companies like “Air Products” or “Praxair” are currently doing big efforts on this field, developing novel oxygen membrane units for both air separation and for their integration into chemical processes [9,10]. In literature, two principal types of ceramic membranes have been pointed as possible oxygen separation devices including pure oxygen conducting membranes and Processes 2019, 7, 128; doi:10.3390/pr7030128 www.mdpi.com/journal/processes Processes 2019, 7, 128 2 of 50 mixedProcesses ionic–electronic 2019, 7, x FOR conducting PEER REVIEW membranes (MIEC). In the first case, the oxygen ions are transported2 of 51 by the membrane material while the electrons are transported by an external electron material (electrodes). oxygen conducting membranes and mixed ionic–electronic conducting membranes (MIEC). In the The oxygen generated is controlled by an electric current applied to the system. In contrast, in MIEC first case, the oxygen ions are transported by the membrane material while the electrons are membranes,transported the membrane by an external material electron transports material both (ele ionsctrodes). and electrons,The oxygen which generated can be is eithercontrolled a single by an phase or a dual-phaseelectric current (where applied one materialto the system. phase In transports contrast, thein MIEC electrons membranes, and the the other membrane transports material the ions). In the twotransports cases, both the drivingions and force electrons, for the which oxygen can permeationbe either a single is the phase oxygen or a chemical dual-phase potential/partial (where one pressurematerial difference phase on transports both sides the of electrons the membrane and the other [11,12 transports]. Compared the ions). with In traditional the two cases, oxygen the driving separation technologies,force for membrane the oxygen permeation technology is features the oxygen improved chemical energy potential/partial efficiency, pressu superiorre difference oxygen on selectivity both (thus highsides oxygen of the purity),membrane and compatibility[11,12]. Compared with manywith industrialtraditional reactionoxygen systems,separation including technologies, selective oxidationmembrane of ethane technology (SOE) [13 features], oxidative improved coupling energy of efficiency, methane superior (OCM) [oxygen14,15], andselectivity partial (thus oxidation high of oxygen purity), and compatibility with many industrial reaction systems, including selective methane (POM) [16,17] among other reactions. oxidation of ethane (SOE) [13], oxidative coupling of methane (OCM) [14,15], and partial oxidation The mixed ionic and electronic conduction of solid oxide materials was initially described by of methane (POM) [16,17] among other reactions. Takahashi etThe al. mixed [18] in ionic 1976. and Afterward, electronic conduction Cales and Baumardof solid oxide [19, 20materials] introduced was initially the mixed described conducting by oxide conceptTakahashi to et oxygenal. [18] in transport 1976. Afterward, membranes. Cales and However, Baumard favorable[19,20] introduced oxygen the permeability mixed conducting was not achievedoxide until concept Teraoka to oxygen et al. transport [21] made membranes. a breakthrough However, on favorable oxygen separationoxygen permeability membranes was innot 1985 by introducingachieved until the perovskiteTeraoka et al. membranes. [21] made a breakthrou One of thegh drawbacks on oxygen ofseparation oxygen membranes membranes in has1985 always by been theintroducing thermal stabilitythe perovskite at the membranes. high temperatures One of the requireddrawbacks for of achievingoxygen membranes appreciable has always oxygen been fluxes. Attemptsthe ofthermal increasing stability the at thermal the high stability temperatures include required doping for the achieving perovskite appreciable (and MIEC) oxygen with fluxes. different elements,Attempts which of clearlyincreasing improved the thermal the stability thermal inclu andde chemical doping the stability perovskite while (and resulting MIEC) with in a different decrease in elements, which clearly improved the thermal and chemical stability while resulting in a decrease in the oxygen permeation rate [22,23]. the oxygen permeation rate [22,23]. It is generally accepted that materials with superior oxygen ionic conductivity usually have It is generally accepted that materials with superior oxygen ionic conductivity usually have correspondinglycorrespondingly lower lower chemical chemical stability stability when when exposed exposed toto reducingreducing atmospheres. atmospheres. This This is easily is easily explainedexplained by the by fact the thatfact that weak weak chemical chemical bonding bonding of of metal metal andand oxygen could could be be favorable favorable for forthe thefast fast oxygenoxygen mobility mobility in membranes, in membranes, but but it alsoit also increases increases the the chanceschances for for metals metals to to be be reduced reduced at a at high a high temperaturetemperature in reducing in reducing atmosphere. atmosphere. Therefore, Therefore, this this decreases decreases thethe chemical stability stability [24]. [24 ]. ThereThere are, however, are, however, other other ways ways to increase to increase the the oxygen oxygen flux. flux. In In fact, fact, the the oxygenoxygen permeation rate rate in MIEC membranesin MIEC membranes is controlled is controlled by two different by two different mechanisms, mechanisms, such as ionicsuch as transport ionic transport within thewithin membrane the and surfacemembrane membrane and surface exchange. membrane When theexchange. permeation When process the permeation is controlled process by bulk is controlled diffusion, by the bulk oxygen diffusion, the oxygen permeate flux will increase when decreasing the thickness of the membrane permeate flux will increase when decreasing the thickness of the membrane [25,26]. Membranes with a [25,26]. Membranes with a thickness in the order of 400 to 500 μm is, however, sufficiently small, thickness in the order of 400 to 500 µm is, however, sufficiently small, because the surface exchange rate because the surface exchange rate becomes limiting for smaller membrane thicknesses, as shown in becomesFigure limiting 1 [27]. for smaller membrane thicknesses, as shown in Figure1[27]. Figure 1. Thickness dependence of oxygen permeation of self-supported (Bi2O3)-(Er2O3)-Ag Figure 1. Thickness dependence of oxygen
Recommended publications
  • Reverse Osmosis and Nanofiltration, Second Edition
    Reverse Osmosis and Nanofiltration AWWA MANUAL M46 Second Edition Science and Technology AWWA unites the entire water community by developing and distributing authoritative scientific and technological knowledge. Through its members, AWWA develops industry standards for products and processes that advance public health and safety. AWWA also provides quality improvement programs for water and wastewater utilities. Copyright © 2007 American Water Works Association. All Rights Reserved. Contents List of Figures, v List of Tables, ix Preface, xi Acknowledgments, xiii Chapter 1 Introduction . 1 Overview, 1 RO and NF Membrane Applications, 7 Membrane Materials and Configurations, 12 References, 18 Chapter 2 Process Design . 21 Source Water Supply, 21 Pretreatment, 26 Membrane Process Theory, 45 Rating RO and NF Elements, 51 Posttreatment, 59 References, 60 Chapter 3 Facility Design and Construction . 63 Raw Water Intake Facilities, 63 Discharge, 77 Suspended Solids and Silt Removal Facilities, 80 RO and NF Systems, 92 Hydraulic Turbochargers, 95 Posttreatment Systems, 101 Ancillary Equipment and Facilities, 107 Instrumentation and Control Systems, 110 Waste Stream Management Facilities, 116 Other Concentrate Management Alternatives, 135 Disposal Alternatives for Waste Pretreatment Filter Backwash Water, 138 General Treatment Plant Design Fundamentals, 139 Plant Site Location and Layout, 139 General Plant Layout Considerations, 139 Membrane System Layout Considerations, 140 Facility Construction and Equipment Installation, 144 General Guidelines for Equipment Installation, 144 Treatment Costs, 151 References, 162 iii Copyright © 2007 American Water Works Association. All Rights Reserved. Chapter 4 Operations and Maintenance . 165 Introduction, 165 Process Monitoring, 168 Biological Monitoring, 182 Chemical Cleaning, 183 Mechanical Integrity, 186 Instrumentation Calibration, 188 Safety, 190 Appendix A SI Equivalent Units Conversion Tables .
    [Show full text]
  • Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide
    II.C SeparaTioNS II.C.1 Single Membrane Reactor Configuration for Separation of Hydrogen, Carbon Dioxide and Hydrogen Sulfide overall footprint than can be achieved by utilizing Shain J. Doong separate components for each required unit process/unit Gas Technology Institute (GTI) operation. Specifically, research is sought to perform a 1700 South Mount Prospect Road combination of theoretical and experimental research Des Plaines, IL 60018 to provide a scientific basis needed to develop a novel Phone: (847) 768-0884 “one-box” process to combine synthesis gas cleanup, E-mail: [email protected] water-gas shift reaction, hydrogen separation and carbon dioxide separation. A successful strategy will have the DOE Technology Development Manager: potential to selectively remove pure hydrogen, carbon Dan Cicero dioxide and synthesis gas impurities in a single reactor Phone: (412) 386-4826 configuration that can operate simultaneously at high E-mail: [email protected] temperature and high conversion, possibly without the DOE Project Officer: Elaine Everitt requirement of excess steam. Phone: (304) 285-4491 E-mail: [email protected] Approach Contract Number: DE-FC26-05NT42450 The objective of this research is to develop a Start Date: June 2005 “one-box” approach that can consolidate two or Projected End Date: May 2007 more downstream reaction/separation units of a coal gasification system in a single module for production of a pure stream of hydrogen. The project will evaluate the technical feasibility of using two or three types Objectives of membranes to selectively separate pure hydrogen, carbon dioxide and hydrogen sulfide in a single reactor • Develop a novel membrane process concept configuration that can operate simultaneously at high that would combine hydrogen sulfide removal, temperatures (e.g., 700-900ºC).
    [Show full text]
  • Mitigation of Membrane Fouling in Microfiltration
    MITIGATION OF MEMBRANE FOULING IN MICROFILTRATION & ULTRAFILTRATION OF ACTIVATED SLUDGE EFFLUENT FOR WATER REUSE A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy (PhD) Sy Thuy Nguyen Bachelor of Engineering (Chemical), RMIT University, Melbourne School of Civil, Environmental & Chemical Engineering Department of Chemical Engineering RMIT University, Melbourne, Australia December 2012 i DECLARATION I hereby declare that: the work presented in this thesis is my own work except where due acknowledgement has been made; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program Signed by Sy T. Nguyen ii ACKNOWLEDGEMENTS Firstly, I would like to thank Prof. Felicity Roddick, my senior supervisor, for giving me the opportunity to do a PhD in water science and technology and her scientific input in every stage of this work. I am also grateful to Dr John Harris and Dr Linhua Fan, my co-supervisors, for their ponderable advice and positive criticisms. The Australian Research Council (ARC) and RMIT University are acknowledged for providing the funding and research facilities to make this project and thesis possible. I also wish to thank the staff of the School of Civil, Environmental and Chemical Engineering, the Department of Applied Physics and the Department of Applied Chemistry, RMIT University, for the valuable academic, administrative and technical assistance. Lastly, my parents are thanked for the encouragement and support I most needed during the time this research was carried out.
    [Show full text]
  • Academic Year 2017- 2018 First Term Biology Revision Sheet
    Academic Year 2017- 2018 First Term Biology Revision Sheet Name: ____________________________ Date: _______________ Grade 9 Section: ______________ Q1: Choose the letter of the best answer ___ 1.What is the main function of the Golgi apparatus? A. communicates with another cell B. convert solar energy to chemical energy C. process and deliver proteins D. copy genetic material. ___2. Which of the following organelles can be found in cytoplasm and on the surface of the endoplasmic reticulum A. mitochondria B. centrosomes C. ribosomes D.centrioles ___ 3. What type of membrane allows some, but not all materials A. diffusible B. permeable C. impermeable D. selectively permeable ____4. What materials makes up a cell membrane? A. Phospholipids and cholesterol B. Cholesterol and protein C. Phospholipid, cholesterol and protein D. Phospholipid, protein and amino acid Page 1 of 7 ____5. What type of receptor is within a cell? A. Membrane receptor B. Intracellular receptor C. Intercellular receptor D. Ligand receptor ____6. Which part of phospholipid is hydrophobic? A. Glycerol B. fatty acid tail C. entire phospholipid molecule D. phosphate group only ____7. A ligand produces a response in a cell if it finds the right kind of A. carbohydrate. B. hormone. C. membrane. D.receptor. ____8. What is the term for the diffusion of water across a semipermeable membrane? A. osmosis B.equilibrium C.transport D.isotonic ____9.The movement of molecules down a concentration gradient through transport proteins in the cell membrane is a type of A. selective transport. B.osmosis C.energy expenditure. D.facilitated diffusion. ___10.Nucleus act as a A.
    [Show full text]
  • Membrane Technology and Applications, 2Nd Edition
    MEMBRANE TECHNOLOGY AND APPLICATIONS SECOND EDITION Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California MEMBRANE TECHNOLOGY AND APPLICATIONS MEMBRANE TECHNOLOGY AND APPLICATIONS SECOND EDITION Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California First Edition published by McGraw-Hill, 2000. ISBN: 0 07 135440 9 Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr.
    [Show full text]
  • 1.4 Solar Cell Losses and Design in This Final Introduction Video on Photo
    1.4 Solar cell losses and design In this final introduction video on photovoltaic energy conversion, we will discuss the various parts of a solar cell and the losses that occur in a solar cell. The losses in solar cells will provide an important framework to put everything we learn over the course of the next couple of weeks in context. The learning objective for this video are to understand the main function of the various parts of a solar cell. We will discuss the main losses that occur in solar cells and we will come to understand how these losses lead to the design rules for solar cells. Shown here is a standard silicon wafer based solar cell. These are the most common type of solar cells, accounting for about 93 % of the total production in 2015. We will base this solar cell on a p-type silicon absorber even though some silicon cells can be made with an n-type absorber layer. The purpose of this absorber layer, as its name implies, is to absorb light. Through this absorption, minority and majority charge charge carriers are formed. In the case of a p-type absorber, electrons are the minority carriers and holes are the majority carriers. Next is the emitter layer. The emitter layer is crucial for charge carrier separation and collection. The emitter layer functions as an selective membrane, that allows minority charge carriers, in this case electrons, to move through, but resists the movement of majority carriers, in this case holes. Without the emitter layer, generated charge carriers would simply move around in the absorber layer until they recombine.
    [Show full text]
  • United States Patent to 11, 3,996,141 Updike 45 Dec
    United States Patent to 11, 3,996,141 Updike 45 Dec. 7, 1976 54 DALYSIS MEMBRANE 2,971,850 2/1961 Barton ............................. 195/63 X 3, 158,532 11/1964 Pall et al. ... ... 210/503 X 75 Inventor: Stuart J. Updike, Madison, Wis. 3,282,702 1 1/1966 Schreiner ........................ 195/63 X (73) Assignee: Wisconsin Alumni Research 3,327,859 6/1967 Pall .............. ........ 210/266 3,526,481 9/1970 Rubricius ........... ... 210/321 X Foundation, Madison, Wis. 3,766,013 10/1973 Forgione et al. .................... 195/63 22) Filed: Jan. 17, 1974 3,809,613 5/1974 Vieth et al. ...................... 195/68 X 3,824, 150 7/1974 Lilly et al. ... ... 195/DIG. l l X 21 ) Appl. No.: 434,231 3,846,236 1 1/1974 Updike ......................... 23/258.5 X Related U.S. Application Data Primary Examiner-Frank A. Spear, Jr. (63) Continuation-in-part of Ser. No. 191,720, Oct. 22, Attorney, Agent, or Firm-McDougall, Hersh & Scott 1971, Pat. No. 3,846,236. 57 ABSTRACT 52 U.S. Cl. ................................ 210/501; 427/245 (51) Int. Cl. ......................................... B01D 13/04 A semi-permeable membrane containing a catalyst for 58 Field of Search .............. 210/22, 23, 321,500, conversion of hydrogen peroxide introduced from one side of the semi-permeable membrane to molecular 210/501, 502; 23/258.5; 195/18, 63; oxygen which is released from the opposite side of the 106/194; 264/41, 49; 427/245 semi-permeable membrane. The catalyst is preferably 56) References Cited in the form of a ruthenium oxide or sulfide and prefer UNITED STATES PATENTS ably in assymetrical distribution in the membrane.
    [Show full text]
  • Electrochemistry: Elektrolytic and Galvanic Cell Co08 Galvanic Series (Beketov, Cca 1860)
    1/26 Electrochemistry: Elektrolytic and galvanic cell co08 Galvanic series (Beketov, cca 1860): Li, Ca, Al, Mn, Cr Zn, Cd Fe, Pb, [H2], Cu, Ag, Au ≈ ≈ ⊕ Cell = system composed of two electrodes and an electrolyte. electrolytic cell: electric energy chemical reaction ! galvanic cell: chemical reaction electric energy ! reversible galvanic cell (zero current) Electrodes anode = electrode where oxidation occurs Cu Cu2+ + 2 e ! − 2 Cl Cl2 + 2 e − ! − cathode = electrode where reduction occurs 2 Cu + + 2 e Cu credit: Wikipedia (free) − ! Cl2 + 2 e 2 Cl − ! − Oxidation and reduction are separated in a cell. The charge flows through the circuit. 2/26 Anode and cathode co08 electrolytic cell galvanic cell '$ '$ - - ⊕&% &% ⊕ Cl2 Cu2+ Cu2+ Pt Cl ! ! 2 Cu Cl Cl − Cu − CuCl2(aq) CuCl2(aq) anode cathode anode cathode “anions go to the anode” 3/26 Galvanic cells: electrodes, convention co08 Electrodes(= half-cells) may be separated by a porous separator, polymeric mem- brane, salt bridge. Cathode is right (reduction) ⊕ Anode is left (oxidation) negative electrode (anode) positive electrode (cathode) ⊕ liquid junction phase boundary . (porous separator) j salt bridge .. semipermeable membrane k Examples: 3 Cu(s) CuCl2(c = 0.1 mol dm ) Cl2(p = 95 kPa) Pt j − j j ⊕ Ag s AgCl s NaCl m 4 mol kg 1 Na(Hg) ( ) ( ) ( = − ) j j j 1 NaCl(m = 0.1 mol kg ) AgCl(s) Ag(s) j − j j ⊕ 2 3 4 3 3 3 Pt Sn +(0.1 mol dm ) + Sn +(0.01 mol dm ) Fe +(0.2 mol dm ) Fe j − − jj − j ⊕ 4/26 Equilibrium cell potential co08 Also: electromotive potential/voltage, electromo- tive force (EMF).
    [Show full text]
  • Biological Fuel Cells and Membranes
    membranes Review Biological Fuel Cells and Membranes Zahra Ghassemi and Gymama Slaughter * Bioelectronics Laboratory, Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-410-455-8483 Academic Editor: Tongwen Xu Received: 31 October 2016; Accepted: 5 January 2017; Published: 17 January 2017 Abstract: Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells. Keywords: biofuel cells; microbial fuel cells; semi-permeable membrane; chitosan; Nafion 1. Introduction A conventional fuel cell is an electrochemical power source that continuously converts the stored chemical energy in a fuel to electrical energy as long as there is a continuous supply of fuel.
    [Show full text]
  • Determination of Fouling Mechanisms for Ultrafiltration of Oily Wastewater
    DETERMINATION OF FOULING MECHANISMS FOR ULTRAFILTRATION OF OILY WASTEWATER A thesis submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE (M.S.) in the Department of Chemical Engineering of the College of Engineering and Applied Science 2011 By Leila Safazadeh Haghighi BS Chemical Engineering, University Of Tehran, Tehran, Iran, 2008 Thesis Advisor and Committee Chair: Professor Rakesh Govind Abstract The use of Membrane technology is extensively increasing in water and wastewater treatment, food processing, chemical, biotechnological, and pharmaceutical industries because of their versatility, effectiveness, high removal capacity and ability to meet multiple treatment objectives. A common problem with using membranes is fouling, which results in increasing operating costs due to higher operating pressure losses, membrane downtime needed for cleaning, with associated production loss and manpower costs. In the literature, four different mechanisms for membrane fouling have been studied, which are complete pore blocking, internal pore blinding, partial pore bridging and cake filtration. Mathematical models have been developed for each of these fouling mechanisms. The objective of this thesis was to investigate the membrane fouling mechanisms for one porous and one dense membrane, during ultrafiltration of an emulsified industrial oily wastewater. An experimental system was designed, assembled and operated at the Ford Transmission Plant in Sharonville, Ohio, wherein ultrasonic baths were used for cleaning transmission parts before assembly. The oil wastewater, containing emulsified oils and cleaning chemicals was collected in a batch vessel and then pumped through a porous polyethersulfone, monolithic membrane, and through a dense cuproammonium cellulose membrane unit.
    [Show full text]
  • History and Current Status of Membrane Desalination Processes
    WATER AND WASTEWATER TREATMENT TECHNOLOGY – History and Current Status of Membrane Desalination Process – Ali M . El-Nashar HISTORY AND CURRENT STATUS OF MEMBRANE DESALINATION PROCESSES Ali M. El-Nashar Consultant, ICWES, Abu Dhabi, UAE Keywords: RO membranes, history of RO membranes, technical status of RO membranes, fouling of RO membranes, pretreatment for RO desalination, energy recovery in RO plants Contents 1. Introduction 2. RO Process Fundamentals 3. Feedwater Contaminants 4. General Characteristics of Membranes 5. RO Process Terminology 6. History of Membrane Technology 7. Effect of Operating Variables on Membrane Parameters 8. Feed Water Pretreatment & Permeate Post-Treatment 9. Membrane Module Configurations 10. Membrane Fouling & Membrane Cleaning 11. Energy Requirements of Membrane Technology 12. Economics of RO Plants 13. Operational Performance and Design Features of Large Seawater RO Plants 14. CO2 Emissions for Typical RO Plants 15. Recent Development in Membrane Technology 16. Boron, Arsenic and Organic Compound Removal 17. Conclusions Related Chapters Glossary Bibliography Biographical Sketches Summary UNESCO – EOLSS It is important to review the history of the past to provide a vision for the future. It is therefore the objective of this paper to review the history of the development of membrane processesSAMPLE for water desalination CHAPTERS and its current status. Research and development efforts in RO desalination over the past four decades has resulted in a 44% share in world desalination production capacity, and an 80% share in the total number of desalination plants installed worldwide (Greenlee t al., 2009). Today, RO membrane technology is the leading desalination technology. It is applied to a wide variety of salty water and wastewater.
    [Show full text]
  • Catalytic Membrane Reactors: the Industrial Applications Perspective
    catalysts Review Catalytic Membrane Reactors: The Industrial Applications Perspective Catia Algieri 1,*, Gerardo Coppola 2, Debolina Mukherjee 2, Mahaad Issa Shammas 3, Vincenza Calabro 2 , Stefano Curcio 2 and Sudip Chakraborty 2,* 1 Institute on Membrane Technology, National Research Council of Italy (ITM–CNR), Cubo 17C, Via Pietro Bucci, 87036 Rende, Italy 2 Department of DIMES, University of Calabria, Via Pietro Bucci, Cubo 42A, 87036 Rende, Italy; [email protected] (G.C.); [email protected] (D.M.); [email protected] (V.C.); [email protected] (S.C.) 3 Department of Civil & Environmental Engineering at Dhofar University, Salalah 211, Sultanate of Oman; [email protected] * Correspondence: author: [email protected] (C.A.); [email protected] (S.C.) Abstract: Catalytic membrane reactors have been widely used in different production industries around the world. Applying a catalytic membrane reactor (CMR) reduces waste generation from a cleaner process perspective and reduces energy consumption in line with the process intensification strategy. A CMR combines a chemical or biochemical reaction with a membrane separation process in a single unit by improving the performance of the process in terms of conversion and selectivity. The core of the CMR is the membrane which can be polymeric or inorganic depending on the operating conditions of the catalytic process. Besides, the membrane can be inert or catalytically active. The Citation: Algieri, C.; Coppola, G.; number of studies devoted to applying CMR with higher membrane area per unit volume in multi- Mukherjee, D.; Shammas, M.I.; phase reactions remains very limited for both catalytic polymeric and inorganic membranes.
    [Show full text]