Towards the Representation of Etymological Data on the Semantic Web
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robust Ontology Acquisition from Machine-Readable Dictionaries
Robust Ontology Acquisition from Machine-Readable Dictionaries Eric Nichols Francis Bond Daniel Flickinger Nara Inst. of Science and Technology NTT Communication Science Labs CSLI Nara, Japan Nippon Telegraph and Telephone Co. Stanford University [email protected] Keihanna, Japan California, U.S.A. [email protected] [email protected] Abstract Our basic approach is to parse dictionary definition sen- tences with multiple shallow and deep processors, generating In this paper, we outline the development of a semantic representations of varying specificity. The seman- system that automatically constructs ontologies by tic representation used is robust minimal recursion semantics extracting knowledge from dictionary definition (RMRS: Section 2.2). We then extract ontological relations sentences using Robust Minimal Recursion Se- using the most informative semantic representation for each mantics (RMRS), a semantic formalism that per- definition sentence. mits underspecification. We show that by com- In this paper we discuss the construction of an ontology for bining deep and shallow parsing resources through Japanese using the the Japanese Semantic Database Lexeed the common formalism of RMRS, we can extract [Kasahara et al., 2004]. The deep parser uses the Japanese ontological relations in greater quality and quan- Grammar JACY [Siegel and Bender, 2002] and the shallow tity. Our approach also has the advantages of re- parser is based on the morphological analyzer ChaSen. quiring a very small amount of rules and being We carried out two evaluations. The first gives an automat- easily adaptable to any language with RMRS re- ically obtainable measure by comparing the extracted onto- sources. logical relations by verifying the existence of the relations in exisiting WordNet [Fellbaum, 1998]and GoiTaikei [Ikehara 1 Introduction et al., 1997] ontologies. -
Hittite Etymologies and Notes*
Studia Linguistica Universitatis Iagellonicae Cracoviensis 129 (2012) DOI 10.4467/20834624SL.12.015.0604 ROBERT WOODHOUSE The University oo Queensland, Brisbane [email protected] HITTITE ETYMOLOGIES AND NOTES* Keywords: Hittite, etymology, Proto-Indo-European, historical phonology, semantics Abstract Discussed are the etymologies of twelve Hittite words and word groups (alpa- ‘cloud’, aku- ‘seashell’, ariye/a-zi ‘determine by or consult an oracle’, heu- / he(y)aw- ‘rain’, hāli- ‘pen, corral’, kalmara- ‘ray’ etc., māhla- ‘grapevine branch’, sūu, sūwaw- ‘full’, tarra-tta(ri) ‘be able’ and tarhu-zi ‘id.; conquer’, idālu- ‘evil’, tara-i / tari- ‘become weary, henkan ‘death, doom’) and some points of Hittite historical phonology, such as the fate of medial *-h2n- (sub §7) and final *-i (§13), all of which appear to receive somewhat inadequate treatment in Kloekhorst’s 2008 Hittite etymological dictionary. Several old etymologies are defended and some new ones suggested. The following notes were compiled while writing a response (in press b) to that part of the (2006) paper, recently kindly brought to my attention by its author, Professor Witold Mańczak, that purports to unseat the laryngeal theory on the basis of al- legedly incompatible Hittite material collected over three decades ago by Tischler (1980). The massive debate on the laryngeal theory that essentially followed Tisch- ler’s paper was no doubt in part a response to it and produced solutions to most if not all of the problems raised by Tischler, a position I attempt to summarize in my own paper noted above with reference to the superb Hittite etymological diction- ary recently published by Kloekhorst (2008, hereinafter referred to as K:) with its several innovations in the areas of Hittite and Anatolian historical phonology and morphology. -
Lemma Selection in Domain Specific Computational Lexica – Some Specific Problems
Lemma selection in domain specific computational lexica – some specific problems Sussi Olsen Center for Sprogteknologi Njalsgade 80, DK-2300, Denmark Phone: +45 35 32 90 90 Fax: +45 35 32 90 89 e-mail: [email protected] URL: www.cst.dk Abstract This paper describes the lemma selection process of a Danish computational lexicon, the STO project, for domain specific language and focuses on some specific problems encountered during the lemma selection process. After a short introduction to the STO project and an explanation of why the lemmas are selected from a corpus and not chosen from existing dictionaries, the lemma selection process for domain specific language is described in detail. The purpose is to make the lemma selection process as automatic as possible but a manual examination of the final candidate lemma lists is inevitable. The lemmas found in the corpora are compared to a list of lemmas of general language, sorting out lemmas already encoded in the database. Words that have already been encoded as general language words but that are also found with another meaning and perhaps another syntactic behaviour in a specific domain should be kept on a list and the paper describes how this is done. The recognition of borrowed words the spelling of which have not been established constitutes a big problem to the automatic lemma selection process. The paper gives some examples of this problem and describes how the STO project tries to solve it. The selection of the specific domains is based on the 1. Introduction potential future applications and at present the following The Danish STO project, SprogTeknologisk Ordbase, domains have been selected, while – at least – one is still (i.e. -
Etytree: a Graphical and Interactive Etymology Dictionary Based on Wiktionary
Etytree: A Graphical and Interactive Etymology Dictionary Based on Wiktionary Ester Pantaleo Vito Walter Anelli Wikimedia Foundation grantee Politecnico di Bari Italy Italy [email protected] [email protected] Tommaso Di Noia Gilles Sérasset Politecnico di Bari Univ. Grenoble Alpes, CNRS Italy Grenoble INP, LIG, F-38000 Grenoble, France [email protected] [email protected] ABSTRACT a new method1 that parses Etymology, Derived terms, De- We present etytree (from etymology + family tree): a scendants sections, the namespace for Reconstructed Terms, new on-line multilingual tool to extract and visualize et- and the etymtree template in Wiktionary. ymological relationships between words from the English With etytree, a RDF (Resource Description Framework) Wiktionary. A first version of etytree is available at http: lexical database of etymological relationships collecting all //tools.wmflabs.org/etytree/. the extracted relationships and lexical data attached to lex- With etytree users can search a word and interactively emes has also been released. The database consists of triples explore etymologically related words (ancestors, descendants, or data entities composed of subject-predicate-object where cognates) in many languages using a graphical interface. a possible statement can be (for example) a triple with a lex- The data is synchronised with the English Wiktionary dump eme as subject, a lexeme as object, and\derivesFrom"or\et- at every new release, and can be queried via SPARQL from a ymologicallyEquivalentTo" as predicate. The RDF database Virtuoso endpoint. has been exposed via a SPARQL endpoint and can be queried Etytree is the first graphical etymology dictionary, which at http://etytree-virtuoso.wmflabs.org/sparql. -
Illustrative Examples in a Bilingual Decoding Dictionary: an (Un)Necessary Component
http://lexikos.journals.ac.za Illustrative Examples in a Bilingual Decoding Dictionary: An (Un)necessary Component?* Alenka Vrbinc ([email protected]), Faculty of Economics, University of Ljubljana, Ljubljana, Slovenia and Marjeta Vrbinc ([email protected]), Faculty of Arts, Department of English, University of Ljubljana, Ljubljana, Slovenia Abstract: The article discusses the principles underlying the inclusion of illustrative examples in a decoding English–Slovene dictionary. The inclusion of examples in decoding bilingual diction- aries can be justified by taking into account the semantic and grammatical differences between the source and the target languages. Among the differences between the dictionary equivalent, which represents the most frequent translation of the lemma in a particular sense, and the translation of the lemma in the illustrative example, the following should be highlighted: the differences in the part of speech; context-dependent translation of the lemma in the example; the one-word equiva- lent of the example; zero equivalence; and idiomatic translation of the example. All these differ- ences are addressed and discussed in detail, together with the sample entries taken from a bilingual English–Slovene dictionary. The aim is to develop criteria for the selection of illustrative examples whose purpose is to supplement dictionary equivalent(s) in the grammatical, lexical, semantic and contextual senses. Apart from that, arguments for translating examples in the target language are put forward. The most important finding is that examples included in a bilingual decoding diction- ary should be chosen carefully and should be translated into the target language, since lexical as well as grammatical changes in the translation of examples demand not only a high level of knowl- edge of both languages, but also translation abilities. -
And User-Related Definitions in Online Dictionaries
S. Nielsen Centre for Lexicography, Aarhus University, Denmark FUNCTION- AND USER-RELATED DEFINITIONS IN ONLINE DICTIONARIES 1. Introduction Definitions play an important part in the use and making of dictionaries. A study of the existing literature reveals that the contributions primarily concern printed dictionaries and show that definitions are static in that only one definition should be provided for each sense of a lemma or entry word (see e.g. Jackson, 2002, 86-100; Landau, 2001, 153-189). However, online dictionaries provide lexicographers with the option of taking a more flexible and dynamic approach to lexicographic definitions in an attempt to give the best possible help to users. Online dictionaries vary in size and shape. Some contain many data, some contain few data, some are intended to be used by adults, and some are intended to be used by children. These dictionaries contain data that reflect the differences between these groups of users, not only between general competences of children and adults but also between various competences among adults. The main distinction is between general and specialised dictionaries because their intended users belong to different types of users based on user competences and user needs. Even though lexicographers are aware of this distinction, “surprisingly little has been written about the relationship between the definition and the needs and skills of those who will use it” (Atkins/Rundell, 2008, 407). Most relevant contributions addressing definitions and user competences concern specialised dictionaries, but there are no reasons why the principles discussed should not be adopted by lexicographers at large (Bergenholtz/Kauffman, 1997; Bergenholtz/Nielsen, 2002). -
Problem of Creating a Professional Dictionary of Uncodified Vocabulary
Utopía y Praxis Latinoamericana ISSN: 1315-5216 ISSN: 2477-9555 [email protected] Universidad del Zulia Venezuela Problem of Creating a Professional Dictionary of Uncodified Vocabulary MOROZOVA, O.A; YAKHINA, A.M; PESTOVA, M.S Problem of Creating a Professional Dictionary of Uncodified Vocabulary Utopía y Praxis Latinoamericana, vol. 25, no. Esp.7, 2020 Universidad del Zulia, Venezuela Available in: https://www.redalyc.org/articulo.oa?id=27964362018 DOI: https://doi.org/10.5281/zenodo.4009661 This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative O.A MOROZOVA, et al. Problem of Creating a Professional Dictionary of Uncodified Vocabulary Artículos Problem of Creating a Professional Dictionary of Uncodified Vocabulary Problema de crear un diccionario profesional de vocabulario no codificado O.A MOROZOVA DOI: https://doi.org/10.5281/zenodo.4009661 Kazan Federal University, Rusia Redalyc: https://www.redalyc.org/articulo.oa? [email protected] id=27964362018 http://orcid.org/0000-0002-4573-5858 A.M YAKHINA Kazan Federal University, Rusia [email protected] http://orcid.org/0000-0002-8914-0995 M.S PESTOVA Ural State Law University, Rusia [email protected] http://orcid.org/0000-0002-7996-9636 Received: 03 August 2020 Accepted: 10 September 2020 Abstract: e article considers the problem of lexicographical fixation of uncodified vocabulary in a professional dictionary. e oil sublanguage, being one of the variants of common language realization used by a limited group of its medium in conditions of official and also non-official communication, provides interaction of people employed in the oil industry. -
From Monolingual to Bilingual Dictionary: the Case of Semi-Automated Lexicography on the Example of Estonian–Finnish Dictionary
From Monolingual to Bilingual Dictionary: The Case of Semi-automated Lexicography on the Example of Estonian–Finnish Dictionary Margit Langemets1, Indrek Hein1, Tarja Heinonen2, Kristina Koppel1, Ülle Viks1 1 Institute of the Estonian Language, Roosikrantsi 6, 10119 Tallinn, Estonia 2 Institute for the Languages of Finland, Hakaniemenranta 6, 00530 Helsinki, Finland E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract We describe the semi-automated compilation of the bilingual Estonian–Finnish online dictionary. The compilation process involves different stages: (a) reusing and combining data from two different databases: the monolingual general dictionary of Estonian and the opposite bilingual dictionary (Finnish–Estonian); (b) adjusting the compilation of the entries against time; (c) bilingualizing the monolingual dictionary; (d) deciding about the directionality of the dictionary; (e) searching ways for presenting typical/good L2 usage examples for both languages; (f) achieving the understanding about the necessity of linking of different lexical resources. The lexicographers’ tasks are to edit the translation equivalent candidates (selecting and reordering) and to decide whether or not to translate the existing usage examples, i.e. is the translation justified for being too difficult for the user. The project started in 2016 and will last for 18 months due to the unpostponable date: the dictionary is meant to celebrate the 100th anniversary of both states (Finland in December 2017, Estonia in February 2018). Keywords: bilingual lexicography; corpus linguistics; usage examples; GDEX; Estonian; Finnish 1. Background The idea of compiling the new Estonian–Finnish dictionary is about 15 years old: it first arose in 2003, after the successful publication of the voluminous Finnish–Estonian dictionary, a project which benefitted from necessary and sufficient financing, adequate time (5 years) and staff (7 lexicographers), and effective management. -
An Amerind Etymological Dictionary
An Amerind Etymological Dictionary c 2007 by Merritt Ruhlen ! Printed in the United States of America Library of Congress Cataloging-in-Publication Data Greenberg, Joseph H. Ruhlen, Merritt An Amerind Etymological Dictionary Bibliography: p. Includes indexes. 1. Amerind Languages—Etymology—Classification. I. Title. P000.G0 2007 000!.012 00-00000 ISBN 0-0000-0000-0 (alk. paper) This book is dedicated to the Amerind people, the first Americans Preface The present volume is a revison, extension, and refinement of the ev- idence for the Amerind linguistic family that was initially offered in Greenberg (1987). This revision entails (1) the correction of a num- ber of forms, and the elimination of others, on the basis of criticism by specialists in various Amerind languages; (2) the consolidation of certain Amerind subgroup etymologies (given in Greenberg 1987) into Amerind etymologies; (3) the addition of many reconstructions from different levels of Amerind, based on a comprehensive database of all known reconstructions for Amerind subfamilies; and, finally, (4) the addition of a number of new Amerind etymologies presented here for the first time. I believe the present work represents an advance over the original, but it is at the same time simply one step forward on a project that will never be finished. M. R. September 2007 Contents Introduction 1 Dictionary 11 Maps 272 Classification of Amerind Languages 274 References 283 Semantic Index 296 Introduction This volume presents the lexical and grammatical evidence that defines the Amerind linguistic family. The evidence is presented in terms of 913 etymolo- gies, arranged alphabetically according to the English gloss. -
Towards a Conceptual Representation of Lexical Meaning in Wordnet
Towards a Conceptual Representation of Lexical Meaning in WordNet Jen-nan Chen Sue J. Ker Department of Information Management, Department of Computer Science, Ming Chuan University Soochow University Taipei, Taiwan Taipei, Taiwan [email protected] [email protected] Abstract Knowledge acquisition is an essential and intractable task for almost every natural language processing study. To date, corpus approach is a primary means for acquiring lexical-level semantic knowledge, but it has the problem of knowledge insufficiency when training on various kinds of corpora. This paper is concerned with the issue of how to acquire and represent conceptual knowledge explicitly from lexical definitions and their semantic network within a machine-readable dictionary. Some information retrieval techniques are applied to link between lexical senses in WordNet and conceptual ones in Roget's categories. Our experimental results report an overall accuracy of 85.25% (87, 78, 89, and 87% for nouns, verbs, adjectives and adverbs, respectively) when evaluating on polysemous words discussed in previous literature. 1 Introduction Knowledge representation has traditionally been thought of as the heart of various applications of natural language processing. Anyone who has built a natural language processing system has had to tackle the problem of representing its knowledge of the world. One of the applications for knowledge representation is word sense disambiguation (WSD) for unrestricted text, which is one of the major problems in analyzing sentences. In the past, the substantial literature on WSD has concentrated on statistical approaches to analyzing and extracting information from corpora (Gale et al. 1992; Yarowsky 1992, 1995; Dagan and Itai 1994; Luk 1995; Ng and Lee 1996). -
Inferring Parts of Speech for Lexical Mappings Via the Cyc KB
to appear in Proceeding 20th International Conference on Computational Linguistics (COLING-04), August 23-27, 2004 Geneva Inferring parts of speech for lexical mappings via the Cyc KB Tom O’Hara‡, Stefano Bertolo, Michael Witbrock, Bjørn Aldag, Jon Curtis,withKathy Panton, Dave Schneider,andNancy Salay ‡Computer Science Department Cycorp, Inc. New Mexico State University Austin, TX 78731 Las Cruces, NM 88001 {bertolo,witbrock,aldag}@cyc.com [email protected] {jonc,panton,daves,nancy}@cyc.com Abstract in the phrase “painting for sale.” In cases like this, semantic or pragmatic criteria, as opposed We present an automatic approach to learn- to syntactic criteria only, are necessary for deter- ing criteria for classifying the parts-of-speech mining the proper part of speech. The headword used in lexical mappings. This will fur- part of speech is important for correctly identifying ther automate our knowledge acquisition sys- phrasal variations. For instance, the first term can tem for non-technical users. The criteria for also occur in the same sense in “paint for money.” the speech parts are based on the types of However, this does not hold for the second case, the denoted terms along with morphological since “paint for sale” has an entirely different sense and corpus-based clues. Associations among (i.e., a substance rather than an artifact). these and the parts-of-speech are learned us- When lexical mappings are produced by naive ing the lexical mappings contained in the Cyc users, such as in DARPA’s Rapid Knowledge For- knowledge base as training data. With over mation (RKF) project, it is desirable that tech- 30 speech parts to choose from, the classifier nical details such as the headword part of speech achieves good results (77.8% correct). -
Symbols Used in the Dictionary
Introduction 1. This dictionary will help you to be able to use Einglish - English Dictionary well & use it in your studying. 2. The exercies will provide you with what information your dictionary contains & how to find as well use them quickly & correctly. So you MUST: 1. make sure you understand the instructuion of the exercise. 2. check on yourself by working out examples, using your dictionay. 3. Do it carefully but quickly as you can even if you think you know the answer. 4. always scan the whole entry first to get the general idea, then find the part that you’re interested in. 5. Read slowly & carefully. 6. Help to make the learning process interesting. 7. If you make a mistake, find out why. Remember, the more you use the dictionary, the more uses you will find for it. 1 Chapter one Dictionary Entry • Terms used in the Dictionary. •Symbols used in the Dictionary. •Different typfaces used in the Dictionary. •Abbreviation used in the Dictionary. 2 1- Terms used in the Dictionay: -What is Headword? -What is an Entry? -What is a Definition? -What is a Compound? -What is a Derivative? -What information does an entry contain? 3 1- What is Headword? It’s the word you look up in a dictionary. Also, it’s the name given to each of the words listed alphabetically. 4 2- What is an Entry? It consists of a headword & all the information about the headword. 5 3- What is a Definition? It’s a part of an entry which describes a particular meaning & usage of the headword.