The Van Der Waals Equation As a Cubic Carl W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symmetry and the Cubic Formula
SYMMETRY AND THE CUBIC FORMULA DAVID CORWIN The purpose of this talk is to derive the cubic formula. But rather than finding the exact formula, I'm going to prove that there is a cubic formula. The way I'm going to do this uses symmetry in a very elegant way, and it foreshadows Galois theory. Note that this material comes almost entirely from the first chapter of http://homepages.warwick.ac.uk/~masda/MA3D5/Galois.pdf. 1. Deriving the Quadratic Formula Before discussing the cubic formula, I would like to consider the quadratic formula. While I'm expecting you know the quadratic formula already, I'd like to treat this case first in order to motivate what we will do with the cubic formula. Suppose we're solving f(x) = x2 + bx + c = 0: We know this factors as f(x) = (x − α)(x − β) where α; β are some complex numbers, and the problem is to find α; β in terms of b; c. To go the other way around, we can multiply out the expression above to get (x − α)(x − β) = x2 − (α + β)x + αβ; which means that b = −(α + β) and c = αβ. Notice that each of these expressions doesn't change when we interchange α and β. This should be the case, since after all, we labeled the two roots α and β arbitrarily. This means that any expression we get for α should equally be an expression for β. That is, one formula should produce two values. We say there is an ambiguity here; it's ambiguous whether the formula gives us α or β. -
Solving Cubic Polynomials
Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial monic. a 2. Then, given x2 + a x + a , substitute x = y − 1 to obtain an equation without the linear term. 1 0 2 (This is the \depressed" equation.) 3. Solve then for y as a square root. (Remember to use both signs of the square root.) a 4. Once this is done, recover x using the fact that x = y − 1 . 2 For example, let's solve 2x2 + 7x − 15 = 0: First, we divide both sides by 2 to create an equation with leading term equal to one: 7 15 x2 + x − = 0: 2 2 a 7 Then replace x by x = y − 1 = y − to obtain: 2 4 169 y2 = 16 Solve for y: 13 13 y = or − 4 4 Then, solving back for x, we have 3 x = or − 5: 2 This method is equivalent to \completing the square" and is the steps taken in developing the much- memorized quadratic formula. For example, if the original equation is our \high school quadratic" ax2 + bx + c = 0 then the first step creates the equation b c x2 + x + = 0: a a b We then write x = y − and obtain, after simplifying, 2a b2 − 4ac y2 − = 0 4a2 so that p b2 − 4ac y = ± 2a and so p b b2 − 4ac x = − ± : 2a 2a 1 The solutions to this quadratic depend heavily on the value of b2 − 4ac. -
Chapter 6 - Engineering Equations of State II
Introductory Chemical Engineering Thermodynamics By J.R. Elliott and C.T. Lira Chapter 6 - Engineering Equations of State II. Generalized Fluid Properties The principle of two-parameter corresponding states 50 50 40 40 30 30 T=705K 20 20 ρ T=286K L 10 10 T=470 T=191K T=329K 0 0 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 -10 T=133K -10 ρV Density (g/cc) Density (g/cc) VdW Pressure (bars) in Methane VdW Pressure (bars) in Pentane Critical Definitions: Tc - critical temperature - the temperature above which no liquid can exist. Pc - critical pressure - the pressure above which no vapor can exist. ω - acentric factor - a third parameter which helps to specify the vapor pressure curve which, in turn, affects the rest of the thermodynamic variables. ∂ ∂ 2 P = P = 0 and 0 at Tc and Pc Note: at the critical point, ∂ρ ∂ρ 2 T T Chapter 6 - Engineering Equations of State Slide 1 II. Generalized Fluid Properties The van der Waals (1873) Equation Of State (vdW-EOS) Based on some semi-empirical reasoning about the ways that temperature and density affect the pressure, van der Waals (1873) developed the equation below, which he considered to be fairly crude. We will discuss the reasoning at the end of the chapter, but it is useful to see what the equations are and how we use them before deriving the details. The vdW-EOS is: bρ aρ 1 aρ Z =+1 −= − ()1− bρ RT()1− bρ RT van der Waals’ trick for characterizing the difference between subcritical and supercritical fluids was to recognize that, at the critical point, ∂P ∂ 2 P = 0 and = 0 at T , P ∂ρ ∂ρ 2 c c T T Since there are only two “undetermined parameters” in his EOS (a and b), he has reduced the problem to one of two equations and two unknowns. -
On the Van Der Waals Gas, Contact Geometry and the Toda Chain
entropy Article On the van der Waals Gas, Contact Geometry and the Toda Chain Diego Alarcón, P. Fernández de Córdoba ID , J. M. Isidro * ID and Carlos Orea Instituto Universitario de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia, Spain; [email protected] (D.A.); [email protected] (P.F.d.C.); [email protected] (C.O.) * Correspondence: [email protected] Received: 7 June 2018; Accepted: 16 July 2018; Published: 26 July 2018 Abstract: A Toda–chain symmetry is shown to underlie the van der Waals gas and its close cousin, the ideal gas. Links to contact geometry are explored. Keywords: van der Waals gas; contact geometry; Toda chain 1. Introduction The contact geometry of the classical van der Waals gas [1] is described geometrically using a five-dimensional contact manifold M [2] that can be endowed with the local coordinates U (internal energy), S (entropy), V (volume), T (temperature) and p (pressure). This description corresponds to a choice of the fundamental equation, in the energy representation, in which U depends on the two extensive variables S and V. One defines the corresponding momenta T = ¶U/¶S and −p = ¶U/¶V. Then, the standard contact form on M reads [3,4] a = dU + TdS − pdV. (1) One can introduce Poisson brackets on the four-dimensional Poisson manifold P (a submanifold of M) spanned by the coordinates S, V and their conjugate variables T, −p, the nonvanishing brackets being fS, Tg = 1, fV, −pg = 1. (2) Given now an equation of state f (p, T,...) = 0, (3) one can make the replacements T = ¶U/¶S, −p = ¶U/¶V in order to obtain ¶U ¶U f − , ,.. -
A Historical Survey of Methods of Solving Cubic Equations Minna Burgess Connor
University of Richmond UR Scholarship Repository Master's Theses Student Research 7-1-1956 A historical survey of methods of solving cubic equations Minna Burgess Connor Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Recommended Citation Connor, Minna Burgess, "A historical survey of methods of solving cubic equations" (1956). Master's Theses. Paper 114. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. A HISTORICAL SURVEY OF METHODS OF SOLVING CUBIC E<~UATIONS A Thesis Presented' to the Faculty or the Department of Mathematics University of Richmond In Partial Fulfillment ot the Requirements tor the Degree Master of Science by Minna Burgess Connor August 1956 LIBRARY UNIVERStTY OF RICHMOND VIRGlNIA 23173 - . TABLE Olf CONTENTS CHAPTER PAGE OUTLINE OF HISTORY INTRODUCTION' I. THE BABYLONIANS l) II. THE GREEKS 16 III. THE HINDUS 32 IV. THE CHINESE, lAPANESE AND 31 ARABS v. THE RENAISSANCE 47 VI. THE SEVEW.l'EEl'iTH AND S6 EIGHTEENTH CENTURIES VII. THE NINETEENTH AND 70 TWENTIETH C:BNTURIES VIII• CONCLUSION, BIBLIOGRAPHY 76 AND NOTES OUTLINE OF HISTORY OF SOLUTIONS I. The Babylonians (1800 B. c.) Solutions by use ot. :tables II. The Greeks·. cs·oo ·B.c,. - )00 A~D.) Hippocrates of Chios (~440) Hippias ot Elis (•420) (the quadratrix) Archytas (~400) _ .M~naeobmus J ""375) ,{,conic section~) Archimedes (-240) {conioisections) Nicomedea (-180) (the conchoid) Diophantus ot Alexander (75) (right-angled tr~angle) Pappus (300) · III. -
Analytical Formula for the Roots of the General Complex Cubic Polynomial Ibrahim Baydoun
Analytical formula for the roots of the general complex cubic polynomial Ibrahim Baydoun To cite this version: Ibrahim Baydoun. Analytical formula for the roots of the general complex cubic polynomial. 2018. hal-01237234v2 HAL Id: hal-01237234 https://hal.archives-ouvertes.fr/hal-01237234v2 Preprint submitted on 17 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Analytical formula for the roots of the general complex cubic polynomial Ibrahim Baydoun1 1ESPCI ParisTech, PSL Research University, CNRS, Univ Paris Diderot, Sorbonne Paris Cit´e, Institut Langevin, 1 rue Jussieu, F-75005, Paris, France January 17, 2018 Abstract We present a new method to calculate analytically the roots of the general complex polynomial of degree three. This method is based on the approach of appropriated changes of variable involving an arbitrary parameter. The advantage of this method is to calculate the roots of the cubic polynomial as uniform formula using the standard convention of the square and cubic roots. In contrast, the reference methods for this problem, as Cardan-Tartaglia and Lagrange, give the roots of the cubic polynomial as expressions with case distinctions which are incorrect using the standar convention. -
The Evolution of Equation-Solving: Linear, Quadratic, and Cubic
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2006 The evolution of equation-solving: Linear, quadratic, and cubic Annabelle Louise Porter Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Porter, Annabelle Louise, "The evolution of equation-solving: Linear, quadratic, and cubic" (2006). Theses Digitization Project. 3069. https://scholarworks.lib.csusb.edu/etd-project/3069 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE EVOLUTION OF EQUATION-SOLVING LINEAR, QUADRATIC, AND CUBIC A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degre Master of Arts in Teaching: Mathematics by Annabelle Louise Porter June 2006 THE EVOLUTION OF EQUATION-SOLVING: LINEAR, QUADRATIC, AND CUBIC A Project Presented to the Faculty of California State University, San Bernardino by Annabelle Louise Porter June 2006 Approved by: Shawnee McMurran, Committee Chair Date Laura Wallace, Committee Member , (Committee Member Peter Williams, Chair Davida Fischman Department of Mathematics MAT Coordinator Department of Mathematics ABSTRACT Algebra and algebraic thinking have been cornerstones of problem solving in many different cultures over time. Since ancient times, algebra has been used and developed in cultures around the world, and has undergone quite a bit of transformation. This paper is intended as a professional developmental tool to help secondary algebra teachers understand the concepts underlying the algorithms we use, how these algorithms developed, and why they work. -
Comments on Failures of Van Der Waals' Equation at the Gas–Liquid
Comments on Failures of van der Waals’ Equation at the Gas–Liquid Critical Point, L. V. Woodcock, International Journal of Thermophysics (2018) 39:120 I.H. Umirzakov Institute of Thermophysics, Novosibirsk, Russia [email protected] Abstract These comments are a response to the discussion presented in the above paper concerning the “New comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters” by Umirzakov. Here we show that: Woodcock’s results obtained for the dependencies for the isochoric heat capacity, excess Gibbs energy and coexisting difference functional of argon, and coexisting densities of liquid and vapor of the van der Waals fluid and presented in all Figures are incorrect; his Table includes incorrect values of coexisting difference functional; his paper includes many incorrect equations, mathematical and logical errors and physically incorrect assertions concerning the temperature dependences of the isochoric heat capacity and entropy of real fluids; most of the his conclusions are based on the above errors, incorrect data, incorrect comparisons and incorrect dependencies; and most of his conclusions are invalid. We also show that the van der Waals equation of state quantitatively describes the dependencies of saturation pressure on vapor density and temperature near critical point, and the equation of state can describe qualitatively the reduced excess Gibbs energy, rigidity and densities of coexisting liquid and vapor of argon, including the region near critical point. Keywords Coexistence · Critical point · First-order phase transition · Liquid · Phase equilibrium · Vapor 1. Introduction Our comments are a response to a discussion of the article “New comment on Gibbs Density Surface of Fluid Argon: Revised Critical Parameters” by Umirzakov [1] held in the paper [2]. -
Convolutional Neural Networks for Atomistic Systems
Convolutional neural networks for atomistic systems Kevin Ryczko Department of Physics, University of Ottawa Kyle Mills Department of Physics, University of Ontario Institute of Technology Iryna Luchak Department of Electrical & Computer Engineering, University of British Columbia Christa Homenick National Research Council of Canada Isaac Tamblyn Department of Physics, University of Ontario Institute of Technology Department of Physics, University of Ottawa National Research Council of Canada Abstract We introduce a new method, called CNNAS (convolutional neural networks for atom- istic systems), for calculating the total energy of atomic systems which rivals the com- putational cost of empirical potentials while maintaining the accuracy of ab initio calculations. This method uses deep convolutional neural networks (CNNs), where the input to these networks are simple representations of the atomic structure. We use this approach to predict energies obtained using density functional theory (DFT) for 2D hexagonal lattices of various types. Using a dataset consisting of graphene, hexagonal boron nitride (hBN), and graphene-hBN heterostructures, with and with- out defects, we trained a deep CNN that is capable of predicting DFT energies to an extremely high accuracy, with a mean absolute error (MAE) of 0.198 meV / atom (maximum absolute error of 16.1 meV / atom). To explore our new methodology, arXiv:1706.09496v2 [cond-mat.mtrl-sci] 20 Mar 2018 Email addresses: [email protected] (Kevin Ryczko), [email protected] (Isaac Tamblyn) Preprint submitted to Computational Materials Science March 21, 2018 we investigate the ability of a deep neural network (DNN) in predicting a Lennard- Jones energy and separation distance for a dataset of dimer molecules in both two and three dimensions. -
How Cubic Equations (And Not Quadratic) Led to Complex Numbers
How Cubic Equations (and Not Quadratic) Led to Complex Numbers J. B. Thoo Yuba College 2013 AMATYC Conference, Anaheim, California This presentation was produced usingLATEX with C. Campani’s BeamerLATEX class and saved as a PDF file: <http://bitbucket.org/rivanvx/beamer>. See Norm Matloff’s web page <http://heather.cs.ucdavis.edu/~matloff/beamer.html> for a quick tutorial. Disclaimer: Our slides here won’t show off what Beamer can do. Sorry. :-) Are you sitting in the right room? This talk is about the solution of the general cubic equation, and how the solution of the general cubic equation led mathematicians to study complex numbers seriously. This, in turn, encouraged mathematicians to forge ahead in algebra to arrive at the modern theory of groups and rings. Hence, the solution of the general cubic equation marks a watershed in the history of algebra. We shall spend a fair amount of time on Cardano’s solution of the general cubic equation as it appears in his seminal work, Ars magna (The Great Art). Outline of the talk Motivation: square roots of negative numbers The quadratic formula: long known The cubic formula: what is it? Brief history of the solution of the cubic equation Examples from Cardano’s Ars magna Bombelli’s famous example Brief history of complex numbers The fundamental theorem of algebra References Girolamo Cardano, The Rules of Algebra (Ars Magna), translated by T. Richard Witmer, Dover Publications, Inc. (1968). Roger Cooke, The History of Mathematics: A Brief Course, second edition, Wiley Interscience (2005). Victor J. Katz, A History of Mathematics: An Introduction, third edition, Addison-Wesley (2009). -
History of Mathematics Mathematical Topic Ix Cubic Equations and Quartic Equations
HISTORY OF MATHEMATICS MATHEMATICAL TOPIC IX CUBIC EQUATIONS AND QUARTIC EQUATIONS PAUL L. BAILEY 1. The Story Various solutions for solving quadratic equations ax2 + bx + c = 0 have been around since the time of the Babylonians. A few methods for attacking special forms of the cubic equation ax3 +bx2 +cx+d = 0 had been investigated prior to the discovery and development of a general solution to such equations, beginning in the fifteenth century and continuing into the sixteenth century, A.D. This story is filled with bizarre characters and plots twists, which is now outlined before describing the method of solution. The biographical material here was lifted wholesale from the MacTutor History of Mathematics website, and then editted. Other material has been derived from Dunham’s Journey through Genius. 1.1. Types of Cubics. Zero and negative numbers were not used in fifteenth cen- tury Europe. Thus, cubic equations were viewed to be in different types, depending on the degrees of the terms and there placement with respect to the equal sign. • x3 + mx = n “cube plus cosa equals number” • x3 + mx2 = n “cube plus squares equals number” • x3 = mx + n “cube equals cosa plus number” • x3 = mx2 + n “cube equals squares plus number” Mathematical discoveries at this time were kept secret, to be used in public “de- bates” and “contests”. For example, the method of depressing a cubic (eliminating the square term by a linear change of variable) was discovered independently by several people. The more difficult problem of solving the depressed cubic remained elusive. 1.2. Luca Pacioli. -
Chemical Engineering Thermodynamics
CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................