Using Validation Sets to Avoid Overfitting in Adaboost

Total Page:16

File Type:pdf, Size:1020Kb

Using Validation Sets to Avoid Overfitting in Adaboost Using Validation Sets to Avoid Overfitting in AdaBoost ∗ Tom Bylander and Lisa Tate Department of Computer Science, University of Texas at San Antonio, San Antonio, TX 78249 USA {bylander, ltate}@cs.utsa.edu Abstract In both cases, the training set is used to find a small hy- pothesis space, and the validation set is used to select a hy- AdaBoost is a well known, effective technique for increas- pothesis from that space. The justification is that in a large ing the accuracy of learning algorithms. However, it has the potential to overfit the training set because its objective is hypothesis space, minimizing training error will often result to minimize error on the training set. We demonstrate that in overfitting. The training set can instead be used to estab- overfitting in AdaBoost can be alleviated in a time-efficient lish a set of choices as training error is minimized, with the manner using a combination of dagging and validation sets. validation set used to reverse or modify those choices. Half of the training set is removed to form the validation set. A validation set could simply be used for early stopping The sequence of base classifiers, produced by AdaBoost from in AdaBoost. However, we obtain the most success by also the training set, is applied to the validation set, creating a performing 2-dagging (Ting & Witten 1997), and modifying modified set of weights. The training and validation sets are weights. Dagging is disjoint aggregation, where a training switched, and a second pass is performed. The final classi- set is partitioned into subsets and training is performed on fier votes using both sets of weights. We show our algorithm has similar performance on standard datasets and improved each set. Our algorithm partitions the original training set performance when classification noise is added. into 2 partitions, applies boosting on one partition and vali- dation with the other partition. It switches the training and validation sets then applies boosting and validation again. Introduction In each boosting/validation pass, the sequence of weak hy- AdaBoost was first introduced by Freund and Schapire (Fre- potheses from boosting on the training partition are fit to und & Schapire 1997). Since then AdaBoost has shown to the validation partition in the same order. The sequence is do well with algorithms such as C4.5 (Quinlan 1996), De- truncated if and when the average error of the training and cision Stumps (Freund & Schapire 1996), and Naive Bayes validation set is 50% or more. The final weights are derived (Elkan 1997). It has been shown that AdaBoost has the po- from averaging the error rates. tential to overfit (Groves & Schuurmans 1998; Jiang 2000), Our results show that a large improvement is due to the although rarely with low noise data. However, it has a 2-dagging. When a training set contains classification noise, much higher potential to overfit in the presence of very learning algorithms that are sensitive to noise and prone to noisy data (Dietterich 2000; Ratsch, Onoda, & Muller 2001; overfitting can fit the noise. When the 2-dagging partitions Servedio 2003). At each iteration, AdaBoost focuses on the training set, a noisy example will be in only one of the classifying the misclassified instances. This might result in subsets. Although the hypothesis created from that sub- fitting the noise during training. In this paper, we use valida- set may overfit the noisy example, the hypothesis created tion sets to adjust the hypothesis of the AdaBoost algorithm from the other subset will not overfit that particular exam- to improve generalization, thereby alleviating overfitting and ple. Aggregating the hypotheses counteracts the overfitting improving performance. of each separate hypothesis. A further improvement is ob- Validation sets have long been used in addressing the tained by using the validation set to stop early and to modify problem of overfitting with neural networks (Heskes 1997) the weights. While this might not be the best way to use val- and decision trees (Quinlan 1996). The basic concept is to idation sets for boosting, we do demonstrate that validation apply the classifier to a set of instances distinct from the sets can be used to avoid overfitting efficiently. training set. The performance over the validation set can Several techniques have been used to address overfitting then be used to determine pruning, in the case of decision of noisy data in AdaBoost. BrownBoost (Freund 1999), an trees, or early stopping, in the case of neural networks. adaptive version of Boost By Majority (Freund 1990), gives small weights to misclassified examples far from the margin. ∗This research has been supported in part by the Center for In- frastructure Assurance and Security at the University of Texas at Using a ”soft margin” (Ratsch, Onoda, & Muller 2001) ef- San Antonio. fectively does not give preference to hypotheses that rely on Copyright c 2006, American Association for Artificial Intelli- a few examples with large weights from continuous misclas- gence (www.aaai.org). All rights reserved. sification. MadaBoost (Domingo & Watanabe 2000) pro- 544 vides an upper bound on example weights based on initial value, a function of the error, is used to update the weights probability. SmoothBoost (Servedio 2003) smooths the dis- in the distribution at every iteration t. If an example is mis- tribution over the examples by weighting on the margin of classified it receives a higher weight. The Zt value is the error and creating an upper bound so that no one example normalization factor. The βt value is also used to calculate can have too much weight. NadaBoost (Nakamura, Nomiya, the final weight for each hypothesis ht as log(1/βt). The & Uehara 2002) adjusts the weighting scheme by simply final hypothesis hfin(x) is a weighted plurality vote deter- adding a threshold for the maximum allowable weight. In mined by the weights of the hypotheses. this paper, we address overfitting of noisy data by using a validation set to smooth the hypothesis weights. Validation Algorithms The rest of this paper is organized as follows. First we FitValidationSet Subroutine describe the AdaBoost.M1 algorithm, used for multiclass datasets. We then present our AdaBoost.MV algorithm. Fi- Subroutine FitValidationSet nally, we describe our experiments including a comparison Input: validation set of m examples ((x1, y1),...,(xm, ym)) with the BrownBoost algorithm and conclude with a discus- with labels y ∈ Y = {1, . , k} sion of the results. i hypotheses {h1, . , hT } from AdaBoost.M1 errors {1, . , T } from AdaBoost.M1 AdaBoost.M1 Algorithm 0 1 Initialize D1(i) = m for all i Do for t = 1,...,T Algorithm AdaBoost.M1 0 X 0 Input: train set of m examples ((x1, y1),...,(xm, ym)) 1. Calculate the error of ht: t = Dt(i) with labels yi ∈ Y = {1, . , k} i:ht(xi)6=yi learning algorithm L 2. if ( + 0 )/2 ≥ 1/2, then set T = t − 1 and abort integer T specifying number of iterations t t 0 Initialize D (i) = 1 for all i 0 t 1 m 3. Set βt = 0 Do for t = 1,...,T 1 − t 4. Update distribution D0 : 1. Call L providing it with the distribution Dt t 0 0 2. Get back a hypothesis ht: X → Y D (i) β if h (x ) = y D0 (i) = t × t t i i X t+1 Z0 1 otherwise 3. Calculate the error of ht: t = Dt(i) t i:ht(xi)6=yi 0 X 0 where Zt = Dt(i) 4. if t ≥ 1/2, then set T = t − 1 and abort 0 Output the errors t t 5. Set βt = 1 − t Figure 2: The FitValidationSet algorithm 6. Update distribution Dt: Dt(i) βt if ht(xi) = yi The inputs to the FitValidationSet subroutine (Figure 2) Dt+1(i) = × Zt 1 otherwise are the validation set, the classifiers from boosting on the training set, and the errors from boosting on the training set. where Zt is a normalization constant. FitValidationSet applies AdaBoost.M1’s distribution updat- Output the final classifier: ing scheme to the classifiers in sequential order. The first 0 distribution D1 is initialized to be uniform. The validation X 1 0 error t is calculated for each classifier ht with respect to hfin(x) = arg max log 0 0 y∈Y βt distribution D . The next distribution D is determined t:h (x)=y t t+1 t using the same distribution update as AdaBoost.M1. FitVal- 0 idationSet will stop early if (t + t)/2 ≥ 1/2, where t is Figure 1: The AdaBoost.M1 algorithm the error of ht on the distribution Dt from AdaBoost.M1. In our algorithm, the validation set is used to adjust the weights AdaBoost.M1 is a version of the AdaBoost algorithm away from fitting (maybe overfitting) the training set toward (Freund & Schapire 1997) that handles multiple-label classi- fitting the validation set. There are a variety of other rea- fication. The AdaBoost.M1 algorithm takes a set of training sonable sounding ways to use a validation set in boosting. examples ((x1, y1),...,(xm, ym)), where xi ∈ X is an in- Informally, our algorithm can be justified as follows. stance and yi ∈ Y is the class label. It initializes the first We don’t want to overfit either the training set or the vali- distribution of weights D1 to be uniform over the training dation set. We also don’t want to forget the weights learned examples. It calls a learning algorithm, referred to as L, it- from either set, so our algorithm chooses a weight in be- eratively for a predetermined T times. At each iteration, L tween the two. For the method of adjustment, averaging the is provided with the distribution Dt and returns a hypothesis errors followed by computing a weight is more stable than ht relative to the distribution.
Recommended publications
  • Early Stopping for Kernel Boosting Algorithms: a General Analysis with Localized Complexities
    IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019 6685 Early Stopping for Kernel Boosting Algorithms: A General Analysis With Localized Complexities Yuting Wei , Fanny Yang, and Martin J. Wainwright, Senior Member, IEEE Abstract— Early stopping of iterative algorithms is a widely While the basic idea of early stopping is fairly old (e.g., [1], used form of regularization in statistics, commonly used in [33], [37]), recent years have witnessed renewed interests in its conjunction with boosting and related gradient-type algorithms. properties, especially in the context of boosting algorithms and Although consistency results have been established in some settings, such estimators are less well-understood than their neural network training (e.g., [13], [27]). Over the past decade, analogues based on penalized regularization. In this paper, for a a line of work has yielded some theoretical insight into early relatively broad class of loss functions and boosting algorithms stopping, including works on classification error for boosting (including L2-boost, LogitBoost, and AdaBoost, among others), algorithms [4], [14], [19], [25], [41], [42], L2-boosting algo- we exhibit a direct connection between the performance of a rithms for regression [8], [9], and similar gradient algorithms stopped iterate and the localized Gaussian complexity of the associated function class. This connection allows us to show that in reproducing kernel Hilbert spaces (e.g. [11], [12], [28], the local fixed point analysis of Gaussian or Rademacher com- [36], [41]). A number of these papers establish consistency plexities, now standard in the analysis of penalized estimators, results for particular forms of early stopping, guaranteeing can be used to derive optimal stopping rules.
    [Show full text]
  • Search for Ultra-High Energy Photons with the Pierre Auger Observatory Using Deep Learning Techniques
    Search for Ultra-High Energy Photons with the Pierre Auger Observatory using Deep Learning Techniques von Tobias Alexander Pan Masterarbeit in Physik vorgelegt der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen im Februar 2020 angefertigt im III. Physikalischen Institut A bei Jun.-Prof. Dr. Thomas Bretz Prof. Dr. Thomas Hebbeker Contents 1 Introduction1 2 Cosmic rays3 2.1 Cosmic ray physics................................3 2.2 Cosmic ray-induced extensive air showers...................6 2.3 Attributes of photon-induced air showers....................8 2.4 Detection principles............................... 11 3 The Pierre Auger Observatory 13 3.1 The Surface Detector............................... 13 3.2 The Fluorescence Detector............................ 15 3.3 The Infill array.................................. 16 3.4 AugerPrime Upgrade............................... 17 3.5 Standard event reconstruction.......................... 18 4 Simulation 21 4.1 CORSIKA..................................... 21 4.2 Offline Software Framework........................... 22 4.3 Data set selection................................. 23 4.4 Preprocessing................................... 25 5 Photon search with machine learning 31 6 Deep neural networks 37 6.1 Basic principles.................................. 37 6.2 Regularization.................................. 40 6.3 Convolutional networks............................. 41 7 Photon search using deep neural networks 43 7.1 Network architecture..............................
    [Show full text]
  • Identifying Training Stop Point with Noisy Labeled Data
    Identifying Training Stop Point with Noisy Labeled Data Sree Ram Kamabattula and Venkat Devarajan Babak Namazi and Ganesh Sankaranarayanan Department of Electrical Engineering Baylor Scott and White Health, Dallas, USA The Univeristy of Texas at Arlington, USA [email protected] [email protected] [email protected] [email protected] Abstract—Training deep neural networks (DNNs) with noisy One notable approach to deal with this problem is to select labels is a challenging problem due to over-parameterization. and train on only clean samples from the noisy training data. DNNs tend to essentially fit on clean samples at a higher rate in In [4], authors check for inconsistency in predictions. O2UNet the initial stages, and later fit on the noisy samples at a relatively lower rate. Thus, with a noisy dataset, the test accuracy increases [9] uses cyclic learning rate and gathers loss statistics to select initially and drops in the later stages. To find an early stopping clean samples. SELF [16] takes ensemble of predictions at point at the maximum obtainable test accuracy (MOTA), recent different epochs. studies assume either that i) a clean validation set is available Few methods utilize two networks to select clean samples. or ii) the noise ratio is known, or, both. However, often a clean MentorNet [10] pre-trains an extra network to supervise a validation set is unavailable, and the noise estimation can be inaccurate. To overcome these issues, we provide a novel training StudentNet. Decoupling [15] trains two networks simultane- solution, free of these conditions. We analyze the rate of change ously, and the network parameters are updated only on the of the training accuracy for different noise ratios under different examples with different predictions.
    [Show full text]
  • Links Between Perceptrons, Mlps and Svms
    Links between Perceptrons, MLPs and SVMs Ronan Collobert [email protected] Samy Bengio [email protected] IDIAP, Rue du Simplon 4, 1920 Martigny, Switzerland Abstract large margin classifier idea, which is known to improve We propose to study links between three the generalization performance for binary classification important classification algorithms: Percep- tasks. The aim of this paper is to give a better under- trons, Multi-Layer Perceptrons (MLPs) and standing of Perceptrons and MLPs applied to binary Support Vector Machines (SVMs). We first classification, using the knowledge of the margin in- study ways to control the capacity of Percep- troduced with SVMs. Indeed, one of the key problem trons (mainly regularization parameters and in machine learning is the control of the generalization early stopping), using the margin idea intro- ability of the models, and the margin idea introduced duced with SVMs. After showing that under in SVMs appears to be a nice way to control it (Vap- simple conditions a Perceptron is equivalent nik, 1995). to an SVM, we show it can be computation- After the definition of our mathematical framework ally expensive in time to train an SVM (and in the next section, we first point out the equivalence thus a Perceptron) with stochastic gradient between a Perceptron trained with a particular cri- descent, mainly because of the margin maxi- terion (for binary classification) and a linear SVM. mization term in the cost function. We then As in general Perceptrons are trained with stochastic show that if we remove this margin maxi- gradient descent (LeCun et al., 1998), and SVMs are mization term, the learning rate or the use trained with the minimization of a quadratic problem of early stopping can still control the mar- under constraints (Vapnik, 1995), the only remaining gin.
    [Show full text]
  • Asymptotic Statistical Theory of Overtraining and Cross-Validation
    IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997 985 Asymptotic Statistical Theory of Overtraining and Cross-Validation Shun-ichi Amari, Fellow, IEEE, Noboru Murata, Klaus-Robert M¨uller, Michael Finke, and Howard Hua Yang, Member, IEEE Abstract— A statistical theory for overtraining is proposed. because the parameter values fit too well the speciality of the The analysis treats general realizable stochastic neural networks, biased training examples and are not optimal in the sense of trained with Kullback–Leibler divergence in the asymptotic case minimizing the generalization error given by the risk function. of a large number of training examples. It is shown that the asymptotic gain in the generalization error is small if we per- There are a number of methods of avoiding overfitting. form early stopping, even if we have access to the optimal For example, model selection methods (e.g., [23], [20], [26] stopping time. Considering cross-validation stopping we answer and many others), regularization ([25] and others), and early the question: In what ratio the examples should be divided into stopping ([16], [15], [30], [11], [4] and others) or structural training and cross-validation sets in order to obtain the optimum risk minimization (SRM, cf. [32]) can be applied. performance. Although cross-validated early stopping is useless in the asymptotic region, it surely decreases the generalization error Here we will consider early stopping in detail. There is in the nonasymptotic region. Our large scale simulations done on a folklore that the generalization error decreases in an early a CM5 are in nice agreement with our analytical findings.
    [Show full text]
  • Explaining the Success of Adaboost and Random Forests As Interpolating Classifiers
    Journal of Machine Learning Research 18 (2017) 1-33 Submitted 5/15; Revised 2/17; Published 5/17 Explaining the Success of AdaBoost and Random Forests as Interpolating Classifiers Abraham J. Wyner [email protected] Matthew Olson [email protected] Justin Bleich [email protected] Department of Statistics Wharton School, University of Pennsylvania Philadelphia, PA 19104, USA David Mease [email protected] Apple Inc. Editor: Koby Crammer Abstract There is a large literature explaining why AdaBoost is a successful classifier. The literature on AdaBoost focuses on classifier margins and boosting's interpretation as the optimiza- tion of an exponential likelihood function. These existing explanations, however, have been pointed out to be incomplete. A random forest is another popular ensemble method for which there is substantially less explanation in the literature. We introduce a novel per- spective on AdaBoost and random forests that proposes that the two algorithms work for similar reasons. While both classifiers achieve similar predictive accuracy, random forests cannot be conceived as a direct optimization procedure. Rather, random forests is a self- averaging, interpolating algorithm which creates what we denote as a \spiked-smooth" classifier, and we view AdaBoost in the same light. We conjecture that both AdaBoost and random forests succeed because of this mechanism. We provide a number of examples to support this explanation. In the process, we question the conventional wisdom that sug- gests that boosting algorithms for classification require regularization or early stopping and should be limited to low complexity classes of learners, such as decision stumps. We con- clude that boosting should be used like random forests: with large decision trees, without regularization or early stopping.
    [Show full text]
  • Asymptotic Statistical Theory of Overtraining and Cross-Validation
    IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 5, SEPTEMBER 1997 985 Asymptotic Statistical Theory of Overtraining and Cross-Validation Shun-ichi Amari, Fellow, IEEE, Noboru Murata, Klaus-Robert M¨uller, Michael Finke, and Howard Hua Yang, Member, IEEE Abstract— A statistical theory for overtraining is proposed. because the parameter values fit too well the speciality of the The analysis treats general realizable stochastic neural networks, biased training examples and are not optimal in the sense of trained with Kullback–Leibler divergence in the asymptotic case minimizing the generalization error given by the risk function. of a large number of training examples. It is shown that the asymptotic gain in the generalization error is small if we per- There are a number of methods of avoiding overfitting. form early stopping, even if we have access to the optimal For example, model selection methods (e.g., [23], [20], [26] stopping time. Considering cross-validation stopping we answer and many others), regularization ([25] and others), and early the question: In what ratio the examples should be divided into stopping ([16], [15], [30], [11], [4] and others) or structural training and cross-validation sets in order to obtain the optimum risk minimization (SRM, cf. [32]) can be applied. performance. Although cross-validated early stopping is useless in the asymptotic region, it surely decreases the generalization error Here we will consider early stopping in detail. There is in the nonasymptotic region. Our large scale simulations done on a folklore that the generalization error decreases in an early a CM5 are in nice agreement with our analytical findings.
    [Show full text]
  • Early Stopping for Kernel Boosting Algorithms: a General Analysis with Localized Complexities
    Early stopping for kernel boosting algorithms: A general analysis with localized complexities Yuting Wei1 Fanny Yang2∗ Martin J. Wainwright1;2 Department of Statistics1 Department of Electrical Engineering and Computer Sciences2 UC Berkeley Berkeley, CA 94720 {ytwei, fanny-yang, wainwrig}@berkeley.edu Abstract Early stopping of iterative algorithms is a widely-used form of regularization in statistics, commonly used in conjunction with boosting and related gradient- type algorithms. Although consistency results have been established in some settings, such estimators are less well-understood than their analogues based on penalized regularization. In this paper, for a relatively broad class of loss functions and boosting algorithms (including L2-boost, LogitBoost and AdaBoost, among others), we exhibit a direct connection between the performance of a stopped iterate and the localized Gaussian complexity of the associated function class. This connection allows us to show that local fixed point analysis of Gaussian or Rademacher complexities, now standard in the analysis of penalized estimators, can be used to derive optimal stopping rules. We derive such stopping rules in detail for various kernel classes, and illustrate the correspondence of our theory with practice for Sobolev kernel classes. 1 Introduction While non-parametric models offer great flexibility, they can also lead to overfitting, and thus poor generalization performance. For this reason, procedures for fitting non-parametric models must involve some form of regularization, most commonly done by adding some type of penalty to the objective function. An alternative form of regularization is based on the principle of early stopping, in which an iterative algorithm is terminated after a pre-specified number of steps prior to convergence.
    [Show full text]
  • Early Stopping and Non-Parametric Regression: an Optimal Data-Dependent Stopping Rule
    Journal of Machine Learning Research 15 (2014) 335-366 Submitted 8/13; Revised 12/13; Published 1/14 Early Stopping and Non-parametric Regression: An Optimal Data-dependent Stopping Rule Garvesh Raskutti [email protected] Department of Statistics University of Wisconsin-Madison Madison, WI 53706-1799, USA Martin J. Wainwright [email protected] Bin Yu [email protected] Department of Statistics∗ University of California Berkeley, CA 94720-1776, USA Editor: Sara van de Geer Abstract Early stopping is a form of regularization based on choosing when to stop running an iterative algorithm. Focusing on non-parametric regression in a reproducing kernel Hilbert space, we analyze the early stopping strategy for a form of gradient-descent applied to the least-squares loss function. We propose a data-dependent stopping rule that does not involve hold-out or cross-validation data, and we prove upper bounds on the squared error 2 2 of the resulting function estimate, measured in either the L (P) and L (Pn) norm. These upper bounds lead to minimax-optimal rates for various kernel classes, including Sobolev smoothness classes and other forms of reproducing kernel Hilbert spaces. We show through simulation that our stopping rule compares favorably to two other stopping rules, one based on hold-out data and the other based on Stein's unbiased risk estimate. We also establish a tight connection between our early stopping strategy and the solution path of a kernel ridge regression estimator. Keywords: early stopping, non-parametric regression, kernel ridge regression, stopping rule, reproducing kernel hilbert space, rademacher complexity, empirical processes 1.
    [Show full text]
  • Don't Relax: Early Stopping for Convex Regularization Arxiv:1707.05422V1
    Don't relax: early stopping for convex regularization Simon Matet 1, Lorenzo Rosasco2;3, Silvia Villa4 and B˘angC^ongV~u` 5 1 Ecole Politechnique, Route de Saclay 91128 Palaiseau, Cedex, France 2 LCSL, Istituto Italiano di Tecnologia and Massachusetts Institute of Technology Bldg. 46-5155, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 3 DIBRIS, Universit`adi Genova, Via Dodecaneso 35 16146 Genova, Italy 4 Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9 20133 Milano, Italy 5 Laboratory for Information and Inference Systems, EPFL, ELD 243 (Batiment EL) Station 11, CH-1015, Lausanne, Switzerland [email protected]; [email protected]; [email protected]; [email protected] July 19, 2017 Abstract We consider the problem of designing efficient regularization algorithms when regularization is encoded by a (strongly) convex functional. Unlike classical penalization methods based on a relaxation approach, we propose an iterative method where regularization is achieved via early stopping. Our results show that the proposed procedure achieves the same recovery accuracy as penalization methods, while naturally integrating computational considerations. An empirical analysis on a number of problems provides promising results with respect to the state of the art. Keywords: monotone inclusion, maximal monotone operator, operator splitting, cocoercive operator, composite operator, duality, stochastic errors, primal-dual algorithm arXiv:1707.05422v1 [math.OC] 18 Jul 2017 Mathematics Subject Classifications (2010): 47H05, 49M29, 49M27, 90C25 1 Introduction Many machine learning problems require to estimate a quantity of interest based on random noisy data/measurements. Towards this end, a common approach is considering estimators defined by the minimization of an empirical objective, where a data fit term is penalized using a regularizer, 1 encoding prior information on the quantity to be estimated.
    [Show full text]
  • Implementation of Intelligent System to Support Remote Telemedicine Services Using
    Implementation of intelligent system to support remote telemedicine services using chatbots technology Maria Vasiliou AM 1806 A Thesis in the Field of Natural Language Processing in Telemedicine for the Degree of Master of Big Data and Analytics University of Piraeus 02 2020 Supervisory Committee Dr. Ilias Maglogiannis Copyright 2020 Maria Vasiliou Abstract The objective of the current thesis is the implementation, integration and training of the “MV Health Bot” by leveraging Natural Language Processing (NLP) and Machine Learning (ML) algorithms. MV Healthbot’s role is to integrate features of a virtual assistant and bridge the gap between patients and health professionals. The chatbot provides a friendly interface to the patient in order to collect the demographic data and the health symptoms. The data are normalized and passed to the well trained artificial intelligence models for health predictions. The outcome of the prediction is shared with the patient and is stored for further analyses by the healthcare professionals. MV HealthBot is using human–computer interaction technologies based on natural language conversations or trivial selection flows. It provides predictive health services by using AI models and NLP for identifying Covid-19 , diagnose diseases based on symptoms and alert the patient in case of disorders. MvHealthBot also simulates the process of fetching data from a public health API using the patient's medical ID and provides diagnosis via the trained AI model that has been built for the purposes of the app. Keywords: Chatbot, AI, machine learning, digital health, telemedicine, NLP Frontispiece 4 Author’s Biographical Sketch Pioneering technologist with 15+ years of executive level experience.
    [Show full text]
  • The Theory Behind Overfitting, Cross Validation, Regularization, Bagging
    The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial Benyamin Ghojogh [email protected] Department of Electrical and Computer Engineering, Machine Learning Laboratory, University of Waterloo, Waterloo, ON, Canada Mark Crowley [email protected] Department of Electrical and Computer Engineering, Machine Learning Laboratory, University of Waterloo, Waterloo, ON, Canada Abstract 1. Introduction In this tutorial paper, we first define mean N Assume we have a dataset of instances f(xi; yi)gi=1 with squared error, variance, covariance, and bias d sample size N and dimensionality xi 2 R and yi 2 R. of both random variables and classifica- N N The fxigi=1 are the input data to the model and the fyigi=1 tion/predictor models. Then, we formulate the are the observations (labels). We denote the dataset by D true and generalization errors of the model so that N := jDj. This dataset is the union of the disjoint for both training and validation/test instances subsets, i.e., training set T and test set R; therefore: where we make use of the Stein’s Unbiased Risk Estimator (SURE). We define overfitting, under- D = T[R; (1) fitting, and generalization using the obtained true T\R = ?: (2) and generalization errors. We introduce cross validation and two well-known examples which For the training set, the observations (labels), yi’s, are are K-fold and leave-one-out cross validations. available. Although for the test set, we might also have We briefly introduce generalized cross validation yi’s, but we do not use them for training the model.
    [Show full text]