Quick viewing(Text Mode)

Oak Decline Portugal

Oak Decline Portugal

The decline of ( ) and Holm oak ( Q. ilex/ rotundifolia ) in South Western

Diploma Thesis at the Department of at the Highschool of Applied Science and Art (HAWK) Göttingen, Germany. Presented by Thomas Kaltenbach

I Table of contents 1Introduction 1 2Stateofknowledge 3 2.1Descriptionofthespeciesconcerned...... 3 2.1.1 Quercus suber LINNÉ...... 3 2.1.2 LINNÉ/ Q.rotundifolia LAM....... 4 2.2OakdeclineintheMediterraneanregion...... 6 2.3Descriptionofpossiblepathogens...... 8 2.3.1 ...... 8 2.3.2 Biscogniauxia mediterranea (former: Hypoxylon mediterraneum )...... 13 3Materialandmethods 15 3.1Descriptionoftheresearcharea...... 15 3.2Surveyoftheresearchareaand...... 17 3.3Surveyinthelaboratory...... 20 3.3.1Soilsamples...... 20 3.3.2Tissuesamples...... 21 4Results 23 4.1Descriptionofthestandandsymptoms...... 23 4.2Resultsofthetreesurvey...... 23 4.2.1DBHanddamageclassdistribution...... 26 4.2.2Crownsymptomssharesofwatersproutsanddeadbranches...... 30 4.2.3Exudations...... 32 4.2.4Topographicalaspects...... 38 4.2.5AdditionalRemarks...... 39 4.3LaboratoryResults...... 39 4.3.1Soilsamples...... 39 4.3.2Tissuesamples...... 41 5Discussion 42 6Recommendationsfordiseasemanagement 47 6.1Diagnosisandmonitoring...... 47 6.2Prophylaxis...... 47 6.3Diseasecontrol...... 48 6.4Competentadviceandlocalsupport...... 49 7Summary 50 Literature 53 Maps 58 Annexes 58

II Index of figures Fig.1ViewoverthehillsfromCorteMalhao 2 Fig.2Distributionof Quercus suber inPortugal 4 Fig.3DistributionofQuercusrotundifoliainPortugal 5 Fig.4TreesoflowvitalityfromthemostcommonspeciesinPortugal 7 Fig.5Mutualreinforcementof Phytophthora infectionandweakeningofthetree 12 Fig.6Stromataof B. mediterranea oncorkoak 13 Fig.7Locationoftheresearcharea 15 Fig.8.Viewintothesidevalley 16 Fig.9Characteristiccrownsymptomsof P. cinnamomi observedontheplot 24 Fig.10Characteristicsymptomsof P.cinnamomi attherootbase/lowertrunk 25 Fig.11Distributionoftreeswithindamageclasses(Dc)portrayedfortheDBHclasses26 Fig.12Damageclasses15andtheir%sharesofalltreessurveyed 27 Fig.13Damageclass(Dc)distributionwithinthesingleDBHclasses 28 Fig.14Sharesofthesubclasseswithindamageclass2 28 Fig.14Sharesoftreesindecaystages14,withindamageclass5(deadtrees) 29 Fig.15Averagesharesofwatersproutsanddeadbranchesbydamageclasses 30 Fig.16Standarddeviationofwatersproutsanddeadbrancheswithindamageclasses31 Fig.17CorrelationofwatersproutsanddeadbranchestoDBHclasses 31 Fig.18Correlationbetweenexudationsandthepercentageofwatersprouts 34 Fig.19Correlationbetweenexudationsanddeadbranchespercentage 35 Fig20Distributionofexudationswithindamageclasses 36 Fig.21Correlationbetweenyearoflatestcorkharvestanddamageclass 37 Fig.22Sharesoftreesperdamageclasswithina10meterdistanceofthewaterlines 38 Fig.23Differencesindamageclassdistributionbetweenthecommunityofalltreesand treesnearthewaterlines 38 Fig.24Nonseptedoomycetemyceliumunder200foldmagnification 40 Fig.25Stromataandascosporesof B. mediterranea 41

III Index of tables Tab.1Parameterssurveyedforeachtree 17 Tab.2DamageclassesaccordingtothePortugeseNationlForestInventory(IFN) 18 Tab.3Schemeforthesubdivisionofdamageclass2 18 Tab.4Decaystagesofthedeadtrees 19 Tab.5Attributesrecordedfortheexudations 19 Tab.6Selectedvaluesof Q.rotundifolia and Q. suber incomparison 23 Tab.7SharesofdeadtreesperDBHclass 28 Tab.8Indexwatersprouts/deadbranches 31 Tab.9Resultsoftheexudationsurvey; 32 Tab.9Resultsofmicroscopicsurveyofthesoilsamplesafter2days 40 Tab.10ResultsoftheBBAsurveyofthesoilsamples 40

IV 1.Introduction

1 Introduction InPortugal38%ofthetotallandcoverisstockedbyforests.Thisfigurecanberaisedto

64%ifunproductiveandwastelandsaretakenintoconsideration(ALVES ,2003).Although only21%oftheforestareaisdominatedbyCork,thisspeciestakesaveryspecial positionintheland,becausewitha57%sharePortugalclearlydominatestheworldcork market(CARVALHO MENDES ,2002)whichisquiteanachievementforsucha comparativelysmallcountry.80%oftheforestareaisownedbyprivatelandowners

(ALVES,2003).Mostofthemaresmallfarmerswithanaveragefarmsizeoflessthan5ha

(BORGES ,2007,internet1).Themainterritoryoccupiedby Quercus suber liesinthe hinterlandandthedrifttowardsthecitiesandlandabandonmentisabigprobleminthese areaswiththestructureoftheremainingpopulationcontainingahighpercentageofolder people(MOREIRA DA SILVA ,2003).Asaresultmanypropertiesliefalloworare insufficientlymanagedandthepossibilitiesofinterventionbythestateareverylimited.In theseareascorkproductionisanimportanteconomicandsocialfactor,providingan incomeforthelocalpopulation. Theclassicalmanagementsystemoftheseoakstandsiscalled“montado”andcombines forestrywithagrarianandespeciallypastorallandusepatterns.Thislandusesystemis characterisedbyveryextensive,aswellasmultifunctionalattributes.Besidesthecork productiontimber,fuelandcharcoalarethemainforestryproductsofthemontado,but therearealotofnonwoodproductssuchashoney,mushroomsandmedical obtainedaswell.Ontheagriculturalsidethemainusepatterniscattlebreedingunderneath thetrees,whichprotectfromweatherextremes,withtheaddingavaluable supplementationtothepasturesintheautumn.Thesocialcomponentismaintainedby providingemploymentontheonehand.Ontheother,thesewoodlandsareusedfor recreationalactivities,suchashunting,andincreasinglyinrecentyearstourism

(CARVALHO MENDES ,2002).Moreover,theseoakstandsarerichecosystemscharacterised byahighbiodiversityandplayanimportantroleincombatingdesertification,whichisa permanentthreattothesesemiaridregions(GIL ,L.,2007,internet2).Inthelastdecades however,thisoldculturallandscapeisafflictedbyseveralnewinfluences,suchas Climatechanges:prolongedsummerdroughtandheavywinterrains. Culturalchanges:Landabandonmentandtheconsequentlargescalemonocultures,many ofthemwithexoticspecies(e.g. Eucalyptus globulus ),ontraditionaloak territories.

1

Big:mostofthemwithanthropogeniccauses. Adisease,thelocalfarmerscall“secca”(drought),whichshallbereferredtointhe

followingwork.(ModifiedaccordingtoROSE ,2005) Theaimsofthisworkaretosurveyacertainareaaffectedbyoakdeclineandtodetermine thecausalagents.Further,theformationofthesymptomsshallbeexaminedandrelatedto possiblepathogens.Itwillbeattemptedtorecognizeapatternfortheinfestationoftreesin aschematical,aswellastopographicalrespect.Finally,asetofrecommendationsforthe technicaltreatmentofinfestedareasshallbeoutlined.

Fig. 1 View over the hills from Corte Malhao, afforestation project at the front, cork oak montados at the back. T. Kaltenbach, 26.III. 2007

2

2 State of knowledge

2.1 Description of the tree species concerned

2.1.1 Quercus suber LINNÉ CorkoakstandsoccurindescendingorderofsizeinPortugal,,,,

Italy,and(GIL ,2007,internet2).Thefollowingdescriptionisbasedonthe characterisationgivenbyBUSSOTTI and BOTTACCI (1999): Q. suber isanevergreen,middlesizedtreespeciesofthewesternMediterranean. Adulttreesreachsizesof1520m,exceptionally25m.Corkisextractedevery9years andasingletreecanproduce100200kgofcorkduringitslifetime.Thelifespan dependsontheintensityofcorkextractionandvariesbetween200years,forregularly harvestedtrees,tomorethan400yearsforthosenotharvested.Thespeciesis characterisedbyhighdemandsforlightandwarmthandgrowsinanareawithamean temperatureof1317°Cthroughouttheyear.Maximumtemperaturesofupto40°Care toleratedbytemporaryreductionofmetabolism,minimumtemperaturesto–10°Ccanbe outlastedwithoutmajorinjuries. Q. suber ismodestinregardtosoilrequirements.Itis abletogrowonpoorsandyandclayeysitesofgraniticandschisticorigin.ThepHshould liewithin4,5and7,howeverlimysitesareavoided.Theidealamountofprecipitatelies between500and700mm,butitcancopewithless,sufficientairmoisturepresupposed. Thessp. occidentalis occursonlyinPortugal,withanaffinitytotheAtlanticcoastlineand differsfromthemainspeciesbyatwoyeardevelopmentcycleoftheacornsandasemi evergreenfoliage.Corkoaksdevelopataprootsystem,whichcanbesubdividedintotwo layers.Intheupperlayerfinerootsspreadfromthemaintapdirectlybelowgroundlevelin adepthof~30cm.Thesecondlayercanvaryindepthandisformedincontactwiththe underlyingmineralcourse(HARRACHI ,2000).

3

Q. suber in Portugal Covering736700ha, Q. suber takesthe firstplacebyforestarea,accordingtothe latestForestInventory(DGRF,2007) and isthemaineconomictreespeciesin

Portugal(MINISTRYOF AGRICULTURE , 1995).Morethan70%(527200ha)of thesestandsaresituatedinthe region.Themajorityofthesecorkoak standsstilloriginatefromnatural dissemination;plantationstoagreater extentwereonlyrealizedinthelastfew

years(MINISTRYOF AGRICULTURE ,1995).

Fig. 2 Distribution of Quercus suber in Portugal From: MINISTERIO DE AGRICULTURA , 2006

2.1.2 Quercus ilex LINNÉ/ Q.rotundifolia LAM.

ThedescriptionofthisspeciesisbasedontheworkofKNOPF (2002): Theholmoakisarathersmallspeciesofusually810metres,underfavourableconditions upto25minheight.Ithasaverybroadamplitudeinregardtonutrientandwater requirements.Sitescanvaryfromsilicatetochalkbasedsubstrateandextremedrought (~300mm/annum)tohighmoisture(~1200mm/annum).Inthesameway,theclimate spectrumdiffersbetweenatlanticfreshtocontinentalhot,showingatemperaturespan between+44°and–24°C.However,ahighamountoflightisaprecondition.Itisousted bythecorkoakonthericherandwettersitesbuthasawideramplitudeofdemandsand consequentlyoccupiesabiggerareaworldwide.Likethecorkoak,itisanevergreen sclerophyteandisaclimaxspeciesinmanysemiaridnorthAfricanandsouthEuropean regions.

4

Thewoodisextremelyhardandheavy,thoughelasticandisusedforfuel,carpenters woodandevenveneer.Averygoodcharcoalcanbeobtainedfromit.Thesapwoodis indistinguishablefromthecorebycolour.Veryunusualforanoakisthescattered alignmentofthepores.Insomeregionsthebarkisstillusedfortan. Themorphotype rotundifolia prevailsontheIberianpeninsulaandinnorth.Itis characterizedbyratherroundshapedleavesandproducessweetacorns,whichare commonlyusedforcattlefeed,andevenforhumanconsumption.

Q. rotundifolia in Portugal Likeforthecorkoakanemphasisofthe distributionliesintheAlentejoregion, butfortheholmoakthenaturalcentre

liesfurthereastwards(ALVES ,2003).The holmoakholdsthefourthplaceinterms oflandcoverwith388300haofsurface. However,thetrendisdecreasing comparedwiththeresultsofthelast forestinventory(1995),whenitstill occupied461600ha(DGRF2007).This meansalossof16%inonly10years. Reasonsforthisdrasticdecreaseare subscribedtotheabandonmentof traditionalfarmingandconsequentlya lossofeconomicinterestinthisspecies.

Anotherfactorinthiscontextisthe Fig. 3 Distribution of in increasingoakmortality. Portugal From: Ministerio de Agricultura, 2006

AlthoughPortugalisacomparativelysmallcountry,environmentalconditionsvaryalot. Asaresult,bothspeciesfindnaturalconditionsclosetotheirecologicallimitsinsome areas.Thisleadstotheformationofpocketsofpopulationswithuniquegeneticresources. Someofthemarealreadyextinct.Asitistheseresourcesthatmightbethemostinteresting inthecontextofclimatechange,aprogrammefortheconservationofgeneticresources

5

wassetupfor Quercus suber inthe1990ies(MINISTRYOF AGRICULTURE ,1995; VARELA , 1995).

2.2 Oak decline in the Mediterranean region Declinescenariosarereportedfromallovertheterritoryoccupiedby Quercus suber and

Q. ilex/ rotundifolia .FromItalyRAGAZZI etal.(1997)portrayacomplexdiseaseon severalOakspeciesincluding Q. suber and Q. ilex with Diplodia mutila Fr.apudMont.

(telemorph: Shoemaker)takingakeyrole.VANNINI and

MUGNOZZA (1991)describe Biscogniauxia mediterranea (previous: Hypoxylon mediterraneum )asanaggressiveagentindroughtstressed forestsinItaly. Aninkdiseaseon Quercus rubra causedby Phytophthora cinnamomi Randsinsouth westernFrancewasidentifiedasearlyas1952(MOREAU andMOREAU ,1952inROBIN ,

1992).ThesamediseaseisthebasisforthestudiesofMARCAIS etal.(1993).Avery extensivesurveyisinhandaboutthecorkoakdiebackintheMaamoraForestinMarocco.

HARRACHI (2000)assumesacomplexofcauses,initiatedbyanextremedroughtand accompaniedbyinsectdamage.Heconsiders Diplodia mulila and Biscogniauxia mediterranea assecondaryagentsforthedisease.In1992BRASIER (1992)suggeststhe involvementof Phytophthora cinnamomi inIberianoakmortality,specifyinghisthesisin lateressays(BRASIER etal.1993;BRASIER ,1996).LUQUE andGIBRAL (1989)reportcork oakdiebackfromCatalonia(NESpain),causedby Diplodia mutila. FERNANDEZ ESCOBAR etal.(1999)determine Phytophthora cinnamomi Randstobeinvolvedinoakdeclinein westernSpainbyaselectivefungicidemethod. th InPortugaloakdeclinehasbeendescribedsincetheendofthe19 century(ALMEIDA ,

1898;CAMARA PESTANA 1898inMOREIRA etal.2006).Inthecontextof Phytophthora it isinterestingtoknowthattheinkdisease,prevailingon sincethe1940ies, iscausedby Phytophthora cambivora (Petri)Buisandcaninfect Quercus suber aswell

(PIMENTEL ,1946).Threeyearslater,PIMENTEL reports P. cinnamomi tobeanotheragent ofthisinkdisease(PIMENTEL ,1949,inBRASIER ,1996).IntheNationalForestStrategy, theForestDirectory(DGRF,2006a)statesthatanongoingprocessofdiseasewasnoticed forthetwooakspecies Q. suber and Q. rotundifolia sincethe1970ies,particularlysince 1997.Asadirectresultthetotalcorkproductioninthe1990iesdecreased34%compared totheoutputstillproducedinthe1960ies.Figure4showstheincreasingamountof diseasedtreesinpercentwiththehighestratesfor Q. suber and Q. rotundifolia.

6

Fig. 4 Trees of low vitality from the most common species in Portugal From: Estratégia Nacional para as Florestas, DGRF, 2006 a

AftersurveysinPortugalandSpain1991/92BRASIER etal.(1993)propose Phytophtora cinnamomi tobeamajorcontributoryfactorforthedisease.Sincethensurveyshavebeen undertakenonthistaskbyseveralresearchers(MOREIRA andMARTINS 2005;MOREIRA et al.,2006)and P. cinnamomi hasbeenidentifiedonmanydifferentsitesthroughoutIberia. ThethreefungalpathogensregularlyreferredtointhecontextofMediterraneanoak declineare B. mediterranea, D. mutila and P. cinnamomi ( HARRACHI 2000;LUQUE and

GIBRAL ,1989;BRASIER etal.,1993).OfthesethreeD. mutila andB . mediterranea are usuallyreferredtoasopportunisticpathogensonpredisposedhosts(SINCLAIR andLYON ,

2005;SINCLAIR etal,1987).HoweverLUQUE etal.(1999)carriedoutasurveyonthe pathogenityofthethreeandthoughthetestgroupswereextremelysmall(onlythreeplants per),andinthecaseof Diplodia evenonewasexcluded,designated Diplodia tobethemostaggressive,followedby Phytophtora . Biscogniauxia wasdeemedtobethe lessvirulent. TheworkofHARRACHI(2000)showedsimilarresults.Inthisworkhowever, themainfocusisseton P. cinnamomi ,becauseitisthemostaggressiveofthepathogens foundintheresearcharea(BRASIER etal.,1993).

7

2.3 Description of possible pathogens

2.3.1 Phytophthora cinnamomi

BRASIER (1996)considers P. cinnamomi asaprimarypathogenwithaverywidehost rangeandoneofthemostdestructivetreerootdiseasesworldwide.Helocatesitsoriginin PapuaNewGuineaanddatesitsintroductiontointheearlynineteenthcentury. Procedure of the disease BRASIER etal.(1993)setupahypothesis,accordingtowhichtwodifferenttypesof diseaseprocedurecanbedistinguished:

 Amorerapidform,whichiscausedbysubstantialrootdeathorstemgirdling. Treesdieinoneortwoseasons.Thisprocedurecanespeciallybeobservedonsoilsthat remainmoistthroughouttheyear,suchasvalleybottoms.

 Amorechronicdecline,whereacertainamountoffinerootlosscanbereplaced eachyear.Itoccursononlyseasonallymoistsites,e.g.slopes.Inthiscasethetreesare abletoresistthediseaseforawhile,untiladditionalstressfactors,suchasextreme droughtorsecondaryinfectionsappearandinducedeath. General symptoms Severalauthors(MOREIRA andMARTINS,2005;BRASIER etal.1993;FERNANDEZ

ESCOBAR etal,1999)describethebasicsymptomsasfollows:Chlorosisofleaves, reductionofleafsizeandtheoccurrenceofnecroticleavesarethefirstsigns,followedby increasingdefoliationandtheappearanceofdeadbranches.Onsometreeswatersprouts areproducedandtarryexudationscanbeobservedon510%oftheinfectedtrees.These exudationsoccurattherootbaseorlowertrunkregionandoriginatefromacambial necrosisthatcharacteristicallyassumesatonguelikeshapebeyondthebark(KEHR , 2004).Suddenwilting,stemgirdlingandrapiddeathwithinseveralweeksormonthsmay prevailintheacceleratedform.As P. cinnamomi ishighlypolyphagous,extensivepatch diebackofshrubsaroundtheaffectedtreesmayaccompanytheoakdisease(BRASIER et al.,1993).

8

Classification

AGRIOS (1997)classifiesthegenusof Phytophthora asafungalikeorganismor pseudofungus.Inthisscheme,itbelongstothekingdomofchromistaintheclassofthe oomycetes.Thisclassischaracterisedbyanonseparateelongatedmyceliumandthe productionofzoosporeswhichareabletomovebymeansoftheirflagella.Further,the oomycetescandevelopdurable,sexualrestingoospores.Thesameauthorreports,thatthe speciesof Phytophthora causeavarietyofdiseasesonmanydifferentplants,from vegetablesandornamentalstoadulttrees.Symptomsareasbroadasthehostrange, reachingfromthedampingoffofseedlings,overfoliageblighttofruitrot.Mostspecies howevercauserootandlowerstemrots,thatcanprovokeextremelydestructivediseasesin theirhosts.

Morphology/ physiology

AccordingtoHARRACHI (2000)themyceliumconsistsofcomparativelythickhyphae(68 m)withthetipsshowingcoralloidramification.Itusuallygrowsinarosettelikepattern. Undernaturalconditions,theproductionofsporangiaisstimulatedbysoilbacteria

(ZENTMYER ,1965)andrepresentsthemostimportantepidemiologicalstepinthelifecycle of Phytophtora ,becauseinlessthanonehour10to30zoosporescanbeproducedbyeach sporangium(ERWIN andRIBEIRO ,1996inHARRACHI 2000).Withtwistingmovementsof theirtwoflagellathezoosporesmangetoswimupto6cmin10hoursthroughasandy substrateinstaticwaterconditions(NEWHOOK etal.,1981,inCAMPBELL andBENSON , 1994).Hereby,theyareattractedtohostorgansthroughchemotacticresponseacross nutrientandethanolgradients(ALLEN andNEWHOOK ,1973inCAMPBELL andBENSON , 1994).Onceinreachofthehost,infectioniscarriedoutbymeansofagermtube.The myceliumgrowsinterandintracellularlyandinvadescellularplasmviahaustoria

(SCHWERDTFEGER ,1981;MOREIRA etal.,2006).Thechlamydosporesfulfilthefunctionof securingthesurvivalof Phythophthora underunfavourableconditions.Theyareball shapedandhavethickercellwallsthanthesporangia,whichenablesthemtosurviveinthe groundorinhosttissuesforlongperiodsofunsuitableconditions(MIRCETICH and

ZENTMYER ,1966).Theirgerminationcanbestimulatedbyheightenednitrogenlevelsand rootexudatesofhostplants(MIRCETICH etal.,1968).Forsexualreproductiongametangia theoogoniaandantheridiaaredevelopedbymeiosis(AGRIOS ,1997).Throughatubethe contentsoftheantheridiumaretransferredintotheoogonium.Thentheoogoniumswells

9

andchangesintoathickwalledoospore(HARRACHI ,2000).Inthisformitisableto surviveuptosixyears(REUTER ,2005,internet3)ininfectedrootsoruptothreemeters deepinthesoil(SHEARER andTIPPETT ,1989,inBRASIER ,1996). Conditions required for reproduction

BRASIER (1992,1996)emphasizesthat P. cinnamomi isasoilandwaterbornepathogen thatrequireswarmsoilswithahighwatercontentoratleastseasonalrainfalltoenablethe spreadofthezoospores.Hisobservationwasthatanattackisoftenespeciallyseverein heavysoils,butcanalsobedevastatinginsandysubstrates,seasonalrainfallprovided.

ThiscorrespondswiththesuggestionofJUNG etal.(2000)that Phytophthora speciesare mostwidelyspreadonsandyloamy,loamy,siltyandclayeysoilswithameanpH between3.5and6.6.Thesefindingsarespecifiedfor P. cinnamomi byMOREIRA and

MARTINS (2005),statingthatthepathogencouldbefoundinsoilsofallpHandtextures examined,however,thehighestrateswereobtainedfromsoilswithfinetexturesandapH above5,1.

AccordingtoHARRACHI (2000),theminimumtemperatureformyceliumgrowthlies between5and10°C,theidealtemperaturebetween24and28°Candtheupperlimit between32and34°C.Atverylowtemperatures(<0°C)chlamydosporesareevenkilled, atalevelcorrelatedwiththedegreesbelowfreezingpoint(BENSON ,1982inMAC

DONALD ,1994). Thepathogenthriveswellonmoist,shadysites.Rainyspringsandsoilswithawet, compressedstructureadvanceitsdevelopment(SCHWEDTFEGER ,1981).Germinationofthe chlamydosporesdependsontemperatureandmoisture,whileforthezoosporeswater servesasthetransportmedium(BENSON ,1994inCAMPBELL andBENSON ,1994).The efficiencyofthepathogenisincreasedlinearlybyprolongedperiodsofflooding

(REYNOLDS etal.,1985).BRASIER etal.(1993)reportthatdyingtreesoftenoccurin groups,withanaffinitytostreamsides,valleysordepressions.Thiscorrespondswiththe observationofMOREIRA andMARTINS (2005)thatthepathogenoccurredmorefrequently onslopesandinvalleys,thanonhilltops. . Distribution mechanisms Undernaturalconditionsanimalsmayactasvectors,carryinginfectedsoilparticleswith them(KLIEJUNAS andK O,1976),butasmentionedabove,wateristhemainfactorinthe

10

classicalspreadofthezoospores.Hencethediseasecanonlyspreaddownhillorthrough lyingsurfacewater,withouttheaidofman.Thisfactshouldpermitthetracingofthe pathogendowntoitssourcewithinaninfestedarea. Anthropogenic influence ALI SHITAYEH etal.(1991)provedthatthezoosporescanalsobespreadviairrigation water.Asalogicalconsequence,wherevercontaminedwateristransported,thepathogen istransportedaswell.IntheirsurveyonHawaii,KLIEJUNAS andK O(1976)provedthe presenceof P. cinnamomi inmudsamplesadheringtotyresofvehiclesandboots.BRASIER (1992)interconnectstheoccurrenceofnewrapiddeclinefociwithrecentsoilperturbations (e.g.ploughingorroadmaking)andchanginglandusepatterns.Theuseofbigmachinery inforestryandespeciallyintenseploughingunderneathtreecanopies,atechniquecalled “limpeza”inPortuguese,mightbeamajorcontributoryfactortothedistributionof contaminedsoilparticles.Chronologicallytheaggravationofthediseasesincethe1970ies fitsinwiththeincreasingmechanisationsincethistime.REUTER (2005,internet3)points outthepossibilityofinfectioninnurseriesandspreadwithplantedseedlings. Predisposing factors Waterstresswasshowntoincreasethesusceptibilityto P. cinnamomi intheexampleof

Quercus rubra (MARÇAIS etal,1993).Ontheotherhand,finerootlossesduetoa Phytophthora infectionintensifythevulnerabilitytodrought,asillustratedespeciallyfor

Quercus ilex ,whichwasthemostsusceptibleofthefivetreespeciessurveyedbyMAUREL etal.(2001).Thisleadstoaviciouscircle,culminatinginthedeathofthetree(figure5). Lowoxygenconcentrationsinthesoilalsoactasapredisposingfactoroncorkoakroots

(JAKOBS ,1991,inMAC DONALD ,1994).Generally,holmoaktissueswereshowntobe moresusceptibletothepathogenthancorkoakones(MOREIRA MARCELINO ,2001;PIRES etal.,2005in MOREIRA etal.,2006).Thisfurtherintensifiesthethreatforholmoakstands mentionedabove.

11

Fig. 5 Mutual reinforcement of Phytophthora infection and weakening of the tree

BRASIER (1996)highlightsthatprolongedsummerdroughtandheavywinterrain,asa consequenceofclimatewarming,increasethesusceptibilityofthetreesontheoneside andthedistributionspeedofthepathogenontheother.Onacomputermodelhesimulates theintensificationandfurtherextensionofthediseaseforthefuture.Meanwhile,another Phytophthora speciesP. ramorum whichisknowntocausesuddenoakdeathin

California(USA)enteredtheIberianpeninsula(EUROPEANAND MEDITERRANEAN PLANT

PROTECTION ORGANIZATION ,2007,internet4).Thisisallthemorealarmingas

Phytophthora isknowntobecapableofbastardisation(KEHR ,2006,inKNEBEL ,2006). Anotheragentfromthe Phytophthora genusis P. syringae ,whichcancausefruitroton citrusfruit(CAPASSO etal.,2001,internet8)andapruningwoundcankeronalmondtrees

(BROWNE andVIVEROS ,1999).Furtherithasbeenisolatedfromsweetchestnutforestsin

FranceandItaly(VETTRAINO etal.,2001,internet9).Howeverthispathogenisconsidered ratherharmlesscomparedtoother Phytophthora species(BROWNE andVIVEROS ,1999).

12

Pythium The Pythium spp.areanothergenusfromtheclassoftheoomycetes.Like Phytophthora theyaresoil/waterbornepathogenswithaworldwidedistribution.Theycancausefruit rotonfruitsandvegetablesincontactwiththesoilandcaninfectseedlingsandrootsofall species.Youngplantsarethemostendangered(AGRIOS ,1997).Inforestry Pythium speciesareknowntoprovokethedampingoffofseedlingsortoproduceinfectedlesions ontherootbaseofolderseedlingsthatfinallycausetheplanttofallover

(SCHWERDTFEGER ,1981).

2.3.2 Biscogniauxia mediterranea (former: Hypoxylon mediterraneum ) B. mediterranea isagloballydistributedfungusbestknownforcausingthecharcoal diseaseintheMediterraneanregion(SINCLAIR etal.,1987).Thesameauthorsconsiderit anopportunisticfungus,unableto causedamageontreesofnormal vitality,howeverquicktocolonise weakened,stressedorinjuredtrees.In itssexualform, B. mediterranea belongstotheascomycetes/

pyrenomycetes(HARRACHI 2000). Theasexualformisdescribedas Botrytis sylvatica Malençon

(MALENÇONAND MARION ,1952in

HARRACHI 2000). Chlorosisofleaves,crowndieback, barkcankers,tannicexudations, reducedringgrowthandtree mortalityaredescribedasthemain

symptomsbyVANNINI etal.(1996,

Fig. 6 Stromata of B. mediterranea on cork oak, b).Theseauthorsalsoreportthe inducing the cork layer to peel off. occlusionofxylemvesselsanda Photograph by T. Kaltenbach, 6.III.2007 darkeningofthesurrounding parenchyma.

13

Themostnoticeablemorphologicalattributeistheformationofstromatainthecambial zoneofthetree(seefig.6).Theyare12mmthick,canreachdimensionsrangingfroma fewcentimetresuptoseveraldecimetresandarecolouredblack,witharoughenedsurface thatresemblescoal.Thestromatadevelopraisededgesthatcausetheoverlyingbarkto crackandfalloff(SINCLAIR etal.,1987;HARRACHI ,2000).Embeddedinthestromataare largenumbersofballshapedperitheciawithasizeof0,51mmx0,40,5mm,that developsinglecelledasci,eachofthemcontainingeightascospores.Theseascospores showanellipsoidshapeandabrowncolourintheirripenedstate,withafurrowfromone endtotheother(BREITENBACH andKRÄNZLIN ,1984).Theasexualconidialform( Botrytis sylvatica )isonlyrarelyencounteredinnature.Itappearsasapowdered,lightbrownlayer ontopofthestroma(MALENÇON and MARION ,1952,inHARRACHI 2000).Intheirsurvey ofthefactorsaffectingthedischargeandgerminationofascospores,VANNINI etal.(1996 a)determinedprecipitationorhighrelativeairhumidityasthemainfactorsfortheejection ofascospores.Theyrecordedthattheidealtemperatureforgerminationis35°C,with temperaturesbetween2530°Casstillfavourableand20°Cand40°Casreductivefor germination.Intheworkmentionedabove,VANNINI etal.(1996,a)foundevidencethat waterstressisamainpredisposingfactorforinfection.Theyhighlightthatperiodsof droughtgreatlyincreasethesusceptibilitytothefungus.Otherdiseasesandpests weakeningthetreecanactaspredisposingfactorsaswell(SINCLAIR etal.,

1987).CAPRETTI andBATTISTI (2007)showedattheexampleof that phyllophagousinsectpestsincombinationwithwaterstressraisethesusceptibilitytothe pathogen.VANNINI etal.(1996,b)demonstratedascosporestogerminatebetteron woundedtissuesthanonnonwoundedones.Thisfactmightbeimportantespeciallyinthe caseof Quercus suber ,wherethroughcorkcuttingsmallerorlargerlesionsregularly occur.

14

3 Material and methods

3.1 Description of the research area TheplotliesdirectlyintheneighbourhoodofthesmallvillageCorteMalhãowhichis situatedintheCouncilofOdemira,intheBaixoAlentejoregion,SouthWestPortugal.

Fig. 7 Location of the research area. Taken from INSTITUTO GEOGRÁFICO DO EXÉRCITO , 2006, internet 6

15

Theannualaveragetemperature,asmeasuredinBeja,(247m)is16,2°C,medium precipitation/year585mm(MÜHR ,2007,internet7)andtheclimateshowsastrong maritimeinfluence. Thesurveyareais2,27hainsizeandcomprehendsasmallsidevalleywhichfacessouth eastwardsandendsinalargervalleyfacingsouthwest.Thegeologicalsubstrateisa clayeyschistcoveredbyacomparativelythinlayerofclayeyloam.Thisisvalidespecially forthenorthernhill,wheretheChorizon(rocks)protrudesoutofthesoil.Theboundaries oftheresearchareawerechoseninorientationtowatershedsandwaterlinesasalimiting factorforthenaturalspreadof Phytophthora (seemapsIandII) Accordingtothelandlord,thediseasebeganabout15yearsago.Theprocedureofdecline wasdescribedasveryrapidinsomecases,leadingtodeathwithinseveralmonths(DA

SILVA LUÇÃO ,26.II.2007,verbalcommunication).Theterritoryisstillusedinthe traditionalwayofthemontadoforthebreedingofgoatsandpigs.

Fig. 8. View into the side valley Photograph by T. Kaltenbach,13.III. 2007

16

3.2 Survey of the research area and trees Thesurveywascarriedoutintwoapproaches,thefirstonFebruary8/9,2007,thesecond onFebruary25/26andMarch2,2007.Thecornerpointsoftheplot,pathways, waterwaysandwatershedswererecordedwiththeirGaussKruegercoordinatesbymeans oftheportableGPS‘Gecko201’byGarmin.Thegradientoftheareawasmeasuredwitha Suuntogradientmeterinpercent.Thecoordinatesofthetreeswereregisteredwiththe GPSmentionedabove. Foreachtreethefollowingparametersweredistinguished: Itreespecies V%ofdeadbranches IIDBH(diameteratbreasthight 1) VIexudations IIIdamageclass VIIyearoflastcorkharvest IV%ofwatersprouts VIIIadditionalremarks

Tab. 11 Parameters surveyed for each tree Someoftheseparametersrequirefurtherexplanation: IITheDBHwasmeasuredwithadiametermeasurementtape.Onlytreeswithaminimum DBHof7cmwereregistered.OntreesbranchingintomorethanonetrunkbeyondDBH, thetotaldiameterwasdeterminedwiththederivationbelow:

TherecordedmeasurementswereassignedtoDBHclassesof10cmwidth,withclass0 reachingfrom7to10cm,class1reachingfrom10to20cmandsoforth. IIIThedamageclasswasdeterminedaccordingtotheinstructionmanualforthenational forestinventoryIFN(DIRECÇÃO GERALDAS FLORESTAS ,1999),whichusesthe defoliationlevelasindicator(examplephotographsseeannex2).TheIFNusesa5class systemforthedescriptionofdamages,whichisdepictedintable2.Itdiffersfromthe GermanlevelIprogrammebytheintroductionofdamageclass(Dc)4especiallyfor

1 Thebreasthightisstandardizedtoahightof1,30metresabovegroundlevel.

17

decliningcorkoaks,whichindependentlyoftheiragedonotofferconditionsforcork extractionanymore. Damage Description class Dc0 Nodamage 010%ofcrowndamaged Dc1 Lightdamage 1125%ofcrowndamaged Dc2 Moderatedamage 2660%ofcrowndamaged Dc3 Accentuateddamage 6190%ofcrowndamaged Dc4 Decrepittree Advancedstateofdecline,notpermittingcork extractionanymore Dc5 Deadtree

Tab. 12 Damage classes according to the Portugese Nationl Forest Inventory (IFN)

However,thissystemturnedouttobetooinaccurateforthepurposeintendedhere especiallyintheseconddamageclass,rangingfrom26to60%ofdamage.Thereforethis classwasmodified.Themainclass2,withanaverageat42,5%ofdamagewas maintainedinordertokeepthedatacompatiblewiththoseoftheregularforestinventories. Tospecifythestateofdamagewithinclass2,anextragroupwasformed,inwhichtreesof classaverageweredesignatedwiththeadditionalfigure2.Treesinanobviouslybetter conditionthanclassaverageweremarkedwithawithanadditional1andthoseevidently worsewitha3(seetable3). Damageclass2.1 betterthanclassaverage 2635%damage

Damageclass2.2 classaverage 3650%damage

Damageclass2.3 worsethanclassaverage 5160%damage

Tab. 13 Scheme for the subdivision of damage class 2

Thissystemleavesthemainemphasis(%)ontheclassaverageandemphasisesonlythose treesevidentlydivergingfromit.

18

Similarmodificationswerenecessaryfordamageclass5thedeadtreesinorderto determineaninfestationpatternforthewholeplotandtotrytodiscoverthesourcesofthe disease.Forthiscause,thedeadtreesweresubdividedintofourstagesofdecay: Stage1:twigsandleavesstillleftonthetree Stage2:twigsstillleftonthetree Stage3:branchesofsecondorderleftonthetree Stage4:onlymainbranchesremainedonthetree

Tab. 14 Decay stages of the dead trees IVandVWatersprouts(adventitiousshoots)anddeadbrancheswererecordedinaddition tothebasiccrownevaluation,becauseinsomecasesleaveswerejustthinnedout,without asignificantpercentageofdeadbranchesoccurring.Whereas,inothercases,thecrownas awholelookedgreenatfirstglance,butwithcloserexaminationshowedmanywater sprouts,apossibleindicatorforrootstress(BRASIER ,1996).Percentageshareswere estimatedin10%steps. VIExudationswereinspectedinregardtotheattributeslocalisation,infestationpattern, shapeanddeptheachofthemsubdividedintothefollowingcategories: Localisation Infestation pattern Shape Depth 1rootbase/lowertrunk 1single 1point 1cambiumbright/not infected

2maintrunk 2several 2spot 2cambiumbrownish/ interimstate

3uppertrunk/lower 3massive 3tongueshaped 3cambiumdarkbrownor branches black/infectedordead

4rootbase+maintrunk 4point+spot

5point+tongue

Tab. 15 Attributes recorded for the exudations

19

Thedepthofthenecrosiswassurveyedwithatissuedrillwithaninnerdiameteroffive millimetres. VIIFor Quercus suber theyearofthelatestcorkharvestwasrecorded.Thelastnumberof theyeariswrittenontotheregrowingcorkbythecorkcutters.The'virgin'trees,not harvestedever,werenotedwitha0. VIIITherubricadditionalremarksincludesfurtherobservations,suchaswinddamageand infestationbyphyllophagousinsects.ThelatterweredeterminedaccordingtoEBNER and

SCHERER (2001);PATOČKA etal.(1999)andBOGENSCHÜTZ (1978).Additionallyinthis rowtheextractionpointsofthesampleswerenotedinrespecttothetrees. TheevaluationofthedatawasimplementedinMicrosoftExelandthemapoftheplotwas createdwithArcViewGIS(version3.1). Topographicalaspects As Phytophthora isspreadviawater,theinfestationoftreeswasevaluatedinrelationto theirsituationtothewaterlines(seemapII).Thesewaterlinesareditcheswashedintothe clayeysubstrateandbearwateronlyinwinter.Onlythosesectionssituatedbeneathdecline fociweresurveyed.Thisexcludestheupperpartofthemainwaterline.Thesouthern waterlineisdistinctlysmaller,thanthenorthernone.Stillitwasincludedintothesurvey, becauseanevidentattachmentofsingledecliningtreestoitscoursecouldbenoticedinthe field.Alltreeswithina10meterrangeofthesewaterlineswereevaluatedbytheirdamage classes.

3.3 Survey in the laboratory Becauseoftheunreasonablyhighexpenditure,theexaminationofsampleswasnotcarried outforeachsingletree,butjustfor10highlydiseasedsampletrees.Themainintention wastofindevidenceif/whichpathogensarepresentintheplot.Asfor P.cinnamomi

MOREIRA andMARTINS (2005)regardasiteaspositiveifatleastonepositivesample(root orsoil)couldbeobtainedfromit.

3.3.1 Soil samples ThesamplesweregainedfromtheresearchareaonJanuary12,2007,beforetheactual startofthetreesurvey.Soilsamplesweregatheredfromunderneatheightheavilydiseased

20

trees.Ateachtreesamplesweretakenatfourpointswithina1metrecirclearoundthe tree,preferablyunderdecliningbranches.Theywereextractedfromadepthbetween5and 10cm,mixedtogetherandstoredinanumberedplasticbag.Thelocationofallextraction pointswasnotedonafieldmapandthetreesweremarkedwithtape.Thenthesamples werestoredat+2°C. TheexaminationwascarriedoutinthelaboratoryofthetechnicalcollegeGöttingen (HAWK)andguidedbyProf.Dr.Kehr.OnJanuary23,2007,thesoilsampleswereput intoPetridishesfourscoopsforeachdishandfilledupwithwaterto3/4ofsoillevel. Allsampleswerestoredunderdiffusedaylightat+20°C.OnJanuary25,2007,the sampleswereinspectedformyceliumwithanelectronicmicroscope,magnified25times. Positivesamplesweremagnified200timesandinspectedfornonseptedmycelium characteristicforoomycetes.Photographsweretakenfordocumentationandpositive myceliaweretransferredtoseparate2%wateragardisheswithcarrotpieces.Thenthe sampleswerestoredasbeforeforfurtherobservationandcheckedeverytwodays.On January29,2007,youngleavesof Q. suber wereaddedtothesoilsamplesasbaits,2leafs perPetridish,floatingabovethesample.Foramoredetaileddeterminationofthe oomycetes,onJanuary29,2007additionalsharesoftheoriginalsoilsamplesweresentto Dr.J.SchumacherattheNationalBiologicalInstitute(BBA),Braunschweig.Asthe measurementofthepHvaluewithMerckindicatorsticksturnedouttobetooinaccurate, thevaluesdeterminedbytheBBAforthe8soilsamplesweretakenasabaseforthe calculationofthemediumpHvalue.

3.3.2 Tissue samples TissuesamplesweretakenonJanuary12,2007,fromtwoinfectedtreesshowingincreased exudationsignsinthelowertrunkregions.Thecorkwasremovedwithabarkplane.Then thesamplesweredrawnfromthepartaroundthenecrosisinthetransitionzonebetween deadandhealthytissueandstoredinseparate,numberedplasticbagsat+2°C.OnJanuary 23,2007,thetissuesampleswerecutinto10squarepieces,4by4mm,thenputontoa Heraeus‘LaminAir’cleanbenchanddisinfectedin96%alcoholfor10seconds.The pieceswerethentransferredontosterile2%wateragarwithcarrotchippings.Twopieces wereplacedinonePetridish.Thedisheswerestoredunderdiffusedaylightat+20°Cand observedeverytwodays. OnMarch2,2007adeadbranchwithacharacteristiccharcoallikeinfestationpatternwas collectedintheresearchareaandbroughtintothelaboratoryonMarch6,2007.Witha

21

flamedscalpel,bitswerescrapedoffandputontoaslidewithadropofdistilledwater. Theslidewasexaminedunder200foldmagnificationandphotographsweretakenfor documentation.

22

4 Results

4.1 Description of the stand and symptoms Themaintreespeciesis Quercus suber ,representedinallnaturalagestagesfrom seedlingsuptoDBH69cm.Thetreesemergedfromnaturalregenerationwithdifferent growthratesduetothelocalisationintheplotanddiseaseintensity.Trunksaremedium– shortasfavourableforcorkextraction.Thecrownsarecharacterisedbyaprevailingly wideshape.Crowndiebackcouldbeobservedalloverthestand,particularlyonthehill topsandvalleybottom.Patchesofwinddamageand phyllophagousinsectattackwere noticed.Marginalsharesof Quercus rotundifolia areassociatedinscatteredmixture.The treesaredistributedinadispersedpattern,withgapsonhilltopsandamoreclose attachmentindepressions.Symptoms,asnoticedatfirstglance,aresimilartothose describedabovefor P. cinnamomi .Thetreesshowedincreasedcrowntransparency,a notablepercentageofdeadbranchesandwatersprouts.Onsingletreesexudationsora chlorosisoftheleavescouldbeobserved(seefigures9and10).Themoststriking symptom,however,wastheoccurrenceofdistinctpatchdieback,insomeplacesincluding shrubslike Cistus landanifer and .

4.2 Results of the tree survey Intotal250treeswererecorded,withanaverageDBHof29,71cm.Thiscorrespondstoa populationdensityof110trees/ha.Accordingtothebestpracticemanual(DGRF,2006 b),theidealpopulationdensityforthisdiameteramountsto155trees/ha.Hencethe populationdensityindexis0,71.243ofallthetreessurveyedwere Quercus suber and7 (0,03%) Q. rotundifolia .Thispartialgroupistoosmalltoallowrepresentativeconclusions for Q. rotundifolia andthevaluesreceiveddidnotvarysignificantlyfromthoseobtained for Q.suber (seetable6).Theholmoaksarethereforenottreatedasaseparategroup throughoutthefurtheranalysis.However,itmaybenotedthattheholmoaksonthisplot showedaslightlyincreasedpercentageofdeadbranches,comparedtothecorkoaks. Besides,theamountofwatersproutsproducedwasalittlebitlowerthanonthecorkoaks. AverageDBH Averagedamage Averagewater Averagedead

totalincm class sproutsin% branchesin% Q.rotundifolia 29,51 2,60 14,97 37,00 Q.suber 29,71 2,50 15,74 34,06 Tab. 16 Selected values of Q.rotundifolia and Q. suber in comparison.

23

A B

C D

Fig. 9 Characteristic crown symptoms of P. cinnamomi observed on the plot ACorkoakwithahighlydegradedcrown(Dc4)andahighshareofdeadbranches BChlorosisanddeathofleaves CProductionofwatersprouts(epicormicshoots) DRemainsofemergencyfructificationona deadcorkoakPhotographsbyT.Kaltenbach,26.III.2007

24

A B

C D Fig. 10 Characteristic symptoms of P.cinnamomi at the root base/ lower trunk ATongueshapedexudationmarkattherootbase BTongueshapedexudationmarkattherootbase/lowertrunk CSpotshapedexudationsourceatrootbaseoninfestedcorkoak DNecrosislaidopenwithabarkplaneonthesametreePhotographsbyT.Kaltenbach,26.III.2007

25

4.2.1 DBH and damage class distribution DBH distribution Treesofallnaturalagestagescouldbefoundintheresearcharea,rangingfromseedlings tostrongtreeswithamaximumDBHof90cm( Q. rotundifolia ).However,forareflection ontheDBHdistribution,class0hastobeneglected,becauseonlytreesabove7cmwere recordedandconsequentlythisclassisnotrepresentative.Takingalookatfigure11,an emphasiscanbenotedinDBHclass2(treesrangingfrom20to29cm).Fromthisclass upwardsacontinualdecreaseofindividualscanbeobserved.Fromclass2to9theDBH distributionresemblesanapportionmentastobefoundinthecurveofaPlenterforestor growthmodelsfornaturalstands(BURSCHEL andHUSS ,1997).Fromthispointofview, thesharpdecreasefromclass2towardsclass1isevenmorestriking,becauseaneven highernumberofindividualswithinclass1wouldbeexpectedincomparisontoclass2.

Damage classes by DBH

90 80 Dc 5 70 Dc 4 60 Dc 3 50 Dc 2 40 Dc 1 30 damage class damage

number of trees/ number 20 10 0 DBH DBH DBH DBH DBH DBH DBH DBH DBH 0 1 2 3 4 5 6 7 9

Fig. 11 Distribution of trees within damage classes (Dc) portrayed for the DBH classes

26

Damage class distribution Ascanbeseeninfigure12,damageclass2,‘moderatedamage’,isbyfarthemost widespreadofallclasses.Only1,2%(3individuals)showlightdamage(Dc1),while accentuated(Dc3)andheavy(Dc4)damagesarerepresentedwith6,8and4%.Acertain accumulationcanbeobservedwithindamageclass5,thedeadtrees.Ontheonehandthis maybeduetothefactthattreesthathaddiedseveralyearsagowerealsorecordedinthis class.Ontheotherhand,severaltreesdiedasaconsequenceofastormintheearlywinter. Closerexaminationoftheseindividualshowevershowedthatmostofthemwerealready weakenedbywooddecayingfungibeforetheweatherevent.Treesinastateofabsolute health(Dc0)werenotfoundwithintheplot.

% of trees by damage classes

Damage classes Damage classes 12% 1% 1 4% 7% 2 3 4 5

76%

Fig. 12 Damage classes 1-5 and their % shares of all trees surveyed.

Relative shares of damage classes within the single DBH classes Surveyingthedamageclass(Dc)distributionwithinthesingleDBHclasses(figure13), largersharesofintensifieddamagecanbenoticedfromDBHclass5onwards(withthe exceptionofDBHclass7,whichconsistsofonlyoneindividual).Thistrendculminatesin DBHclass6,wherenotreeswithmoderatedamagecanbefoundanymore. Table7showsthemortalityratedistributionfortherespectiveDBHclasses.Theaverage mortalityforthecommunityofalltreesis12%.Onceagainextremevalueswererecorded forDBHclasses5and6,eachofthemshowingmorethandoubletheamountofthe averagemortality.Comparingthesetwoclasses,itcanbededucedthatalthoughthetotal sanitarystateisworseinDBHclass6,thehighestmortalityrateoccursinDBHclass5

27

with35%asopposedto25%inDBHclass6.AnotherimportantobservationisthatDBH class0,theyoungesttreessurveyed,with17%ofmortalityaremoreseriouslyaffected thantheaverageofalltrees.

DBH class % of dead Shares of damage classes by DBH trees (DC 5) 0 17% 100% 1 7% 2 8% 80% Dc 5 Dc 4 3 11% 60% Dc 3 4 16% Dc 2 40% Dc 1 5 35%

% of damage classes ofdamage % 20% 6 25%

0% 7 0% DBH DBH DBH DBH DBH DBH DBH DBH DBH 0 1 2 3 4 5 6 7 9 9 0% Average 12%

Fig. 13 Damage class (Dc) distribution within the single DBH classes in Tab. 17 Shares of dead trees percentage shares per DBH class

Closer observation of damage class 2 With76%, damageclass2istheclasscontainingthemostindividuals.But,asthematrix systemforthePortugueseForestInventoryisnotbuiltuplinearly,itisalsotheclasswith thelargestextensionsinsize(with35%of Distribution of trees w ithin damage class 2 latitude).Asaconsequenceinthefield, considerabledifferenceswerenoticedwithin Sub- classes 2% thesymptomrangeofthetreesinthisclass. 25% 2.1 2.2 Togainamoredetailedunderstandingof 2.3 howthismainclassofthestandis structured,itwasdividedintothreesub

73% classes,asdescribedabove,withthefocus remainingintheclasscentre.Theresultscan beobservedinfigure14.73%ofthetrees Fig. 14 Shares of the sub- classes within damage remainedinthemediumrangeoftheclass class 2

28

(2.2),whereasonly2%wereinanobviouslybetterstate(2.1).Aquarteroftheindividuals howevershowedevidentlyworsesymptoms(2.3).Hencewithindamageclass2atrend towardstheworseendofthedistributioncanbenoticed. Closer observation of damage class 5 Themainintentionofamoredetailedsurveyofthedeadtreeswastogetanideaoftheir distributionthroughoutthearea.However,fromthesharesofthedecaystages(14)within Dc5certaindevelopmentscanbederivedaswell.Figure15showsanaccumulationof deadtreesindecaystage4,whereonlythetrunkandmainbranchesremained.Thiscanbe attributedtotheprocessofnaturaldegeneration.Asamatteroffact,smalltwigsare catabolisedmorequicklythanthickbranches.Stilldecaystage3,withthebranchesof2 nd orderstillleftonthetree,isthemostrareclassandonlytwoindividualswerefound throughoutthewholeplot.Contrarytothis,decaystages1and2(deadleavesandtwigs/ justtwigsleftonthetree)occurreddistinctlymoreoften,evenifthefourindividuals, whichhadfallenavictimtostorm(withinclass1)wereexcluded.Thisallowsthelogical conclusionsthat 1thediseasedoesnotproceedlinearly,butratherinwaves,and 2atthepresentpointintimeamoreoffensivephaseistakingplace.

Stage of decay on dead trees

45 40 35 30 25 20

% trees of 15 10 5 0 1 2 3 4 Stage of decay

Fig. 15 Shares of trees in decay stages 1- 4, within damage class 5 (dead trees)

29

4.2.2 Crown symptoms- shares of water sprouts and dead branches ThesetwoparameterswereassessedinadditiontotheIFNguidelines,inordertofindout aboutthevitalitystatusofthetrees.Figure16showshowbothcharacteristicsincrease linearlywithgrowingdamageintensityrepresentedbythedamageclasses.Correlation testsprovedhighlysignificantlevelsforbothattributeswithR²=0,9242forwatersprouts andR²=0,9842fordeadbranches(seeannex11).

Average % of water sprouts and dead branches by damage classes

120 % 100 water sprouts 80 deadbranches

60

40

20

0 Damage Damage Damage Damage Damage Class1 Class2 Class3 Class4 Class5

Fig. 16 Average shares of water sprouts and dead branches for the different damage classes in percentages. Still,onthelevelofthesingletreesgreatdifferencesfromtheseclassaveragevalues occurred.Infigure17thestandarddeviationfromtheclassaverageisportrayedforthese twoparameters.Forthedeadbranches,thedeviationculminatesinDc3,withamaximum of18,63%.Forthewatersproutshowever,themaximalvaluesreachupto34,11and35,61 %inthedamageclasses3and4.Thisshowsthattreesinanadvancedstateofdiseasereact verydifferentlyintheproductionofwatersprouts.Further,itcanbenotedthatthe discrepancybetweenbothvaluesincreaseslinearlywithrisingDclevelfromDc2to4(no standarddeviationoccurredinDc5andforthedeadbranchesinDc1).Significancewas testedwithofR²=1,0(seeannex12).Thismeansthatthedifferencesindeviationofthe twosymptomsbecomemoreobviouswithincreasingintensityofthedisease.Forthis reason,thesetwosymptomsweresubmittedtocloserexamination.

30

Standard deviation of water sprouts and dead branches from class average in %

40,00 Water sprouts 35,00 30,00 Dead branches 25,00 % 20,00 15,00 10,00 5,00 0,00 Dc1 Dc2 Dc3 Dc4 Dc5 Damage classes

Fig. 17Standard deviation of water sprouts and dead branches within the different damage classes. Shares of water sprouts and dead branches in relation to DBH classes Astobeobservedinfigure18,thehighestsharesofdeadbranchesoccurredwithinDBH classes5and6,whichwerealsotheclasseswithincreasedDclevels(seefig.13).An evidentincreaseofwatersproutscanbenoticedfromDBHclasses5andespecially6 onwards,approachingdeadbrancheslevelinDBHclass6andevenoutgrowingitinDBH classes7and9.

DBH index Water sprouts and dead branches by DBH class ws/db

100,00 0 0,36 water sprouts 90,00 dead branches 1 0,39 80,00 70,00 2 0,55 60,00 3 0,47 % 50,00 40,00 4 0,28 30,00 5 0,39 20,00 10,00 6 0,77 0,00 7 1,17 0 1 2 3 4 5 6 7 9 DBH classes 9 1,20

Fig. 18Correlation of water sprouts and dead branches to DBH classes Tab. 18 Index water sprouts/ dead branches 31

4.2.3 Exudations For16ofthedeadtreesexudationscouldnotbedistinguishedanymore.Oftheremaining 234individuals,150(64%)didshowexudations.Table9showsthedifferentparameters recordedforexudationsinpercentages.Thedatesrecordedfortheexudationsateachtree canbeseeninthefieldbook(annex1) Localisation Intheevaluationofexudations,thelocalisationwasthefirstparameterrecordedbecauseit alreadygivesvaluablehintstopossiblecauses.Asdescribedabove, P. cinnamomi invades thetreethroughtheroots,while B. mediterranea canusefinebranchesorwoundsasan entryandconsequentlyismorelikelytobefoundintheuppercompartmentsofthetree. Moreover,rootbaseandbifurcationarethepartsofthetree,themostendangeredbycork extraction,becauseherethecutsarecarriedoutcrosswisetothevessels.Howeverwounds causedbycorkextractionwithoutsecondaryinfectionwerenotconsideredinthe evaluation.Outofallexudations,73%weresituatedatthemaintrunk,17%attheroot baseand5%ontheuppertrunk.Another5%oftreesshowedexudationsonbothtrunk androotbase(seetable9). Infestation pattern The‘infestationpattern’describesthefrequencyofexudationsonthetreeand characterisestheintensityoftheattackbyquantity.Twothirdsoftheaffectedtrees showedmediumtostronginfestation(seetable9).

Attributes of exudations Manifestation of attributes in percentage shares Total Localisation 1 root base 4 root/trunk 2 trunk 3 upper trunk

17,33 4,66 73,33 4,66 99,98

Infestation pattern 1 single 2 several 3 massive 35,33 50,66 14 99,99 Shape 1 point 2 spot 4 point/spot 3 tongue 5 point/tongue 53,33 24 7,33 12 3,33 99,99

Depth 1 cambium bright 2 light brown 3 cambium dark

6 10 84 100 Tab. 9 Results of the exudation survey; manifestation of the attributes for each of the four parameters recorded.

32

Shape of the exudation sources Theparametershapecharacterisesboththeshapeandthesizeoftheexudationmarks.By closerexaminationitcanbenotedthat onthemaintrunk78%ofexudationswerepointand/orspotshaped(figure“Shapeof exudationsonmaintrunk”annex5).Spotchecksrevealedthatmostofpointandspot shapedexudationsoriginatedfrominsectboreholesorsmallwounds. Attherootbase42%oftheexudations(36,4%ofalltreessurveyed)showedtongueor tongueandpointshapes,atypicalsymptomof Phytophthora infection(figure“Shapesof exudationsourcesatrootbase”annex5).

Depth of the exudation sources Anotherkeyparameteristhedepthofinfectionsources.Itprovidesinformationasto whetherthecambialtissueisinvolvedintheprocessornot.Adarkbrownorblack colourationindicatesacambialnecrosis.Thiswasthecaseforanalarming84%ofthe treeswithexudationmarks. Correlation between exudations and water sprouts The150individuals(60%ofalltrees)withexudationsopposeto146(58%)withashare ofwatersproutsabove10%.Only40trees(16%)didnotshowexudationsnorwater sprouts. Forbothtreeswithandwithoutexudations,thecurvesofwatersproutsharesproceedina slightlyundulatingcoursewithaclearlydescendingtendency(seefig.19).Significance wastested,withR²=0,94fortreeswithexudationsandR²=0,89fortreeswithout exudations.

33

Exudations by shares of water sprouts

60

50 trees with exudations 40

30 trees without R2 = 0,9423 exudations 20 PolynomischPolynomial (trees (trees 2 number of trees R = 0,8887 with exudations) 10 with exudations) PolynomischPolynomial (trees (trees 0 withoutwithout exudations)exudations)

% % % % % % 0% 0 10 2 30 40 60 80% 90 100% water sprouts

Fig. 19 Correlation between exudations and the percentage of water sprouts Fromthisdistributionseveralthingscanbeconcluded: 1Throughoutthewholestand,treeswithlesserwatersproutsharesoccurredmuchmore frequentlythanthosewithhighwatersproutmanifestation. 2Treeswithexudationsaremorecommonthanthosewithoutthroughoutthewhole distribution. 3From60%ofwatersproutsonwardsalltreesshowedexudations,withtheexceptionof oneindividual(at80%). 4Therelativesharesoftreeswithexudationsarepositivelycorrelatedwiththeamountof watersproutsproduced.SignificancetestrevealedR²=0,73(annex3a).Onthecontrary sharesoftreeswithoutexudationsarenegativelycorrelatedwithasignificanceofR²= 0,72(annex3a). Theattributesoftheexudationsourceslocalisation,infestationpattern,depthandshape wererelatedtowatersproutformation,butnosignificantcorrelationscouldbecalculated (seeannex3bcharacteristic Phytophthora symptomaticmarkedinorange).Stillone observationcanbederivedfromthefigure“Depthofexudationsources”(annex3b):all treeswithmorethan60%ofwatersproutsshowedacambialnecrosis,withtheexception oftheoneindividualmentionedabove(with80%ofwatersprouts).

34

Correlation between exudations and shares of dead branches 212individuals(91%ofalltrees)showedashareofdeadbranchesabove10%.17trees (7%)didnotshoweitherofthebothsymptoms.Outofthe150treeswithexudations,five didnotshowarecognizableamountofdeadbranches.Figure20correlatestheamountof deadbrancheswiththeoccurrenceofexudations.Itcanberecognizedthat: 1thecurvesforthedeadbranchestakeatwopeakedcoursewithanabsolutemaximumof 78individuals(31%ofalltrees)between20and30%,thendecliningandrisingagain from60%towardstheend. 2From20%ofdeadbranchesonwardsthereareevidentlymoretreestobefoundwith thanwithoutexudations. 3From50%ofdeadbranchesonwardsalltreesdoshowexudations.

Exudations by shares of dead branches 60

50 no exudations with exudations 40 30 20

number of trees of number 10 0

% % % % % 0% 0% 0 0% 0 0 0% 0 0 10% 2 3 4 5 6 7 8 90% 10 dead branches

Fig. 20 Correlation between exudations and dead branches percentage

Takingacloserlookatthenatureoftheexudationstwoassessmentscanbededuced: 1Acambialnecrosiscanbedeterminedfor90%ofthetreeswithashareofdeadbranches above40%(figure“Depthofexudationsources”annex4). 2Anenhancedoccurrenceoftongueshapedexudationscanbenotedfromcorresponding 80%ofdeadbranchesonwards(figure“Shapeofexudationsources”annex4). Distribution of exudations within the damage classes Thedistributionoftreeswithexudationswithinthedamageclassesisportrayedinfigure 21.Comparingtheseshareswiththoseofalltrees(seefigure12),itoccursthat noexudationswererecordedinDc1.

35

Damageclasses2and5decreasedinsizeby3%each,comparedtothesharescalculated fortherespectiveclassesforthecommunityofalltrees.ThismeansthatinDc2 exudationsoccurredlessfrequently.Asexudationscouldnotbedistinguishedforhalfof theindividualsinDc5anymore,thisgrouphastoberegardedwithcare.Anactually highervaluecanbeassumedforthisclass. Damageclasses3and4increasedby4%and3%respectively. Fromtheseobservationsitcanbededucedthattreeswithexudationsweremainly distributedsimilarlytothecommunityofalltreesthroughoutthedamageclasses.This againallowstheconclusionthatexudationscanoccurinalldamageclasses(apartfromDc 1)withalmostthesameprobability,however,withaslightlyhigherincidenceinan advancedstateofdamage. Surveyingtheattributesof Percentage of exudations by damage classes exudationsthroughoutthe wholestanditcanbederived that,eventhoughDc2isby 9% 7% Dc 2 farthemostwidespreadclass, 11% Dc 3 thedepthoftheexudation Dc 4 Dc 5 sourcesisdrastically

73% increasingfromDc3onwards. Acambialnecrosisof47%in Dc2isrisestoanaverageof

Fig. 21 Distribution of exudations within damage classes 87%inclasses35(figure “Depthofexudationsources” annex6).Mostblatanthowever,isthatthecurveforthetongueshapedexudations(shapes 3+5)showsanapproximatelypolynomialgrowthratethroughoutthewholedistribution withamaximumof57%inDc5(figure“Shapesofexudationsources”annex6). SignificancewastestedwithR²=0,96(annex7).Thecurveforthemassivelyinfested treestakesasimilarcourse.Massivelyaffectedtreesvaryfrom5%inDc2to50%inDc 5(figure“Infestationpatternofexudations”annex6).Herethesignificanceamountedto R²=0,90(annex7).

36

Correlation between year of the latest cork harvest and the damage class Thecorkextractioncouldberetracedoveraperiodof15yearsuntil1992.Inabsolute numbers,thebiggestsharesareheldbythe'virgin'treesandthetreesharvestedin1997 with30%each.For6ofthedeadtreesmarkedwitha'?',theyearcouldnotbeidentified anymore. Figure22depictstherelativesharesperdamageclass.Itisremarkablethatthetrees harvestedlast(2006)areinaprevailinglygoodconditionandonlyasingletreediedasa consequenceofthecorkextraction.Thisisprobablyduetothefactthatusuallyonlytrees ingoodhealthareharvested(DGRF,2006b).Inbothofthetwoothergroupsbigenough tobecalledrepresentative,theyears2002and1997,adriftcanbeobserved,eithertothe better,ortotheworseendofthedistribution.Thetrendtotheworseendhowever,ismore pronouncedforthegroupharvestedfurtherbackintime1997.Themoststriking observationisthatthe'virgin'treesconstituteaconsiderablybadpartinthedistribution.To gainamoredetailedunderstandingofthissituationitisnecessarytocomparethesharesof thisspecialclassrepresentedintherespectivedamageclasses(annex8a)tothesharesheld bythecommunityofalltrees(seefigure12).InDc2,themainclass,76%foralltreesare foundasopposedtoonly74%forthevirgintrees.Damageclasses4+5arerepresentedby 16%ofeithergroup.ThebiggestgaphoweveroccursinDc3,where4%foralltreesare toppedby10%forthevirgintrees.

Year of cork harvest by damage class

100% 90% ? 80% 2006 70% 2002 60% 1999 50% 1997 40% 30% 1994 20% 1992 10% virgin 0% Dc 1 Dc 2 Dc 3 Dc 4 Dc 5

Fig. 22 Correlation between year of latest cork harvest and damage class

37

4.2.4 Topographical aspects Themediumgradientoftheresearcharea,asanaverageoffivemeasurements,was calculatedwith37%.Thismeansthatwaterflowsoffquicklyinmostpartoftheplot.Asa resultverydryconditionscanbeobservedontheupperslopes,andmoistconditionsinthe valleys.Furtherthismeansgoodconditionsforthespreadof P. cinnamomi .Tosurveythis paticulartask,thetreeswereexaminedinregardtotheirpositiontothewaterlines,wherea concentrationofthispathogencanbeassumed.Theresultispresentedinfigure23. Comparedtothesharesforthecommunityofalltrees(figure12)adecreaseintheclasses oflowerdamageisopposedbyanincreaseinthehigherdamagedclasses.Noindividuals outofDc1weretobefoundina10metresrangeofthewatersheds.ForDc2aminusof7 %wasrecordedcomparedtotheshareofthisdamageclassforthewholestand.An increaseof1%inDc3israisedto3%inDc4and4%inDc5(seeannex10).Thistrend isportrayedinfigure24.Apolynomialincreaseofthedamageclassesnearthewaterlines couldbedetected.ThesignificancetestrevealedalevelofR²=0,98.

Difference in Dc distribution in % Shares of trees near the waterlines 6

16% Dc 2 4 Dc 3 Dc 4 2 y = -1,75x 2 + 12,25x - 17,25 Dc 5 2 7% % 0 R = 0,9833 0 1 2 3 4 5 -2 Difference in 8% -4 %

69% -6 PolynomischPolynomial (Difference -8 in %) Damage classes

Fig. 24 Differences in damage class distribution Fig. 23 Shares of trees per damage class within a between the community of all trees and trees near 10 meter distance of the waterlines the waterlines

Stillonly46%ofthedeadtreesaresituatednearthewaterlinesandindeedanotherdecline focuscouldbefoundonthesoutheastfacingnorthernslope(seemapII).For3outof12 deadordyingtreeslocatedinthisregiontheoccurrenceof“charcoalcolouredpatches

38

underpeelingbark”wasexplicitlynotedinthecolumn“remarks”(annex9).Furtherthe samplesurveyedfor B. mediterranea wascollectedinthisregion.Henceinthisareaan intensificationofthedeclinecanbeascribedto B. mediterranea . Thisregionisalsothearea,whereaccordingtothelandlordthefirstsignsofthedisease werenoticedabout15yearsago(DA SILVA LUÇÃO ,26.II.2007,verbalcommunication). Thisstatementcanbeconfirmed,ontheexampleoftreenumber112.Itwasharvestedfor thelasttimein1997anddiedsoonafterwards(nonewcorklayerwasbuiltup).Twotrees initssurroundingmusthavediedevenfurtherbackintime,becauseheretheyearofthe lastharvestcouldnotevenbedistinguishedanymore.Thisindicatesthatthediseasemust havestartedmorethan10yearsago. DeviationsofthecoordinatesreceivedfromtheGPShavetobenoticed.Theyareprobably duetoaradiointerferencebythesurroundinghills.Thecoordinatesof7treeswere registeredoutofthelimitsoftheresearcharea.Thestrongestinterferenceoccurredinthe narrowpartoftheuppersidevalley(seemapII).Stillthemapasawholecanbecalled representative.

4.2.5 Additional Remarks Winddamageoccurredon0,5%ofthetreesduetoastormintheearlywinter.The presenceofphyllophagousinsectssuchas Rhynchaeus quercus, Phyllobius argentatus and caterpillarsof wasdeterminedinpatches(on1%ofthetrees).Onthefirst visittotheareaonFebruary8/9,2007,noinsectswerenoticedyet,whileonthesecond approachonFebruary25/26andMarch2,2007,apresencecouldbenoticed.Asthe surveywascarriedoutinearlyspring,however,thedamagewasstillconsiderablysmall andnegligiblefortheassessmentofthecrownconditions.

4.3 Laboratory Results

4.3.1 Soil samples ThemeanpHvaluedeterminedoutofthe8samplestestedbytheBBA(seeannex8b) revealed5,60.Thismeansveryfavourableconditionsforthegrowthof Phytophthora . Theinspectionofthesoilsamplesforoomycetemyceliumdeliveredtheresultsportrayed intable10.Fouroutoftheeightsampleswerefoundtobepositiveforoomycetesaftertwo days.Aftertendayshowevertheoomycetesintheoriginalpetridishes,aswellas,the

39

isolatestakenfromthemwereovergrownbyotherfungi,asnoselectivemediumswere used.Leafbaitswerecolonisedbyleafdecomposingfungiveryquickly. Sample1 negativeforoomycetes

Sample2 negativeforoomycetes

Sample3 positiveforoomycetes

Sample4 positiveforoomycetes

Sample5 negativeforoomycetes

Sample6 positiveforoomycetes

Sample7 positiveforoomycetes

Sample8 negativeforoomycetes

Fig. 25 Non- septed oomycete mycelium under Tab. 10 Results of microscopic survey of the soil 200 fold magnification. samples after 2 days. Photograph by T. Kaltenbach, 25. I. 2007

Table11showstheresultsoftheexaminationscarriedoutbytheBBA(BIOLOGISCHE

BUNDESANSTALT ,2007).Outoftheeightsamplessurveyedfivewerepositivefor P. cinnamomi .Thesesamplescontainedveryhighquantitiesofthepathogen,whichimpliesa highpathogenityfor P. cinnamomi .Moreover,2samplesrevealedcontaminationwith P. syringae ,and Pythium spp .werediscoveredinfiveofthesamples.Summarising,itcanbe statedthatallofthesamplesdidcontainsoilbornepathogens.Asthesepathogensarenot

easilyisolated(HARRACHI ,2000),ahighdegreeofcontaminationbytheseoomycetescan beassumedforthewholeplot. sample sample sample sample sample sample sample sample 1 2 3 4 5 6 7 8 P. cinnamomi + + + + + P. syringae + + Pythium spp. + + + + + Tab. 20 Results of the BBA survey of the soil samples

40

4.3.2 Tissue samples Noevidencewasfoundforoomycetesonthetissuesamples.Theregionsaroundthe cambialpieceswerevisiblycolonisedbybacteriaafteroneweek.However,onthebranch collectedonMarch2,2007,stromataandascosporesof B. mediterranea couldbe determined(seefigure26).

A B

Fig. 26 Stromata and ascospores of B. mediterranea AStromataunder25foldmagnification BAscosporesunder200foldmagnification,photographsbyT.Kaltenbach,6.III.2007

41

5 Discussion

Distribution of damage

Ofthe250treesrecorded,allshowedatleastlightdamage(3%),themajorityhowever moderatedamage(76%).Accentuatedamagewasnoticedon7%ofthetreesand16% wereeitherdead(12%)ordying(4%).Thisnumberstillappearsrelativelysmall comparedwiththedescriptionofMONTOYA (inBRASIER ,1996)andBRASIER (1996),who statedthathalfofthetreesinatypicaldeclinefocuscanbeconsidereddeadordying.The definitiongivenbythePortugueseauthorityinannexIbofthePDPSconsidersanareaa declinefocus,if25%ofthetreesaredeadordecrepit(MINISTRODA AGRICULTURA ,

DESENVOLVIMENTO RURALE PESCAS , 2003).Eventhoughtheactualstateofthesurveyed areaisalreadydevastating,thesedescriptionsallowtheconclusionthatthingscouldwell getevenworse.Thisapprehensionisconfirmedbytherecognitiongainedfromthesurvey ofthedeadtreesontheplot,yieldingthatthediseasehasbeenproceedinginwavesand thatcurrentlyaratheroffensivephaseistakingplace.Thisphenomenoncanprobablybe ascribedtotheinteractionofthediseasewithclimaticfactors,suchaswinterdroughts, leadingtowaterstressonthetrees(BRASIER etal.,1993). Involved pathogens Theexaminationsofthesoilsamplesinthelaboratoryrevealedahighcontaminationwith oomycetes,especially P. cinnamomi, whichisahighlyaggressiveprimaryrootpathogen. Forthisagent,fiveoutofeightsampleswerepositive.Thisisacomparativelyhighrate, takingintoconsiderationthattheisolationfromthesoilisconsidereddifficultbecauseof thelowpopulationdensityofthepathogeninthesoil(ERWIN andRIBEIRO 1996in

HARRACHI 2000).BRASIER (1992)proposesthattheproblemsintheisolationfromthesoil areduetolowsoilwatercontents.Thissuggestioncanbeconfirmed,as4ofthe5positive samplescamefromthevalleybottom,wheremoistsoilconditionsdidexist.Incontrast, stromataof B. mediterranea werediscoveredwithanaffinitytotheuphillsiteswitha southernexposure.ThisfitswiththesuggestionofVANNINI etal.(1996,a),whoshowed waterstresstobethemainpredisposingfactorforthisopportunisticparasite.

42

Considerations concerning the age distribution InregardtotheDBH/agedistribution,theassessmentsrevealedthatyoungtrees(DBH class1)areunderrepresentedinthestand.Thismightbeduetoseveralreasons.Changing landusepatternsandincreasingsoildisturbances(BRASIER ,1992;BRASIER etal.,1993) wereaccompaniedbythesuccessiveintroductionofheavyploughingmachineryintothe regionsincethe1970ies(DA SILVA LUÇÃO ,verbalcommunication,26.II.2007).Onthe onehandploughingunderneaththetreecanopiesinitselfiscertainlydetrimentalfor naturalregeneration.Ontheotherhandthesemachinesmayalsoactasatransportvehicle for Phytophthora (KLIEJUNAS andKO,1976),whichcankillseedlingsmuchmoreeasily thanadulttreesbecauseofthelesserdevelopmentoftheirrootsystem.The Pythium sppas wellmighthavecontributedtothedampingoffofseedlings(AGRIOS ,1997).Another contributoryfactorinthiscontextmightbethegoatbreeding,whichcancausesevere damageintheunderstorey(DGRF,2006b).Thebreedingofgoatsandpigsontheland mayalsohavepromotedthefurtherspreadofthepathogenwithintheplot(KLIEJUNAS and

KO,1976). Thenextobservationmade,inthecontextofagedistribution,isthatthe'virgin'treesare slightlyhigheraffectedbydamagethantheaverageofalltrees.Itisimportanttoknowin thiscontextthat65%ofthisgroupcomefromDBHclasses0+1,29%fromDBHclass2 andonly6%fromclasses3+4,whichmeansthatthisclassincludesmainlyyoungtrees. Anotherconsiderationisthatacorkextractionalwaysweakensthetree(DGRF,2006b), sothatactuallyabetterstateofthevirgintreescouldbeexpected.Thereasonwhythe oppositecasewasobserved,isprobablyduetothefactthatthecorkcuttersareinstructed toonlyyieldthosetreesinagoodstateofvitality(DGRF,2006b).However,thisdoesnot explainwhytheveryyoungtrees(DBHclass0)showamortalityof17%,whichis5% higherthantheaveragemortality.Thisobservationmightaddtothesuggestionmade above,thatyoungtreesaremorevulnerabletothedisease.Thehighestmortalityrates however,occurredinDBHclasses5and6(35%and25%).Thisfacthasextremely seriouseconomicconsequences,becauseinthefieldofcorkharvest,itistheseclasses whichpromisethehighestprofitsundernormalconditions. Symptoms and topographical aspects Throughoutthewholedistribution,alinearincreaseofthecrownsymptomswatersprouts anddeadbranchescouldbeprovedinassociationwithrisingdamageclasses.The

43

significancewastestedwithR²=0,9242forwatersproutsandR²=0,9842fordead branches(seeannex11).TakingacloserlookatthesesharesfortheDBHclasses mentionedbefore,itcanbeseenthatalthoughDBHclass5featuresthehighestmortality rate,thetotalsanitarystateisworstinDBHclass6,containingonlytreeswithatleast moderatedamage.Thisproportionisreflectedbythecrownsymptoms:withaquotientof watersprouts/deadbranchesof0,77inDBHclass6comparedto0,39inDBHclass5,the treesinclass6reactwithanevidentlyhigherproductionofwatersproutsinrelationtothe amountofdeadbranches.Further,thedataimplythatmaturetrees,independentlyfrom theirdamageclass(Dc2forDBHclass7andDc3forDBHclass9)tendtodevelop higherwatersproutshares.However,itmustbeborneinmind,thatbothDBHclass7and 9containedonlyoneindividualandarethereforearetoosmallasareferencequantity.

Thehighstandarddeviationfortheproductionofwatersprouts(upto36%inDc4)leads totheassumptionthatonthesingletreelevelverydifferentstatesofvitalityexist.The differencesinstandarddeviationofbranchdiebackontheonehand,andtheformationof watersprouts,asastruggleforsurvival,ontheother,increaselinearlywithrisingstateof damage,withasignificanceofR²=1,0(seeannex12).Furtherresearchonthistaskmight helptounderstandwhysometreesmanagetoresistthediseaselongerthanothers.Beside geneticattributes,factorslikethedevelopmentoftherootsystem(HARRACHI ,2000),the specificsite(DGRF,2006b)andthesupplyof(MARX andDAVEY ,1969) mightbedecisive.Abetterunderstandingofthesefactorscouldprovideanimportantkey inhowtoopposethedisease. Theassessmentofthetrunksymptomsrevealedthat36,4%ofalltreesshowed characteristictongueshapedexudationsintherootbaseregion.Thisnumberisevidently higherthantheonepresentedbyBRASIER etal(1993),whoonlyobservedthese exudationson510%ofthedecliningtrees.However,iftheirobservationisinterpreted thusthataffectedtreesmay,butnotnecessarilyneedtoproduceexudations,theresultof thissurveymightadd,thatthemanifestationofexudationsmayvaryinfrequency.The sharesoftongueshapedexudationsgrewpolynomiallytogetherwiththedamageclasses withasignificancelevelofR²=0,96(annex7).Apronouncedoccurrenceoftongue shapedexudationscouldberelatedtotreeswithsharesofdeadbranchesabove80%.This wouldimplythatthesesymptomsaretobefoundpreferablyinanadvancedstateof declineandindicateneardeath.BRASIER etal.(1993)associatedthis‘stemgirdling’to moistsitesandaratherrapidprocedureofthedisease.Thishypothesiscanbesupported,

44

asonthedryandsouthexposednorthernhillsidenoexudationsattherootbasewere determinedonthedeadtreesatall(annex9).Thisleadstowardsarealproblem,because apartfromtheratherunspecificcrowndiebacktheserootbasedexudationsaretheonly specificsymptomfor Phytophthora .Andasfurthertheisolationfromthesoilisvery problematiconthesedrysites(BRASIER ,1992,seeabove),thereisnorealevidencethat B. mediterranea mightnotbetheonlyagentonthishill.Stillthepathogenmusthavegotinto thevalleysomehowandasitspreadswiththewateritismostlikelythatitcamefromthe sitesabove,where,accordingtothelandlord(DA SILVA LUÇÃO ,verbalcommunication, 26.II.2007),thefirstdeadtreeswereobserved. Apolynomialincreaseofdamagecouldbedemonstratedwithina10metresrangeofthe waterlineswithasignificanceofR²=0,98.Thisconfirmstheobservationsmadeby

BRASIER etal.(1993)andMOREIRA andMARTINS (2005)that P. cinnamomi occursmore frequentlyinassociationwithbrooklets,valleysanddepressions. Additional Remarks Towhatextenttheappearanceofphyllophagousinsects( Rhynchaeus quercus, Phyllobius argentatus andcaterpillarsof Tortrix viridana )willinfluencethedeclineofthetrees cannotbepredictedyet.Still,HARRACHI (2000)qualifiesthemasprimaryagentsand

BRASIER (1996)highlightsthatinsectattacksmayacceleratetheprocedureofthedisease andeveninitiatesuddendeath.Defoliationby T. viridana isafactorinthedeclineofoaks inGermany(ALTENKIRCH andHARTMANN ,1987).Henceanaggravationoftheprocess canbesuspectedfromthisaspectaswell. Finally,ahypothesisshallbeformulated,whichmaybeofinterestinthepracticalcontrol ofthedisease: P. cinnamomi disposesofveryeffectiveabilitiesinregardtoitsdispersal andsurvival(seechapter2.3.1).However,thesurveyinthelaboratoryrevealedindirectly thataweakpointseemstobeitscompetitivepower.AllthesamplesexaminedbyProf.Dr. Kehrandmyselfwerequickly(within10days)outgrownbyotherfungiorbacteria.This meansthatifthepathogendoesnotmanagetofindasuitablehostwithinacomparatively shortperiodoftime,itcannotreproduceitself.Thishypothesisissustainedbythefindings ofSHEARER andTIPPETT (1989inMOREIRA andMARTINS ,2005)intheirsurveyof Eucalyptus forestsinJarrah,statingthatthehighpresenceof P. cinnamomi wasfavoured bylowpopulationsofantagonisticsoilmicroflora.MARX andDAVEY (1969)specifythe

45

effectsofanantagonisticmicroflorafortheexampleofmycorrhizaandbythisshowa possiblemethodofabiologicaldiseasecontrol. Concluding,ithastobenotedthatbecauseofthehighsubdivisionofthedata,the referencegroupsinsomesubclassesturnedouttoberathersmall.Forthisreason,a biggertestgroupcanberecommendedforfurthersurveys.Itshouldalsobeborneinmind, thatadditionalpathogens(e.g. Diplodia mutila )mightplayapartinothersites.Theresults ofthisassessmentwillhavetobecombinedwiththeoutcomesofotherresearchprojectsto developacomprehensiveperspectiveforthefuture.

46

6 Recommendations for disease management

6.1 Diagnosis and monitoring Becauseofthecomparativelysmallmanagementunits(farmlevel),thedimensionsofthe singledeclinefociarehardtoassess.Biggermanagementunitsarenecessarytoacquirea workingperspectiveontherespectiveplotsizes.Inthiscontext,theForestryIntervention Zones(ZonasdeIntervençaıFlorestal)mightbetherightinstrument. Sofar,thesurveyoftheareainfestedinPortugalislimitedtoscientificspotchecks. Theseresultsshouldbegatheredandmappedtogetherwiththeoutcomeoftheforest inventory(IFN).Inblindspotsdatashouldbesupplemented.Infestationmapscouldbeset upcontainingtheoutlinesofthefoci,watershedsandwaterlines.Thesemapsandaregular surveywouldformthebaseforaspecificmonitoringsystem. Withinthisframeworkmoreresistantindividualscouldbeidentifiedandusedfor breeding. TheformationofamonitoringsystemisaimedatbytheannexesIadandIIaofthe

ProgrammefortheDefenceof Q. suber Populations(PDPS)(MINISTRODA AGRICULTURA ,

DESENVOLVIMENTO RURALE PESCAS , 2003).

6.2 Prophylaxis Information:Aninformationofthelocalpopulationisindispensable.Manyofthe farmersstilldonotknowwhatkindofagentcausesthediseaseontheirland,norhowto avoidortoopposeit.Aninformationcentreshouldbeformed. Inhibitionoffurtherdispersalandhygiene:Drivingonforestsoilswithheavymachinery andespeciallythetechniqueofthe'limpeza'needstoberestricted.Notonlyisthis techniqueoneofthemostlikelyanthropogenicdistributionmodesfor Phytophthora contaminedsoilparticles(KLIEJUNAS andKO,1976),butalsosoilcompressionleads directlytodecreasingoxygenlevelsandthusincreasesthesusceptibilitytothedisease

(JAKOBS ,1991,inMAC DONALD ,1994).Themachinerydriversshouldbetrainedto recognizedeclinefociandavoidthemorifthisisnotpossibletoproperlycleantheirtyre treadsafterwards.Irrigationfrominfestedareasneedstobestopped.Theroutesofwater distributionshouldbecontrolled,e.g.withthemethodELISA(EnzymeLinked

ImmunosorbentAssay),usedbyALI SHITAYEH etal.(1991).Itisimportantthatclean seedlingsareprovidedforafforestationprojects.Nurseriescanavoidaspreadofthe

47

diseasebyusingsterilesoil,chemicals(FosetylAl,metalaxyl,etridiazol),cleanstock,and slopingbedsofcoarse,gravelonwhichtoplacethepots(REUTER ,C.;2005,internet3).

6.3 Disease control As B. mediterranea isasecondary/weaknessparasite,itwillbeusefultoconcentratethe effortson Phytophthora astheprimarypathogen.Howevercuttingandburningofinfested materialareawaytoreducetheinfectionsourcesof B. mediterranea (OKLAHOMA STATE

UNIVERSITY ,2007,internet5). Classicalcontrolbytheextractionofhostplantsisconsideredverydifficulttorealisein thecaseof P. cinnamomi ,becauseothermaquisspecies(like Cistus spp., Ulex spp.,

Calluna vulgaris )areinfectedaswellandserveasareservoir(MOREIRA etal.,2006). Alternativespecies:Inhighlycontaminedsoils,alternativetreespeciessuchas areinfectedaswell(MOREIRA andMARTINS ,2005).FromGermany,however,it isknownthat Fraxinus excelsior isnotsusceptibleto Phytophthora (KEHR ,2004).Ifthis observationcanbeconfirmedfor Fraxinus angustifolium ,thismightbeaninteresting alternativespeciesinmoistvalleys. Breedingofresistantplants:Researchinordertofindmoreresistantplantsisbeing carriedoutsince2004inajointprojectbetweentheUniversityofHuelva,theUniversity oftheandtheEstaçaıAgronómicaNacionalINIAP(MOREIRA etal.,2006). Goodcommunicationbetweenresearchinstitutesandlocaltechnicianswillbehelpfulfor thediscoveryofmoreresistantgeneticmaterial.

Antifungaltreatment:FERNANDEZ ESCOBAR etal.(1999)developedamethodtotreat diseasedoakswithpressurisedinjectioncapsuleswhichallowtheintroductionof antifungalsubstancesdirectlyintothetreewithoutenvironmentalcontamination.This methodisappliedinsomeareasofPortugal.

Mycorrhiza:Intheirstudiesonpineroots,MARX andDAVEY (1969)exemplifiedthe importantroleectomycorrhizalfungicanplayintheprotectionoftheirsymbionttrees againsttheattackof P. cinnamomi ,acting asamechanicalbarrierandcompetingfor nutrientsandspace.MARX (1972)documentedthesynthesisofantibioticorinhibitory substancesaffectingrootpathogensformorethan90ectomycorrhizalfungi.VROT and

GRENTE (1985)identifiedseveralmycorrhizalfungi(e.g.Cantharellus sp.)tobeeffective antagoniststo P. cinnamomi on Castanea sativa .Theseexperimentsmightformthebasis forabiologicalcontrolofthedisease.Oakstandscouldbeinoculatedwiththesymbiont's

48

mycelium,thusimprovingthetreesvitalityontheonehandandprovidinganadditional incomeforthefarmersontheother.Thistaskisalsoincludedinthenecessitiesof investigationsformulatedinannexIIaofthePDPS(MINISTRODA AGRICULTURA ,

DESENVOLVIMENTO RURALE PESCAS ,2003).

Drainage:Theuseofdrainageditches(MOREIRA andMARTINS ,2005)mightbea possibilitytoprotectsinglestands.

6.4 Competent advice and local support Afflictedfarmersshouldbecounselledbyexpertpersonnelinhowtofightthedisease.In legitimatecases,farmersshouldbesupportedbymaterialorfinancialmeans,becauseitis notonlyaproblemofsinglestandsbutaquestionofpublicinteresttoinhibitthefurther spreadofthedisease. ThesetwopointsareconsideredbythePDPSintheannexIc,whichprovidesthe formationofatechnicalcorpsforthispurpose(MINISTRODA AGRICULTURA ,

DESENVOLVIMENTO RURALE PESCAS ,2003).WiththePDPSPortugalcertainlytookastep intherightdirectionanditwillbeinterestingtowatchhowitisimplementedinthefuture.

49

7 Summary Sincethe1970ies,therehasbeenincreasingoakmortalityoccurringinPortugal,leadingto adrasticreductionofthecorkproduction(DGRF,2006a).In1992,BRASIER (1992) determined Phytophthora cinnamomi tobeamajorcontributoryagenttothedisease.Since then,thispathogenhasbeenidentifiedonmanydifferentsitesthroughoutIberia(BRASIER etal,1993;MOREIRA andMARTINS 2005;MOREIRA etal.,2006). P. cinnamomi isa highlyvirulentsoilandwaterbornepseudofungus,knownforcausingrootrotonitshost plants(BRASIER etal.1993). Inthiswork,aplotintheBaixoAlentejoRegioninsouthwesternPortugalwassurveyed. Theaimsweretodetermineifthispathogenisinvolvedintheincreasedoakmortalityhere aswell,andwhichotherfactorscontributetothedisease.Forthispurpose,soilandtissue samplesweregainedfromtheplotandexaminedforpossiblepathogens.Twospeciesof Phytophthora (P. cinnamomi and P. syringae ), Biscogniauxia mediterranea and Pythium spp.couldbeisolatedfromthesesamples(BIOLOGISCHE BUNDESANSTALT ,2007).Further, theformationofthesymptomswasassessedinordertorecognizeapatternforinfestation, aswellonthetreesthemselves,asinatopographicalrespect.250treeswererecordedwith theirGPScoordinatesandjudgedbytheirdamageclass,crownsymptomsandexudations. Adigitalmapoftheareawascreated.Theevaluationofthedatarevealedthat,although deadtreescouldbefoundallovertheterritory,aconcentrationwasobservednearthe waterlines.Asecondfocusofdeclinewasfoundonthesouthfacinghillside,withahigh participationof B. mediterranea. Thehighestmortalityratesoccurredonmaturetrees (DBHclasses5and6),butaraisedlevelcouldalsobeobservedfortheveryyoungtrees (DBHclass0). Withrisingstatesofdamage,alineargrowthofthecrownsymptoms(deadbranchesand watersproutshares)wasencountered,whereastherootbasesymptoms(exudations) showedanalmostpolynomialgrowth.Anenhancedoccurrenceofrootbasesymptoms couldbeassociatedwithsharesofdeadbranchesabove80%. Finally,asetofrecommendationsfordiseasemanagementwithininfestedareaswas outlined.

50

Zusammenfassung InPortugalistseitden70erJahreneineerhöhteEichensterblichkeitzubeobachten,waszu einerdrastischenVerminderungderKorkproduktionseitdieserZeitführte(DGRF,2006 a).1992entdeckteBRASIER (1992),daß Phytophthora cinnamomi alseinerder maßgeblichenFaktorenanderErkrankungbeteiligtist.SeitdemwurdediesesPathogenauf vielenverschiedenenStandorteninganzIberiennachgewiesen(BRASIER etal.,1993;

MOREIRA undMARTINS 2005;MOREIRA etal.,2006).). P. cinnamomi istein hochvirulenter,bodenundwasserbürtigerPseudofungus,derdafürbekanntist,eine

WurzelfäuleanseinenWirtspflanzenzuverursachen(BRASIER etal.1993). IndervorliegendenArbeitwurdeeineFlächeinderRegionBaixoAlentejoimSüdwesten Portugalsuntersucht.DabeiwardieZielsetzung,herauszufinden,obdieserErregerauch hierandererhöhtenEichensterblichkeitbeteiligtist,undwelcheanderenFaktorenzuder Erkrankungbeitragen.ZudiesemZweckwurdenimUntersuchungsgebietBodenund GewebeprobengewonnenundaufmöglicheErregergeprüft.Zwei Phytophthora –Arten (P. cinnamomi und P. syringae ),sowie Biscogniauxia mediterranea und Pythium spc. konntenausdiesenProbenisoliertwerden(BIOLOGISCHE BUNDESANSTALT ,2007). DesweiterenwurdedieAusprägungderSymptomebeurteilt,mitdemZiel,ein Befallsmuster,sowohlandenBäumenselbst,alsauchintopografischerHinsichtzu erkennen.250BäumewurdenmitihrenGPSKoordinateneingemessenundnach Schadstufe,KronensymptomenundSchleimflussmerkmalenbewertet.Eswurdeeine digitaleLandkartedesGebietserstellt.ObwohlabgestorbeneBäumeüberdiegesamte Probeflächeverteiltvorkamen,ergabdieAuswertungderDaten,daßeineHäufunginNähe derWasserlinienzubeobachtenist.EinzweiterKrankheitsherd,dereinehoheBeteiligung von B. mediterranea aufwies,konnteandersüdexponiertenBergflankeausgemacht werden.DiehöchstenSterblichkeitsratentratenanausgewachsenenBäumen (Stärkeklassen5und6)auf,jedochkonnteeinerhöhtesNiveauauchfürdieganzjungen Bäume(Stärkeklasse0)ausgemachtwerden.MitzunehmendemSchadstatusgingein linearerAnstiegderKronensymptome(TotästeundWasserreiser)einher,währenddie SymptomeimBereichderWurzelanläufe(Schleimfluss)einannährendpolynomisches Wachstumzeigten.EinverstärktesAuftretenvonSymptomenandenWurzelanläufen konntemitTotastanteilenvonüber80%inVerbindunggebrachtwerden. SchließlichwurdeeinBehandlungskonzeptfürbefalleneGebieteentworfen.

51

Sumario Desdeosanos1970,houveumgrandeaumentodemortalidadedesobreirosemPortugal, tendocomoconsequênciaumadrásticareduçãodeproduçãodecortiça(DGRF,2006a).

Em1992,BRASIER (1992)determinouoagente Phytophthora cinnamomi deseromaior contributoparataldoença.Desdeentão,opatogéniotemsidoidentificadoemmuitos locaisdiferentespelaIberiafora(BRASIER etal,1993;MOREIRA eMARTINS 2005;

MOREIRA etal.,2006). P. cinnamomi éumfungopseudoaltamentevirulentocomorigem naaguaesolo,conhecidopeloapodrecimentoderaízesnasuaplantamãe(BRASIER etal. 1993).Nestetrabalho,umaáreanaregiãodobaixoAlentejonosudoestedePortugalfoi pesquisada.Osobjectivoseramdedeterminarseopatogénioestáenvolvidonoaumentode mortalidadedesobreirosnestaregião,ededeterminarquaiseramosoutrosfactoresque contribuíramparataldoença.Paraoefeito,amostrasdesoloedetecidovegetalforam retiradasdaáreadeestudoeexaminadoporeventuaispatogénios.Duasespéciesde Phytophthora (P. cinnamomi e P. syringae), Biscogniauxia mediterranea e Pythium spp . foramisoladasdasamostras(BIOLOGISCHE BUNDESANSTALT ,2007). Adicionalmente,aformaçãodesintomasfoiavaliadaemordemapoderreconhecero padrãodeinfestação,talcomoforamasprópriasarvores,emrespeitotopográfico.250 arvoresforamanotadascomassuascoordenadasdeGPSeavaliadaspelasuadegraude estrago,sintomasdecoroaeexsudações.Ummapadigitaldaáreadeestudofoicriado.A avaliaçãodadatarevelouque,mesmopodendoseencontrararvoresmortasnoterreno, umaconcentraçãodemortalidadefoianotadapertodelinhasdeagua.Umdecrescimento foiencontradoemfacessuldemontes,comumaelevadapresençade B. mediterrane a.A maiortaxademortalidadetemocorridoemarvoresadultas(diâmetroclasse5e6),masum aumentofoiobservadoemarvoresmuitojovens(diâmetroclasse0).Comumaumentode estadosdeestrago,umcrescimentolineardesintomasdecoroa(ramosmortoserebentos deagua)foramencontradas,apesarossintomasdebasenasraízes(exsudação)tem mostradoumaumentoexponencial.Umcrescimentodesintomasdebasenasraízes, poderáserassociadocomtaxasderamosmortosacimade80%. Finalmente,umaseriederecomendaçõesparaotratamentotécnicodaáreainfestadaforam propostos.

52

Literature th AGRIOS ,G.N.,1997:PlantPathology,4 edition,AcademicPress,California,USA,635 p.p. ALI SHITAYEH ,M.S.,MAC DONALD ,J.D., J. KABASHIMA ,1991:Amethodofusing commercialELISAteststodetectzoosporesof Phytophthora and Pythium species inirrigationwater,PlantDisease75,305311. ALTENKIRCH ,W.andHARTMANN ,G.,1987:Eichenprobleme,ForstundHolzwirt (Germany,F.R.),ISSN:00157961volume42(16),445448. ALVES ,R.,2003:TheroleofprivateforestinPortugal;Forestis.aprivateowners federation,casestudies,IUCN,20p.p. BIOLOGISCHE BUNDESANSTALT (BBA),2007:Ergebnisse Phytophthora ,emailvonDr.J. Schumacher,Braunschweig,IV2007. BOGENSCHÜTZ ,H.,1978:DieForstschädlingeEuropas,Handbuchin5Bd.,Bd.3, Schmetterlinge,Schwenke,W.(Hrsg.),1.Aufl.PareyVerlag,Hamburg,Berlin, 467p.p. BORGES ,J.G.,2007:AnalysisoftheMarketsforRoundwoodandForestIndustryProducts inPortugal,DepartmentofForestResources,TechnicalUniversityofLisbon, internet1: http://floresta.isa.utl.pt/gegref/ARTIGOS/analysis_of_the_markets.htm 22.3.2007 BUSSOTTI ,F. &BOTTACCI ,A.,1999:QuercussuberLinnē,Enzyklopädieder Holzgewächse,Schütt,Schuck,Lang,Roloff,1994,Gesamtausgabe,Stand12/ 2006,17.Erg.Lfg.9/99,8p.p. BRASIER ,C.M.,1992:OaktreemortalityinIberia,Nature,Vol.360,p.539. BRASIER ,C.M.,ROBREDO ,F., J.F.P. FERRAZ ,1993:Evidencefor Phytophtora cinnamomi inIberianoakdecline,PlantPathology42,140145. BRASIER ,C.M.,1996: Phytophtora cinnamomi andoakdeclineinsouthernEurope. Environmentalconstraintsincludingclimatechange,AnnSciFor(1996)53,347 358. BREITENBACH ,J.and KRÄNZLIN ,F.,1984:PilzederSchweiz,Band1Ascomyceten, VerlagMycologia,Luzern,313p.p. BROWNE ,G. T.andVIVEROS ,M. A.,1999:Lethalcankerscausedby Phytophthora spp.in almondscions:Specificetiologyandpotentialinoculumsources,PlantDis.83, 739745. BURSCHEL ,P.andHUSS ,J.,1997:GrundrißdesWaldbaus,PareysStudientexte49,2. Aufl.,Berlin,487p.p.

53

CAMPBELL ,C.L.andBENSON ,D.M.,1994:EpidemologyandManagementofRoot Diseases,SpringerVerlag,Berlin/Heidelberg,344p.p. CAPASSO R,CRISTINZIO G,DI MARO A,FERRANTI ,PandA. PARENTE ,2001:Syringicin,a newalphaelicitinfromanisolateofPhytophthorasyringae,pathogenictocitrus fruit,internet8,4.5.2007 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed , CAPRETTI ,P.andBATTISTI ,A.,2007:Waterstressandinsectdefoliationpromotethe colonisationof Quercus cerris bythefungus Biscogniauxia mediterranea ,For. Path.37,129135. CARVALHO MENDES ,A. M. S.,2002:AeconomiadosectordacortiçaemPortugal, UniversidadeCatolicaPortugesa,FaculdadedeEconomiaeGestao,Porto,238p.p. DA SILVA LUÇÃO ,A.M.,Landlordoftheresearcharea,Verbalcommunication,26.II. 2007 DIRECÇÃO GERALDAS FLORESTAS (DGF),1999:ManualdeInstruçõesparao Trabalho deCampodoInventárioFlorestalNacional,Lisboa,80p.p. DIRECÇÃO GERAL DAS FLORESTAS (DGRF),2006a:EstratégiaNacionalparaas Florestas,Lisbon,189p.p. DIRECÇÃO GERALDOS REÇURSOS FLORESTAIS (DGRF),2006b:BoasPrácticasdeGestão emSobreiroeAzinheira,Lisboa,104p.p. DIRECÇÃO GERAL DOS REÇURSOS FLORESTAIS (DGRF),2007:ResultadosdoIFN2005/ 06,70p.p. EBNER ,S.andSCHERER ,A.,2001:DiewichtigstenForstschädlinge,Insekten,Pilze, Kleinsäuger,StockerVerlag,Graz;Stuttgart,197p.p. EUROPEANAND MEDITERRANEAN PLANT PROTECTION ORGANIZATION (EPPO),2007: Phytophthora ramorum ,internet4, http://www.eppo.org/QUARANTINE/Alert_List/fungi/PHYTRA.htm 28.3.2007 FERNANDEZ ESCOBAR ,R., GALLEGO ,F.J., BENLLOCH ,M., MEMBRILLO ,J., INFANTE ,J. and A. PEREZDE ALGABA ,1999:Treatmentofoakdeclineusingpressurizedinjection capsulesofantifungalmaterials,Eur.J.For.Path.29,2938. GIL ,L.,2007:Dimensãosocial,económicaeambientaldaproduçãodecortiça,INETI, UnidadedeTecnologiadaCortiça,internet2, http://www.naturlink.pt/canais/Artigo.asp?iArtigo=10834&iLingua=1 12.2.2007 HARRACHI ,K.,2000:UntersuchungenzudenUrsachendesKorkeichensterbens( Quercus suber L.)imMaamorawaldinMarokko,InstitutfürPflanzenpathologieund PflanzenschutzderGeorgAugustUniversitätGöttingen,121p.p.

54

INSTITUTO GEOGRÁFICODO EXÉRCITO (IGeoE),2006:SistemadeInformacaoGeografica Online(SIG),Lisboa,internet6, http://www.igeoe.pt 4.12.2006 JUNG ,T.,B LASCHKE ,H.andW. OSSWALD ,2000:Involvementofsoilborne Phytophtora speciesinCentralEuropeanoakdeclineandtheeffectofsitefactorstothedisease, PlantPathology49,706718. KEHR ,R.,2004:WaldschutzGrundlagen/Pathologie,SkriptzurVorlesung,HAWK Hildesheim,Holzminden,Göttingen,FakultätRessourcenmanagement,66p.p. KNEBEL ,M.,2006:ZumNachweisder Phytophthora-KrankheitderErleimLeinetalbei Göttingen,Diplomarbeit,FakultätRessourcenmanagementGöttingen,53p.p. KNOPF ,H.E.,2002:QuercusilexLINNÉ,EnzyklopädiederHolzgewächse,Schütt, Schuck,Lang,Roloff(edit.),1994,Gesamtausgabe,Stand12/2006,28Erg.Lfg.7/ 02,14p.p. KLIEJUNAS ,J.T.andKO,W.H.,1976:Dispersalof Phytophtora cinnamomi ontheislandof Hawaii,Phytopathology66,457460.

LUQUE ,J.andGIBRAL ,J.,1989:Diebackofcorkoak( Quercus suber )inCatalonia(NE Spain)causedbyBotryoshaeriastevensii,Eur.J.For.Path.19,713. LUQUE ,J., COHEN ,M., SAVE ,R., BIEHL ,C.and I. F. ALVAREZ ,1999:Effectofthree fungalpathogensonwaterrelations,chlorophyllfluorescenceandgrowthof Quercus suber L.,Ann.For.Sci.56,1926. MAC DONALD ,J.D., 1994:Thesoilenvironment,inCAMPBELL ,C.L.andBENSON ,D.M., 1994,EpidemologyandManagementofRootDiseases,SpringerVerlag, Berlin/Heidelberg,344p.p. MARÇAIS ,B.,DUPUIS ,F.andDESPREZ LOUSTAU ,M.L.,1993:Influenceofwaterstresson susceptibilityofredoak( Quercus rubra )to Phytophthora cinnamomi ,Eur.J. For.Path.23,295305. MARX ,D.H.andDAVEY ,C.B.,1969:Theinfluenceofectotropicmycorrhizalfungionthe resistencetopathogenicinfections.III.Resistanceofasepticallyformed mycorrhizae toinfectionby Phytophthora cinnamomi ,Phytopathology59,549 558. MAUREL ,M., ROBIN ,C., CAPRON ,G.andM.L.DESPREZ LOUSTAU ,2001:Effectsofroot damageassociatedwith Phytophthora cinnamomi onwaterrelations,biomass accumulation,mineralnutritionandvulnerabilitytowaterdeficitoffiveoakand chestnutspecies,For.Path.31,353369. MINISTERIODA AGRICULTURA ,2006:DIRECÇÃO GERALDOS REÇURSOS FLORESTAIS , InventarioFlorestalNacional(20052006),Resultadospreliminares,Julio2006, slide25,PowerPointPresentation,33slides.

55

MINISTRODA AGRICULTURA,DESENVOLVIMENTO RURALE PESCAS ,2003: Programade DefesadosPovoamentosSuberícolas(PDPS),Lisboa,19.IX.2003. MINISTRYOF AGRICULTURE ,1995:PortugalCountryreporttotheFAOinternational technicalconferenceonplantgeneticresourcesinLeipzig1996,57p.p. MIRCETICH ,S.M.andZENTMYER ,G.A.,1966:Productionofoosporesandchlamydospores of Phytophthora cinnamomi inrootsandsoil,Phytopathol.56,10761078. MIRCETICH ,S.M.,ZENTMYER ,G.AandJ.B. KENDRICK ,1968:Physiologyofgermination of Phytophthora cinnamomi, Phytopathol.58,666671. MOREIRA ,A.C.andMARTINS ,J.M.S.,2005:Influenceofsitefactorsontheimpactof Phytophthora cinnamomi incorkoakstandsinPortugal,For.Path.35,Blackwell Verlag,Berlin,145162. MOREIRA ,A. C., MEDEIRA ,C., MAIA ,I., QUARTIN ,V., MATOS ,M. C.and., A. CRAVADOR , 2006:Studiesontheassociationofthe Quercus suber declinediseasewith Phytophthora cinnamomi inPortugal,Bol.Inf.CIDEU1,3138. MOREIRADA SILVA ,I.,2003:TheroleofprivateforestinPortugal;EuropeanForestry Funds,CriticalanalysisoftheirapplicationintheBaixoMinhoregion, NorthwesternPortugal,casestudies,IUCN,Forestlandscaperestorationinthe Mediteranean,7p.p. MÜHR ,B.,2007:KlimadiagrammBeja,internet7, http://www.klimadiagramme.de/Europa/beja.html 29.5.2007 OKLAHOMA STATE UNIVERSITY ,2007:HypoxylonCankerCausalAgent: Hypoxylon atropunctatum, H. mediterraneum ,internet5, http://www.entoplp.okstate.edu/ddd/diseases/hypoxylon.htm PATOČKA ,J., KRIŠTIN ,A., KULFAN ,J.andP. ZACH ,1999:DieEichenschädlingeundihre Feinde,InstitutfürWaldökologiederSlowakischenAkademiederWissenschaften, Zvolen,396p.p. PIMENTEL ,A.A.L.,1946:CorkoakisalsosusceptibletoPhytophtoracambivora(Petri) Buis,agentofthechestnutdisease,PublicaçãodaDirecçãoGeraldosServiços FlorestaiseAgrícolas13,4549. RAGAZZI ,A., MORICCA ,S.,andI. DELLAVALLE ,1997:Vegetativecompatibilityand pathogenicityof Diplodia mutila isolatesonoak,Eur.J.For.Path.27,391396. REUTER C.;2005: Phytophthora cinnamomi Rands;Pathogenprofilecreatedasa requirementforPP728–Soilborneplantpathogens,NCStateUniversity DepartmentofPlantPathology|2518GardnerHall,Raleigh,NC,internet3 http://www.cals.ncsu.edu/plantpath 28.11.2006

56

REYNOLDS ,K.M., BENSON ,D.M.andR.I. BRUCK ,1985:Epidemologyof Phytophthora rootrotofFraserfir:rizospherewidthandinoculumefficiency,Phytopathology75, 10101014. ROBIN ,C.,1992:Trunkinokulationsof Phytophthora cinnamomi inredoaks,Eur.J.For. Path.22,157165. ROSE ,S.A.,2005:PreliminaryEvaluationoftheImpactofForestFiresontheCorkOak (Quercus suber )oftheMonchiqueNatura2000Network,MasterThesis, Msc.EnvironmentalConservationManagement,UniversityofGlamorgam,99p.p. SCHWERDTFEGER ,F.1981:DieWaldkrankheiten,4.ed,PaulPareyVerlag,Hamburg/ Berlin,486p.p. SINCLAIR ,W.A. ,LYON ,H.H.andW.T. JOHNSON ,1987:Diseasesoftreesandshrubs, CornellUniversityPress,Ithaca/London. nd SINCLAIR ,W.A.and LYON ,H.H,2005,Diseasesoftreesandshrubs,2 edition,Cornell UniversityPress,Ithaca/London,p.122124. VANNINI ,AandMUGNOZZA ,G.S.,1991:Waterstress:Apredisposingfactorinthe pathogenesisof Hypoxylon mediterraneum on Quercus cerris ,Eur.J.For.Path. 21,193201. VANNINI ,A.,PAGANINI ,R.andN. ANSELMI ,1996a:Factorsaffectingdischargeand germinationofascosporesof Hypoxylon mediterraneum (DeNot)Mill.,Eur.J. For.Path.26,1224. VANNINI ,A.,VALENTINI ,R.andN. LUISI ,1996b:Impactofdroughtand Hypoxylon mediterraneum onoakdeclineintheMediterraneanregion,AnnSciFor53,753 760. VARELA ,M.C.,1995:Conservationofgeneticresourcesof Quercus suber inPortugal, Secondmeetingofthe Quercus suber network,Rome,Italy,913. VETTRAINO ,A. M., MOREL ,O., ROBIN ,C.andA. VANNINI ,2001:Inkdiseasedistribution onsweetchestnutinFranceandItalyand Phytophthora speciesassociated,internet 9, http://wwwscience.murdoch.edu.au/conf/phytophthora/abstractposters.html ,4.5.2007 VROT ,F.andGRENTE ,J.,1985:Recherched'unmoyendeluttebiologiquecontrela maladiedel'encreparutilisationdelasymbiosemycorhizienne,Eur.J.For.Path. 15,379383. ZENTMYER ,G.A.,1965:Bacterialstimulationofsporangiumproductionin Phytophthora cinnamomi ,Science150,11781179.

57

Maps MapIResearchareaandsamplepoints(basedonINSTITUTO GEOGRÁFICODO EXÉRCITO , 2006) MapIIDistributionoftreeswiththeirdamageclasses(basedonINSTITUTO GEOGRÁFICO DO EXÉRCITO ,2006)

Annexes

Annex1Fieldbook,reducedversion Annex2Crowndamageoncorkoak,ExtractIFNGuidelines,(DIRECÇÃO GERALDAS FLORESTAS ,1999,p.57) Annex3aSharesofexudationsbywatersproutpercentages Annex3bCorrelationofexudationsandwatersproutformation Annex4Correlationofexudationsanddeadbranchespercentage Annex5Shapesofexudations Annex6Correlationofexudationsanddamageclasses Annex7Significancetestforthetongueshapedandthemassiveexudations Annex8aSharesofvirgintreesbydamageclasses Annex8bResultsoftheexaminationsbytheBBA (BIOLOGISCHE BUNDESANSTALT ,2007) Annex9Selecteddatesofthetreesoutofdamageclasses4and5onthenorthernslope Annex10Damageclassesofthetreeswithina10metresrangeofthewaterlines Annex11Significancetestsforwatersproutanddeadbranchesshares Annex12Differenceinstandarddeviationbetweenwatersproutsanddeadbranchesin percent Annex13Informationflyer Annex14CDRom,containing DiplomeThesis FieldbookandcalculationscarriedoutinMicrosoftEXEL CompilationofPhotographs Digitalmapoftheresearcharea

58