What Is...A Motive?, Volume 51, Number 10

Total Page:16

File Type:pdf, Size:1020Kb

What Is...A Motive?, Volume 51, Number 10 ?WHAT IS... a Motive? Barry Mazur How much of the algebraic topology of a con- a more intricate setup to deal with: for one thing, nected finite simplicial complex X is captured by we don’t even have a cohomology theory with co- its one-dimensional cohomology? Specifically, how efficients in Z for varieties over a field k unless we much do you know about X when you know provide a homomorphism k → C, so that we can H1(X,Z) alone? form the topological space of complex points on For a (nearly tautological) answer, put GX := our variety and compute the cohomology groups the compact, connected abelian Lie group of that topological space. One perplexity here is (i.e., product of circles) which is the Pontrjagin that this cohomology construction may (and in 1 dual of the free abelian group H (X,Z) . Now general, does!) depend upon the imbedding k → C. 1 1 H (GX, Z) is canonically isomorphic to H (X,Z)= And, of course, there are fields k not admitting Hom(GX, R/Z) and there is a canonical homotopy embeddings into C. class of mappings In compensation, there is a profusion of differ- X −→ GX ent cohomology functors beyond the ones coming from classical algebraic topology via imbeddings 1 that induces the identity mapping on H . k → C. Some of these theories come dependent The answer: we know whatever information can upon the specific ground field k, with their specific be read off from GX and are ignorant of anything rings of coefficients, and with global requirements → that gets lost in the projection X GX. on the varieties for which they are defined. Some The theory of Eilenberg-Mac Lane spaces offers come with their own particular attendant structure us a somewhat analogous analysis of what we know and with their relations to all the other cohomol- and don’t know about X, when we equip ourselves ogy theories: Hodge cohomology, algebraic de Rham n with -dimensional cohomology, for any specific cohomology, crystalline cohomology, the étale -adic n, with specific coefficients. cohomology theories for each prime number , ... If we repeat our rhetorical question in the con- Is there some systematic and natural way of text of algebraic geometry, where the structure is encapsulating all this information about the somewhat richer, can we hope for a similar dis- n-dimensional cohomology of projective smooth cussion? varieties V (even just for n =1)? (The tradition In algebraic topology, the standard cohomol- has been to simplify things a bit by tensoring the ogy functor is uniquely characterized by the basic cohomology theories in question with Q before Eilenberg-Steenrod axioms in terms of a simple normalization (the value of the functor on a single asking this question.) point). In contrast, in algebraic geometry we have If you restrict your attention only to one- dimensional cohomology, things seem promising. Barry Mazur is professor of mathematics at Harvard Uni- For example, recall the construction that associates versity. His email address is [email protected]. to any smooth projective curve C over a field k its 1214 NOTICES OF THE AMS VOLUME 51, NUMBER 10 jacobian J(C), which is an abelian variety over k of draws its thematic material, playing it in a key, dimension equal to the genus of C. The group of major or minor, and a tempo all its own. points of J(C) over an algebraic closure of k con- Think of axiomatizing a cohomology theory1 in sists in the quotient group of divisors of degree zero algebraic geometry over a field k as a contravari- modulo divisors of zeroes-and-poles of rational ant functor V → H(V) from the category of smooth functions on C. The classical construction gives us projective varieties over k to a graded abelian cat- a clean functor, C → J(C), from the subcategory of egory H (where sets of morphisms between objects such curves to the additive category of abelian of H form Q-vector spaces) with all the properties varieties over k, preserving all 1-dimensional we expect. For example, we would want any cor- cohomological information. This is somewhat rem- respondence V → W (i.e., algebraic cycle in the iniscent of the passage X → GX described earlier, product V × W that can be viewed as the “graph” except for the fact that the target, J(C), is an abelian of a multivalued algebraic mapping) to induce, variety over k; it has a good deal more structure contravariantly, a mapping on cohomology. More- than the product of circles GX. over, we want our category H to be an adequate Generalizing this, there is a beautiful construc- receptacle for our cohomology theory, which should tion, due essentially to Albanese, that associates to enjoy the standard perquisites of the usual coho- an algebraic variety V of arbitrary dimension an mology theories, such as the Künneth formula and abelian variety A(V) over k. We might hope for Poincaré duality. something similar for higher dimensional coho- Grothendieck’s initial attempt to fashion a uni- mology, seeking some sort of algebraic geometric versal cohomology theory is elegant and cleanly version of Eilenberg-Mac Lane spaces to replace the straightforward. Start with the category of projec- abelian varieties (up to isogeny) that do the trick tive varieties and modify it in a formal, and most for dimension 1. But it’s not that simple. economical, manner to produce a category—one A strategy to encapsulate all the different co- hopes that it is abelian—that has all the cohomo- homology theories in algebraic geometry was logical properties one wants. There are three steps formulated initially by Alexandre Grothendieck, to this. First, change the morphisms of the category who is responsible for setting up much of this of projective varieties, replacing them by equiva- marvelous cohomological machinery in the first lence classes of Q-correspondences, where the place. Grothendieck sought a single theory that is equivalence relation is chosen to be the coarsest cohomological in nature that acts as a gateway be- one which, by the axioms of cohomology theory, tween algebraic geometry and the assortment of spe- can be seen to induce well-defined homomorphisms cial cohomological theories, such as the ones listed on cohomology. Second, augment the objects of the above—that acts as the motive behind all this category to make it look more like an abelian cat- cohomological apparatus. Here is his description: egory (formally deeming, for example, kernels and images of projectors as new objects of the category) Contrary to what occurs in ordinary and a category in which, for example, the Künneth topology, one finds oneself confronting formula can be formulated. Third, let H be the op- a disconcerting abundance of different posite category of what was constructed in step two. cohomological theories. One has the The natural contravariant functor from the category distinct impression (but in a sense that of smooth projective varieties to H will, by its de- remains vague) that each of these the- sign, factor through any particular cohomology ories “amount to the same thing”, that theory and therefore might be considered to be our they “give the same results”. In order to “theory of motives”. express this intuition, of the kinship of The first problem with any such construction is these different cohomological theories, its nonexplicit nature. Standing in the way of any I formulated the notion of “motive” as- explicit understanding of the category of motives sociated to an algebraic variety. By this is a constellation of conjectures that offer coho- term, I want to suggest that it is the mological criteria for existence of correspondences “common motive” (or “common rea- and, more generally, for the existence of algebraic son”) behind this multitude of coho- cycles (e.g., versions of Hodge conjectures over C mological invariants attached to an and/or conjectures of Tate over finite fields). Any algebraic variety, or indeed, behind all concrete realization of the projected theory of mo- cohomological invariants that are a tives—even in some limited context—seems to bear priori possible. [G] directly upon these standard conjectures, and vice versa. Grothendieck goes on, in that text, [G], to work out a musical analogy, referring to the motivic co- 1Compare the notions of a geometric cohomology theory homology he desires to set up as the basic motif in [M] and the slightly more restricted version of this, from which each particular cohomology theory called a Weil cohomology theory, in [K]. NOVEMBER 2004 NOTICES OF THE AMS 1215 The dream, then, is of getting a fairly usable de- scription of the universal cohomological functor, V → H(V) ∈H, with H a very concretely described category. At its best, we might hope for a theory that carries forward the successes of the classical theory of 1-dimensional cohomology as embodied in the theory of the jacobian of curves, and as concretized by the theory of abelian varieties, to treat coho- mology of all dimensions. Equally important, just as in the theory of group representations where the irreducible representations play a primal role and have their own “logic”, we might hope for a similar denouement here and study direct sum decompositions in this category of motives, relat- ing H(V) to irreducible motives, representing cohomological pieces of algebraic varieties, perhaps isolatable by correspondences, each of which might be analyzed separately. Recently, the work of Vladimir Voevodsky and his collaborators have provided us with a very in- teresting candidate-category of motives: a cate- gory (of sheaves relative to an extraordinarily fine Grothendieck-style topology on the category of schemes) which in some intuitive sense “softens algebraic geometry” so as to allow for a good notion of homotopy in an algebro-geometric setup and is sufficiently directly connected to con- crete algebraic geometry to have already yielded some extraordinary applications.
Recommended publications
  • Noncommutative Counterparts of Celebrated Conjectures
    NONCOMMUTATIVE COUNTERPARTS OF CELEBRATED CONJECTURES GONC¸ALO TABUADA Abstract. In this survey, written for the proceedings of the conference K- theory in algebra, analysis and topology, Buenos Aires, Argentina (satellite event of the ICM 2018), we give a rigorous overview of the noncommuta- tive counterparts of some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, Kimura, Schur, and others. Contents Introduction1 1. Celebrated conjectures1 2. Noncommutative counterparts5 3. Applications to commutative geometry 10 4. Applications to noncommutative geometry 17 References 21 Introduction Some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, Kimura, Schur, and others, were recently extended from the realm of alge- braic geometry to the broad noncommutative setting of differential graded (=dg) categories. This noncommutative viewpoint led to a proof of these celebrated con- jectures in several new cases. Moreover, it enabled a proof of the noncommutative counterparts of the celebrated conjectures in many interesting cases. The purpose of this survey, written for a broad mathematical audience, is to give a rigorous overview of these recent developments. Notations. Given a perfect base field k of characteristic p > 0, we will write W (k) for its ring of p-typical Witt vectors and K := W (k)1=p for the fraction field of W (k). For example, when k = Fp, we have W (k) = Zp and K = Qp. 1. Celebrated conjectures In this section, we briefly recall some celebrated conjectures of Grothendieck, Voevodsky, Beilinson, Weil, Tate, Parshin, and Kimura (concerning smooth proper schemes), as well as a conjecture of Schur (concerning smooth schemes). Date: January 14, 2019.
    [Show full text]
  • Cycle Classes in Overconvergent Rigid Cohomology and a Semistable
    CYCLE CLASSES IN OVERCONVERGENT RIGID COHOMOLOGY AND A SEMISTABLE LEFSCHETZ (1, 1) THEOREM CHRISTOPHER LAZDA AND AMBRUS PAL´ ABSTRACT. In this article we prove a semistable version of the variational Tate conjecture for divisors in crystalline cohomology, showing that for k a perfect field of characteristic p, a rational (logarithmic) line bundle on the special fibre of a semistable scheme over kJtK lifts to the total space if and only if its first Chern class does. The proof is elementary, using standard properties of the logarithmic de Rham–Witt complex. As a corollary, we deduce similar algebraicity lifting results for cohomology classes on varieties over global function fields. Finally, we give a counter example to show that the variational Tate conjecture for divisors cannot hold with Qp-coefficients. CONTENTS Introduction 1 1. Cycle class maps in overconvergentrigid cohomology 3 2. Preliminaries on the de Rham–Witt complex 4 3. Morrow’s variational Tate conjecture for divisors 9 4. A semistable variational Tate conjecture for divisors 12 5. Global results 15 6. A counter-example 16 References 19 INTRODUCTION Many of the deepest conjectures in arithmetic and algebraic geometry concern the existence of algebraic cycles on varieties with certain properties. For example, the Hodge and Tate conjectures state, roughly speaking, that on smooth and projective varieties over C (Hodge) or finitely generated fields (Tate) every cohomologyclass which ‘looks like’ the class of a cycle is indeed so. One can also pose variationalforms of arXiv:1701.05017v2 [math.AG] 25 Feb 2019 these conjectures, giving conditions for extending algebraic classes from one fibre of a smooth, projective morphism f : X → S to the whole space.
    [Show full text]
  • A Variational Tate Conjecture in Crystalline Cohomology
    A Variational Tate Conjecture in crystalline cohomology Matthew Morrow Abstract Given a smooth, proper family of varieties in characteristic p > 0, and a cycle z on a fibre of the family, we consider a Variational Tate Conjecture characterising, in terms of the crystalline cycle class of z, whether z extends cohomologically to the entire family. This is a characteristic p analogue of Grothendieck’s Variational Hodge Conjecture. We prove the conjecture for divisors, and an infinitesimal variant of the conjecture for cycles of higher codimension. This can be used to reduce the ℓ-adic Tate conjecture for divisors over finite fields to the case of surfaces. Contents 0 Introduction and statement of main results 1 1 Conjecture 0.1 5 2 Crystalline Th´eor`eme de la Partie Fixe 9 3 Local and infinitesimal forms of Conjecture 0.1 14 3.1 Some remarks on crystalline cohomology . ..... 14 3.2 Proofs of Theorems 0.5 and 0.6 via topological cyclic homology . 15 3.3 Cohomologically flat families over k[[t]] and Artin’s theorem . 22 4 An application to the Tate conjecture 24 0 Introduction and statement of main results arXiv:1408.6783v2 [math.AG] 25 Mar 2015 Let f : X → S be a smooth, proper morphism of smooth varieties over a field k, and let s ∈ S be a closed point. Grothendieck’s Variational Hodge or ℓ-adic Tate Conjecture [25, pg. 359] gives conditions on the cohomology class of an algebraic cycle on Xs under which the cycle conjecturally extends cohomologically to the entire family X. According as k has characteristic 0 or p > 0, the cohomology theory used to formulate Grothendieck’s conjecture is de Rham or ℓ-adic ´etale (ℓ 6= p).
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Arithmetic and Differential Galois Groups
    Mathematisches Forschungsinstitut Oberwolfach Report No. 26/2007 Arithmetic and Differential Galois Groups Organised by David Harbater (Philadelphia) B. Heinrich Matzat (Heidelberg) Marius van der Put (Groningen) Leila Schneps (Paris) May 13th – May 19th, 2007 Abstract. Galois theory is the study of symmetries in solution spaces of polynomial and differential equations and more generally of the relation be- tween automorphism groups (or group schemes respectively) and the struc- ture of algebraic and differential extensions. The lectures of this workshop were focused around the following five main topics: the absolute Galois group GQ and the Grothendieck-Teichm¨uller group, ´etale fundamental groups and the anabelian conjecture, arithmetic Galois realizations and constructive Langlands program, local and global differential modules and the p-curvature conjecture, as well as Galois theory for nonlinear and partial differential equa- tions. Mathematics Subject Classification (2000): 12Fxx,12Gxx,12Hxx, (13Nxx,14Lxx,34Gxx). Introduction by the Organisers Galois theory is the study of symmetries in solution spaces of polynomial and differential equations and more generally of the relation between automorphism groups (or group schemes) and the structure of algebraic and differential exten- sions. Many of the important problems in this area are connected to the classification of (algebraic or differential) Galois extensions and the study of the respective fundamental groups, e. g. via inverse problems. Other interesting points are the direct problem, i. e., the computation of (ordinary or differential) Galois groups, and related constructive aspects. This workshop gave an overview on some important new results and develop- ments. A second goal was the discussion of ideas for proving some open questions and conjectures as well as of new directions of research.
    [Show full text]
  • Holonomic D-Modules and Positive Characteristic
    Japan. J. Math. 4, 1–25 (2009) DOI: 10.1007/s11537-009-0852-x Holonomic -modules and positive characteristic Maxim Kontsevich Received: 8 December 2008 / Revised: 6 January 2009 / Accepted: 11 February 2009 Published online: ????? c The Mathematical Society of Japan and Springer 2009 Communicated by: Toshiyuki Kobayashi Abstract. We discuss a hypothetical correspondence between holonomic -modules on an al- gebraic variety X defined over a field of zero characteristic, and certain families of Lagrangian subvarieties in the cotangent bundle to X. The correspondence is based on the reduction to posi- tive characteristic. Keywords and phrases: rings of differential operators and their modules, characteristic p methods Mathematics Subject Classification (2000): 13N10, 13A35 1. Quantization and -modules 1.1. Quantization Let us recall the heuristic dictionary of quantization. symplectic C∞-manifold (Y,ω) ←→ complex Hilbert space H complex-valued functions on Y ←→ operators in H Lagrangian submanifolds L ⊂ Y ←→ vectors v ∈ H In the basic example of the cotangent bundle Y = T ∗X the space H is L2(X), functions on Y which are polynomial along fibers of the projection Y = T ∗X → X correspond to differential operators, and with the Lagrangian manifold L ⊂ Y This article is based on the 5th Takagi Lectures that the author delivered at the University of Tokyo on October 4 and 5, 2008. M. KONTSEVICH Institut des Hautes Etudes´ Scientifiques, 35 route de Chartres, Bures-sur-Yvette 91440, France (e-mail: [email protected]) 2 M. Kontsevich of the form L = graphdF for some function F ∈ C∞(Y) we associate (approxi- mately) vector exp(iF/) where → 0 is a small parameter (“Planck constant”).
    [Show full text]
  • Introduction to Motives
    Introduction to motives Sujatha Ramdorai and Jorge Plazas With an appendix by Matilde Marcolli Abstract. This article is based on the lectures of the same tittle given by the first author during the instructional workshop of the program \number theory and physics" at ESI Vienna during March 2009. An account of the topics treated during the lectures can be found in [24] where the categorical aspects of the theory are stressed. Although naturally overlapping, these two independent articles serve as complements to each other. In the present article we focus on the construction of the category of pure motives starting from the category of smooth projective varieties. The necessary preliminary material is discussed. Early accounts of the theory were given in Manin [21] and Kleiman [19], the material presented here reflects to some extent their treatment of the main aspects of the theory. We also survey the theory of endomotives developed in [5], this provides a link between the theory of motives and tools from quantum statistical mechanics which play an important role in results connecting number theory and noncommutative geometry. An extended appendix (by Matilde Marcolli) further elaborates these ideas and reviews the role of motives in noncommutative geometry. Introduction Various cohomology theories play a central role in algebraic geometry, these co- homology theories share common properties and can in some cases be related by specific comparison morphisms. A cohomology theory with coefficients in a ring R is given by a contra-variant functor H from the category of algebraic varieties over a field k to the category of graded R-algebras (or more generally to a R-linear tensor category).
    [Show full text]
  • A Course on the Weil Conjectures
    A course on the Weil conjectures Tam´asSzamuely Notes by Davide Lombardo Contents 1 Introduction to the Weil conjectures 2 1.1 Statement of the Weil conjectures . .4 1.2 A bit of history . .5 1.3 Grothendieck's proof of Conjectures 1.3 and 1.5 . .6 1.3.1 Proof of Conjecture 1.3 . .6 1.3.2 Proof of Conjecture 1.5 . .8 2 Diagonal hypersurfaces 9 2.1 Gauss & Jacobi sums . 10 2.2 Proof of the Riemann hypothesis for the Fermat curve . 12 3 A primer on ´etalecohomology 14 3.1 How to define a good cohomology theory for schemes . 14 3.1.1 Examples . 15 3.2 Comparison of ´etalecohomology with other cohomology theories . 15 3.3 Stalks of an ´etalesheaf . 16 3.4 Cohomology groups with coefficients in rings of characteristic 0 . 16 3.5 Operations on sheaves . 17 3.6 Cohomology with compact support . 18 3.7 Three basic theorems . 18 3.8 Conjecture 1.11: connection with topology . 19 4 Deligne's integrality theorem 20 4.1 Generalised zeta functions . 20 4.2 The integrality theorem . 21 4.3 An application: Esnault's theorem . 22 4.3.1 Cohomology with support in a closed subscheme . 23 4.3.2 Cycle map . 24 4.3.3 Correspondences . 25 4.3.4 Bloch's lemma . 25 4.3.5 Proof of Theorem 4.11 . 26 5 Katz's proof of the Riemann Hypothesis for hypersurfaces 27 5.1 Reminder on the arithmetic fundamental group . 29 5.2 Katz's proof . 30 1 6 Deligne's original proof of the Riemann Hypothesis 31 6.1 Reductions in the proof of the Weil Conjectures .
    [Show full text]
  • P-ADIC ÉTALE COHOMOLOGY AND
    p-ADIC ETALE´ COHOMOLOGY AND CRYSTALLINE COHOMOLOGY FOR OPEN VARIETIES GO YAMASHITA Contents 1. Introduction 2 2. The main theorems of p-adic Hodge theory 3 3. The main results 7 References 10 This text is a report of a talk “p-adic ´etalecohomology and crystalline cohomology for open varieties” in the symposium “Hodge Theory and Algebraic Geometry” (7-11/Oct/2002 at Hokkaido University). It seemed that more algebraic geometers rather than arithmeti- cians participated in this symposium. Thus, in that talk, the auther began with an in- troduction to the p-adic Hodge theory in the view of the theory of p-adic representations. However, in this report, we do not treat the theory of p-adic representations, and we treat only a review of the main theorems and the main results. The aim of the talk was, roughly speaking, “to extend the main theorems of p-adic Hodge theory for open varieties” by the method of Fontaine-Messing-Kato-Tsuji (see [FM],[Ka2], and [Tsu1]). Here, the main theorems of p-adic Hodge theory are: the Hodge-Tate con- jecture (CHT for short), the de Rham conjecture (CdR), the crystalline conjecture (Ccrys), the semi-stabele conjecture (Cst), and the potentially semi-stable conjecture (Cpst). The theorems CdR, Ccrys, and Cst are called the “comparison theorems”. The section 1 is an introduction to the p-adic Hodge theory. In the section 2, we review the main theorems of the p-adic Hodge theory. In the section 3, we state the main results. In this report, we only announce the main results.
    [Show full text]
  • [Math.AG] 5 Oct 2001 Eddc Htteeaehdewt Seterm10.1)
    EXOTIC TORSION, FROBENIUS SPLITTING AND THE SLOPE SPECTRAL SEQUENCE KIRTI JOSHI Contents 1. Introduction 1 2. Frobenius split varieties 2 3. The slope spectral sequence 3 4. Dominoes and Ekedahl’s duality 3 5. A finiteness result 4 6. On the slope spectral sequence of threefolds 5 7. Exotic Torsion 6 8. Ordinarity of the Albanese Scheme 8 9. Liftings to W2; Hodge-de Rham spectral sequence 9 10. Unirational and Fano Threefolds 9 11. Coda: Chow groups and Abel-Jacobi mappings 10 References 12 1. Introduction In this paper we continue our investigations on some questions of V. B. Mehta on the crystalline aspects of Frobenius splitting which were begun in [12]. In response to a question of Mehta, we show that any F -split smooth projec- tive threefold is Hodge-Witt (see Theorem 6.2). After the first draft of this paper and [12] were written, Rajan and the author showed that there exist arXiv:math/0110069v1 [math.AG] 5 Oct 2001 examples of Frobenius split varieties which are not ordinary in the sense of Bloch-Kato-Illusie-Raynaud (see [3], [11]) and if the dimension is bigger than four then these examples are not even Hodge-Witt (these examples are now included in [12]). Thus the result of Theorem 6.2 on the Hodge-Witt prop- erty of Frobenius split threefolds is best possible. Frobenius split surfaces are ordinary (see [12]) and hence Hodge-Witt. The method of proof uses [11] and [6] to extract an explicit criterion for the degeneration of the slope spec- tral sequence of any smooth projective threefold (see Theorem 6.1).
    [Show full text]
  • Arxiv:2104.13448V1 [Math.NT] 27 Apr 2021 DMS-1440140
    ON THE COHOMOLOGY OF p-ADIC ANALYTIC SPACES, I: THE BASIC COMPARISON THEOREM. PIERRE COLMEZ AND WIESŁAWA NIZIOŁ Abstract. The purpose of this paper is to prove a basic p-adic comparison theorem for smooth rigid analytic and dagger varieties over the algebraic closure C of a p-adic field: p-adic pro-étale cohomology, + in a stable range, can be expressed as a filtered Frobenius eigenspace of de Rham cohomology (over BdR). The key computation is the passage from absolute crystalline cohomology to Hyodo-Kato cohomology and the construction of the related Hyodo-Kato isomorphism. We also “geometrize” our comparison theorem by turning p-adic pro-étale and syntomic cohomologies into sheaves on the category PerfC of perfectoid spaces over C (this geometrization will be crucial in our proof of the Cst-conjecture in the sequel to this paper). Contents 1. Introduction 2 1.1. Main results 2 1.2. Proof of Theorems 1.1 and 1.3 4 2. Hyodo-Kato rigidity revisited 7 2.1. Preliminaries 7 2.2. Hyodo-Kato rigidity 11 2.3. Geometric absolute crystalline cohomology and Hyodo-Katocohomology 14 + 3. BdR-cohomology 19 3.1. CliffsNotes 19 3.2. Geometric crystalline cohomology 24 + 3.3. Rigid analytic BdR-cohomology 25 + 3.4. Overconvergent BdR-cohomology 30 4. Geometric Hyodo-Kato morphisms 33 4.1. Rigid analytic setting 33 4.2. The overconvergent setting 35 5. Overconvergent geometric syntomic cohomology 43 arXiv:2104.13448v1 [math.NT] 27 Apr 2021 5.1. Local-global compatibility for rigid analytic geometric syntomic cohomology 43 5.2. Twisted Hyodo-Kato cohomology 44 + 5.3.
    [Show full text]
  • A Stacky Approach to Crystals
    A STACKY APPROACH TO CRYSTALS VLADIMIR DRINFELD Abstract. Inspired by a theorem of Bhatt-Morrow-Scholze, we develop a stacky approach to crystals and isocrystals on “Frobenius-smooth” schemes over Fp . This class of schemes goes back to Berthelot-Messing and contains all smooth schemes over perfect fields of char- acteristic p. To treat isocrystals, we prove some descent theorems for sheaves of Banachian modules, which could be interesting in their own right. 1. Introduction Fix a prime p. 1.1. A theorem of Bhatt-Morrow-Scholze. Let X be a smooth scheme over a perfect field k of characteristic p. Let Xperf be the perfection of X, i.e., X := lim(... −→Fr X −→Fr X −→Fr X). perf ←− Let W (Xperf ) be the p-adic formal scheme whose underlying topological space is that of Xperf (or of X) and whose structure sheaf is obtained by applying to OXperf the functor of p-typical Witt vectors. Theorem 1.10 of [BMS] can be reformulated as a canonical isomorphism RΓcris(X, O)= RΓ(W (Xperf)/G , O), where G is a certain flat affine groupoid (in the category of p-adic formal schemes) acting 1 on W (Xperf), and W (Xperf)/G is the quotient stack . If X is affine this gives an explicit complex computing RΓcris(X, O) (the complex is constructed using the nerve of G ). arXiv:1810.11853v1 [math.AG] 28 Oct 2018 One can define G to be the unique groupoid acting on W (Xperf ) such that the morphism G → W (Xperf ) × W (Xperf ) is obtained by taking the divided power envelope of the ideal of the closed subscheme Xperf ×X Xperf ⊂ W (Xperf ) × W (Xperf ).
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Non-Archimedean
    Mathematisches Forschungsinstitut Oberwolfach Report No. 57/2015 DOI: 10.4171/OWR/2015/57 Non-Archimedean Geometry and Applications Organised by Vladimir Berkovich, Rehovot Walter Gubler, Regensburg Peter Schneider, M¨unster Annette Werner, Frankfurt 13 December – 19 December 2015 Abstract. The workshop focused on recent developments in non-Archi- medean analytic geometry with various applications to other fields, in partic- ular to number theory and algebraic geometry. These applications included Mirror Symmetry, the Langlands program, p-adic Hodge theory, tropical ge- ometry, resolution of singularities and the geometry of moduli spaces. Much emphasis was put on making the list of talks to reflect this diversity, thereby fostering the mutual inspiration which comes from such interactions. Mathematics Subject Classification (2010): 03 C 98, 11 G 20, 11 G 25, 14 F 20, 14 G 20, 14 G 22, 32 P 05. Introduction by the Organisers The workshop on Non-Archimedean Analytic Geometry and Applications, or- ganized by Vladimir Berkovich (Rehovot), Walter Gubler (Regensburg), Peter Schneider (M¨unster) and Annette Werner (Frankfurt) had 53 participants. Non- Archimedean analytic geometry is a central area of arithmetic geometry. The first analytic spaces over fields with a non-Archimedean absolute value were introduced by John Tate and explored by many other mathematicians. They have found nu- merous applications to problems in number theory and algebraic geometry. In the 1990s, Vladimir Berkovich initiated a different approach to non-Archimedean an- alytic geometry, providing spaces with good topological properties which behave similarly as complex analytic spaces. Independently, Roland Huber developed a similar theory of adic spaces. Recently, Peter Scholze has introduced perfectoid 3272 Oberwolfach Report 57/2015 spaces as a ground breaking new tool to attack deep problems in p-adic Hodge theory and representation theory.
    [Show full text]