Multiple Generations on Video Tape Recorders

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Generations on Video Tape Recorders 1 DOCUMENT RESUME EM 000 327 ED 022 369 By- Wiens, Jacob H. MULTIPLE GENERATIONS ON VIDEOTAPE RECORDERS. and School LibraryEducation. California State Dept. of Education,Sacramento. Bureau of Audio-Visual Spons Agency-Office of Education(DHEW), Washington, D.C. Repor t No- ESEA -5; NDEA -3 Pub Date 68 Note-43p. EDRS Price MF -S025 HC-S1.80 EVALUATION, EQUIPMENTMAINTENANCE, Descriptors-COSTS, EDUCATIONALEQUIPMENT, *EQUIPMENT DESIGN, *VIDEO TAPERECORDINGS EQUOvENT STAMARDS,*EXPERIMENTS, RESEARCH 6401, Sony EV200, Sony Identifiers-Ampex VR6000, AmpexVR7000, Ampex VR7500,Concord VTR600, Craig PV120U, Sony SV300, WollensalcVTR150 recorders were testedfor their dubbingcharacteristics Helical scan video tape two in order tomake selection dataavailable to mediapersonnel. The equipment, by the manufacturers.The test was recorders of each typetested, was submitted of a single tape, designed to producequality evaluationsfor three generations levels of probable use inthe school situation.The experiment thereby encompassing all playing the recording tested four conditions:making a recordingand playing it back; making a copy of therecording and playing itback; and back on a second machine; in the study making a recording ofthe copy and playing itback. This representation waveform monitor, whichhas meaning forthe appears in twoforms: on the standard For each engineer; and on apicture monitor,which has meaning tothe media specialist. conditions, still photographsof the waveformoscilloscope of the four experimental performance and for image and the picturemonitor image weremade to analyze the recorders studieddetermine reproduction in the report.Various design elements in of their value for various uses.The conclusion is thatthere are three groupings quality and price range.When the intended usehas been recorders based on picture from one of the determined, the appropriategrade of machine maythen be selected groups.(PIT) 0 0 U I 0? 0 ocsrir =op iFteE3or a 0 CALIFORNIA STATEDEPARTMENT OF EDUCATION SUPERINTENDENT OFPUBLIC INSTRUCTION MAX RAFFERTY 1968 SACRAMENTO U.S. DEPARTMENT Of HEALTH, EDUCATION & WELFARE OFFICE Of EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS Of VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE Of EDUCATION POSITION OR POLICY. MULTIPLE GENERATIONS ON VIDEOTAPE RECORDERS 0 Prepared by Jacob H. Wiens Director, College of the Air College of San Mateo For the Bureau of Audio-Visual and SchoolLibrary Education California State Department of Education This manuscript was prepared under Standard Agreement No. 3404 by Wiens Electronics Laboratories 130 Crest Road Woodside, California It was reproduced with NDEA, Title III, and ESEA, Title V funds. PREFACE the dubbing characteristics The purpose of thisstudy was to investigate personnel may have of helical scan video tapedevices so that media make more graphically presented dataavailable to allow them to The representa- realistic appraisals ofmachines underconsideration. which has meaning tion in this study is on astandard waveform monitor which has more meaning tothe to engineersand on a picture monitor reproduced electricalcharacteris- media specialist. In the former, the visual or pictorial tics are represented;and in the latter, a representation is presented. by the manufacturers The equipment examined wasvoluntarily submitted invited to supervise thetests and for testing.Their engineers were to assure thatthe equipment wasfunctioning properly. for by the StateDepartment of The tests on themachines were arranged National Defense Education Education and werefunded in part by the should be made for thework of the team Act. Special acknowledgments the tests under the of electronicsspecialists which conducted Audio-Visual and SchoolLibrary direction of Guy M.Helmke, Bureau ot of Dr. Jacob H. Wiens,Director of Education. The team was composed Chief Engineer, KCSM-TV; the College of theAir; Francis J. Morgan, from the College of and Walter C. Nichol,Technician, KCSM-TV; all this report do San Mateo, San Mateo,California. The conclusions of recommendations of anyState not necessarilyreflect the official agency Harry J. Skelly,Chief Donald E. Kitch Bureau of Audio-Visualand Acting Chief Education Division of Instruction School Library Preface Introduction 1 Helical Scan Tape Recorders 1 Video Quality Test 2 The Test Procedure 3 The Test Sony EV-200 6 Sony SV-300 9 Sony PV-120-U 11 Ampex VR-7500 13 Ampex VR-7000 17 Ampex VR-6000 20 Wollensak VTR-150 22 Concord VTR-600 25 Craig 6401 28 Equipment Reliability 31 Tape Guides 31 Cleanliness 32 Cleaning Solution 32 Tape Tension 33 Tape Interchangeability 33 Standard Tape Format 33 Tape Costs 34 Gre lings Among Tape Recorders 34 Video Tape Recorders Tested 36 Test Equipment Used 37 Multiple Generations on Video Tape Recorders Introduction Video tape recorders have now become an integral part of oureducation program. The video tape recorder makes it possible to record material for review and instruction, as well as.to provide the means for storing instructional material for subsequent playback. Ideally, the video tape recorder should be capable of playingback the recorded material without degradation. This means that the picture as viewed on a picture monitor on playback would be as good as the original picture. The state of the art has advanced to the point where it is physically possible with the highest quality equipment to produce a recorded picture that cannot be distinguished by the eye from the original picture. The cost of this equipment, however, is high and, the atten- tion of many school administrators is focused upon the less expensive and more portable helical scan type of video tape recorder. Moreover, in addition to making ehe initial video tape, educators see a need to make copies of tapes. Any deterioration of picture quality in the process of recording and playing back will have a negative effect on the final product. It is hoped that this test may serve as an aid in determining whichof the helical scan video tape recorders present capabilities which promise to fulfill the planned needs of educational programs. Helical Scan Tape Recorders The equipment investigated and studied in this report is limited to the helical scan type video tape recorder. In the helical scan machine, the signal is laid down on a slant across the video tapl. The industry is currently producing helical scan video tape recorders in the two- inch, one-inch, and half-inch format. The two-inch format machine tested in this series is the Sony PV-120-U. A large number of mechanical configurations are used to make contact between the video tape and the recording head. A simple configuration uses a 1800 tape-wrap and two recording heads so that one head is constantly in contact with the video tape. This configuration requires a head switching assembly thatcomplicates the mechanical adjustment. In another configuration, the tape wraps entirely around the drum of the head using a conical wrap. This is sometimes referred to as an alpha wrap because of its similarity to the Greek letteT a. The alpha- wrap machines generally employ asingle head. The most common tape configuration, the omega wrap, uses a wrap which makes a loop around the head very similar to the Greek letter "omega" fl. This type of machine usually uses a single head. encountered machines isthe difficulty fault in allhelical scan impossible A common track to thenext. It is virtually in switchingfrom one slant from ehe endof one with ehe headin passing to maintaintape contact is easily next line. This difficulty line to thebeginning of the in whichehe configuration inthe omega wrap observed fromthe tape in passingthrough of contactwith the tape head iscompletely out In the AmpexVR-7000 of the tapetraverse. the smallbottom segment lines aremissing approximately eightfull video series, forinstance, 57. with the tape, seeFigures 55 and due to lossof head contact with thevideo machine thehead loses contact Since in thehelical scan reproduced bythe of time, no syncpulses are tape for asmall segment time, themonitor or this timeinterval. During this of recorder for by virtueof the behavior to afree-running state receiver reverts When the syncpulses are again oscillator circuit. period of time the horizontal oscillator huntsfor a short transmitted, thehorizontal time is a the syncpulses. The recovery before againlocking with oscillator drivecircuit of thehorizontal function of thetime constant involved. and differswith thecircuitry of the local pulses and thesubsequent hunting The momentaryloss of sync the videopicture results in adisplacement of horizontal oscillator video picture, in the upperportion of the and sometimesin a "hook" depends uponthe dura- of thisdistortion see Figure53. The severity adjustment onthe video pulses, thetension tion of theabsence of sync tape, andehe electroniccircuitry. the videopicture is drop-out withrespect to The locationof the head to occur near drop-out in allmachines is made important. The head is justbefore pulses and themostfavorable location the vertical sync With the headdrop-out located of vertical syncpulses. oscillator has the the series the horizontal point in thetime sequence, information of the at this the firstpicture longest time tostabilize before next fieldis reproduced. phenomenon is animportant head drop-out The problempresented by the head-to-tape material. The loss of one inmaking copiesof the video time material shouldfall at the same contact onehe re-recorded
Recommended publications
  • Introduction to Digitization
    IntroductionIntroduction toto Digitization:Digitization: AnAn OverviewOverview JulyJuly 1616thth 2008,2008, FISFIS 2308H2308H AndreaAndrea KosavicKosavic DigitalDigital InitiativesInitiatives Librarian,Librarian, YorkYork UniversityUniversity IntroductionIntroduction toto DigitizationDigitization DigitizationDigitization inin contextcontext WhyWhy digitize?digitize? DigitizationDigitization challengeschallenges DigitizationDigitization ofof imagesimages DigitizationDigitization ofof audioaudio DigitizationDigitization ofof movingmoving imagesimages MetadataMetadata TheThe InuitInuit throughthrough MoravianMoravian EyesEyes DigitizationDigitization inin ContextContext http://www.jisc.ac.uk/media/documents/programmes/preservation/moving_images_and_sound_archiving_study1.pdf WhyWhy Digitize?Digitize? ObsolescenceObsolescence ofof sourcesource devicesdevices (for(for audioaudio andand movingmoving images)images) ContentContent unlockedunlocked fromfrom aa fragilefragile storagestorage andand deliverydelivery formatformat MoreMore convenientconvenient toto deliverdeliver MoreMore easilyeasily accessibleaccessible toto usersusers DoDo notnot dependdepend onon sourcesource devicedevice forfor accessaccess MediaMedia hashas aa limitedlimited lifelife spanspan DigitizationDigitization limitslimits thethe useuse andand handlinghandling ofof originalsoriginals WhyWhy Digitize?Digitize? DigitizedDigitized itemsitems moremore easyeasy toto handlehandle andand manipulatemanipulate DigitalDigital contentcontent cancan bebe copiedcopied
    [Show full text]
  • The Broadcast Flag: Compatible with Copyright Law & Incompatible with Digital Media Consumers
    607 THE BROADCAST FLAG: COMPATIBLE WITH COPYRIGHT LAW & INCOMPATIBLE WITH DIGITAL MEDIA CONSUMERS ANDREW W. BAGLEY* & JUSTIN S. BROWN** I. INTRODUCTION Is it illegal to make a high-quality recording of your favorite TV show using your Sony digital video recorder with your Panasonic TV, which you then edit on your Dell computer for use on your Apple iPod? Of course it’s legal, but is it possible to use devices from multiple brands together to accomplish your digital media goal? Yes, well, at least for now. What if the scenario involved high-definition television (“HDTV”) devices? Would the answers be as clear? Not as long as digital-content protection schemes like the Broadcast Flag are implemented. Digital media and Internet connectivity have revolutionized consumer entertainment experiences by offering high-quality portable content.1 Yet these attractive formats also are fueling a copyright infringement onslaught through a proliferation of unauthorized Internet piracy via peer-to-peer (“P2P”) networks.2 As a result, lawmakers,3 administrative agencies,4 and courts5 are confronted * Candidate for J.D., University of Miami School of Law, 2009; M.A. Mass Communication, University of Florida, 2006; B.A. Political Science, University of Florida, 2005; B.S. Public Relations, University of Florida, 2005 ** Assistant Professor of Telecommunication, University of Florida; Ph.D. Mass Communica- tions, The Pennsylvania State University, 2001 1 Andrew Keen, Web 2.0: The Second Generation of the Internet has Arrived. It's Worse Than You Think, WEEKLY STANDARD, Feb. 13, 2006, http://www.weeklystandard.com/ Con- tent/Public/Articles/000/000/006/714fjczq.asp (last visited Jan.
    [Show full text]
  • EMERGENCY REGULATION TEXT Patient Electronic Property
    DEPARTMENT OF STATE HOSPITALS EMERGENCY REGULATION TEXT Patient Electronic Property California Code of Regulations Title 9. Rehabilitative and Developmental Services Division 1. Department of Mental Health Chapter 16. State Hospital Operations Article 3. Safety and Security Amend section 4350, title 9, California Code of Regulations to read as follows: [Note: Set forth is the amendments to the proposed emergency regulatory language. The amendments are shown in underline to indicate additions and strikeout to indicate deletions from the existing regulatory text.] § 4350. Contraband Electronic Devices with Communication and Internet Capabilities. (a) Except as provided in subsection (d), patients are prohibited from having personal access to, possession, or on-site storage of the following items: (1) Electronic devices with the capability to connect to a wired (for example, Ethernet, Plain Old Telephone Service (POTS), Fiber Optic) and/or a wireless (for example, Bluetooth, Cellular, Wi-Fi [802.11a/b/g/n], WiMAX) communications network to send and/or receive information including, but not limited to, the following: (A) Desktop computers; laptop computers; tablets; single-board computers or motherboards such as “Raspberry Pi;” cellular or satellite phones; personal digital assistant (PDA); graphing calculators; and satellite, shortwave, CB and GPS radios. (B) Devices without native capabilities that can be modified for network communication. The modification may or may not be supported by the product vendor and may be a hardware and/or software configuration change. (2) Digital media recording devices, including but not limited to CD, DVD, Blu-Ray burners. Page 2 (3) Voice or visual recording devices in any format. (4) Items capable of patient-accessible memory storage, including but not limited to: (A) Any device capable of accessible digital memory or remote memory access.
    [Show full text]
  • Magnetic Tape Storage and Handling a Guide for Libraries and Archives
    Magnetic Tape Storage and Handling Guide Magnetic Tape Storage and Handling A Guide for Libraries and Archives June 1995 The Commission on Preservation and Access is a private, nonprofit organization acting on behalf of the nation’s libraries, archives, and universities to develop and encourage collaborative strategies for preserving and providing access to the accumulated human record. Additional copies are available for $10.00 from the Commission on Preservation and Access, 1400 16th St., NW, Ste. 740, Washington, DC 20036-2217. Orders must be prepaid, with checks in U.S. funds made payable to “The Commission on Preservation and Access.” This paper has been submitted to the ERIC Clearinghouse on Information Resources. The paper in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials ANSI Z39.48-1992. ISBN 1-887334-40-8 No part of this publication may be reproduced or transcribed in any form without permission of the publisher. Requests for reproduction for noncommercial purposes, including educational advancement, private study, or research will be granted. Full credit must be given to the author, the Commission on Preservation and Access, and the National Media Laboratory. Sale or use for profit of any part of this document is prohibited by law. Page i Magnetic Tape Storage and Handling Guide Magnetic Tape Storage and Handling A Guide for Libraries and Archives by Dr. John W. C. Van Bogart Principal Investigator, Media Stability Studies National Media Laboratory Published by The Commission on Preservation and Access 1400 16th Street, NW, Suite 740 Washington, DC 20036-2217 and National Media Laboratory Building 235-1N-17 St.
    [Show full text]
  • Glossary of Digital Video Terms
    Glossary of Digital Video Terms 24P: 24 frame per second, progressive scan. This has been the frame rate of motion picture film since talkies arrived. It is also one of the rates allowed for transmission in the DVB and ATSC television standards – so they can handle film without needing any frame-rate change (3:2 pull-down for 60 fields-per-second systems or running film at 25fps for 50 Hz systems). It is now accepted as a part of television production formats – usually associated with high definition 1080 lines, progressive scan. A major attraction is a relatively easy path from this to all major television formats as well as offering direct electronic support for motion picture film and D-cinema. 24Psf: 24 frame per second, progressive segmented frame. A 24P system in which each frame is segmented – recorded as odd lines followed by even lines. Unlike normal television, the odd and even lines are from the same snapshot in time – exactly as film is shown today on 625/50 TV systems. This way the signal is more compatible (than normal progressive) for use with video systems, e.g. VTRs, SDTI or HD-SDI connections, mixers/switchers etc., which may also handle interlaced scans. It can also easily be viewed without the need to process the pictures to reduce 24-frame flicker. 3:2 pull-down: Method used to map the 24 fps of film onto the 30 fps (60 fields) of 525-line TV, so that one film frame occupies three TV fields, the next two, etc. It means the two fields of every other TV frame come from different film frames making operations such as rotoscoping impossible, and requiring care in editing.
    [Show full text]
  • SMPTE Type C Helical-Scan Recording Format by DAVID K
    SMPTE Type C Helical-Scan Recording Format By DAVID K. FIBUSH About two years ago there was little prospect that a 1-in helical-scan videotape recorded marily to eliminate the need to review all on one manufacturer’s machine could ever be played back on another manufacturer’s aspects of the format each time a change VTR. In a single year, however, this situation has changed and the S M P T E Standards is made. Typically, the format documents Committee has approved the basic format documents for high-quality I-in helical-scan include a document showing record loca- VTRs capable of interchanging tapes. Topics covered in detail in the paper include: the tions on the tape, a mechanical configura- process of developing a standard, with a list of the relevant ANSI and S M P T E tion document, and a number of electrical documents; helical video format parameters, with definitions and criteria for their parameter documcnts for video, audio, selection; location of tape tracks; video and sync records, with sources and magnitudes control track, ctc. Many pcoplc are famil- of various time-base errors; limitation of vertical-interval dropout; the requirement for iar with the record location drawing as this six heads; the contraints of video track straightness and longitudinal track dimensions; information is widely publicized to show audio and control-track recording; and video signal processing. I t is expected that the the users the available channels and some new SMPTE Type C format will provide a practical solution to the users’ requirements of the features of the VTR.
    [Show full text]
  • History of the Early Days of Ampex Corporation
    PAPER History of The Early Days of Ampex Corporation As recalled by JOHN LESLIE and ROSS SNYDER Alexander M. Poniatoff founded Ampex in 1944, primarily to manufacture small motors and generators for military applications. When WWII ended, the military contracts dropped off, and Alex had to search for a new line of business to continue his company’s existence. He and his small group of engineers heard a demonstration of a Magnetophon, a German magnetic tape recorder used by Hitler during WWII. The demonstration quickly convinced Alex to redirect his company and soon it was designing and manufacturing professional-quality magnetic tape recorders. Bing Crosby was a great help in Ampex’s early years. The company grew quickly and, within a short time, dominated the magnetic tape recorder market in radio, television, the record industry, and industrial and military markets for instrumentation recorders . Alex was born in Russia in 1892. His father was well-to- 0 INTRODUCTION do, and sent Alex to Germany for an education in engineering. After college, he returned to Russia only to see his country It has been amazing how many people today are asking become engaged in a civil war. Alex escaped to China, where questions about Ampex and the Company’s contribution to the he went to work for the Shanghai Power Company. He music recording industry, the radio and television broadcast immigrated to the United States in 1927 where he worked for industry and the stereophonic home entertainment field. There General Electric, Pacific Gas & Electric, and the Dalmo Victor is no question that Ampex was a major factor in each of these Corporation in San Carlos, California.
    [Show full text]
  • Strategic Maneuvering and Mass-Market Dynamics: the Triumph of VHS Over Beta
    Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS Over Beta Michael A. Cusumano, Yiorgos Mylonadis, and Richard S. Rosenbloom Draft: March 25, 1991 WP# BPS-3266-91 ABSTRACT This article deals with the diffusion and standardization rivalry between two similar but incompatible formats for home VCRs (video- cassette recorders): the Betamax, introduced in 1975 by the Sony Corporation, and the VHS (Video Home System), introduced in 1976 by the Victor Company of Japan (Japan Victor or JVC) and then supported by JVC's parent company, Matsushita Electric, as well as the majority of other distributors in Japan, the United States, and Europe. Despite being first to the home market with a viable product, accounting for the majority of VCR production during 1975-1977, and enjoying steadily increasing sales until 1985, the Beta format fell behind theVHS in market share during 1978 and declined thereafter. By the end of the 1980s, Sony and its partners had ceased producing Beta models. This study analyzes the key events and actions that make up the history of this rivalry while examining the context -- a mass consumer market with a dynamic standardization process subject to "bandwagon" effects that took years to unfold and were largely shaped by the strategic maneuvering of the VHS producers. INTRODUCTION The emergence of a new large-scale industry (or segment of one) poses daunting strategic challenges to innovators and potential entrants alike. Long-term competitive positions may be shaped by the initial moves made by rivals, especially in the development of markets subject to standardization contests and dynamic "bandwagon" effects among users or within channels of distribution.
    [Show full text]
  • Digitizing Video for Long-Term Preservation: an RFP Guide And
    Digitizing Video for Long-Term Preservation: An RFP Guide and Template Barbara Goldsmith Preservation & Conservation Department New York University Libraries, 2013 Funded by The Andrew W. Mellon Foundation Contributors: Paula De Stefano Kimberly Tarr Melitte Buchman Peter Oleksik Alice Moscoso Ben Moskowitz Table of Contents I. Preface 1 II. Acknowledgements 4 III. Request for Proposals (RFP) Guide and Template 5 1: Introduction 5 2: Technical Requirements 5 3: Vendor Information 13 4: Schedule and Turnaround Time 17 5: Delivery of Completed Work 17 6: Failures 19 7: Special Instructions 20 8: Sub-Contracting 20 9: Insurance 20 10: Details of Proposal Deliverables 21 Appendices Appendix A: Sample Request for Proposals (RFP) 24 Appendix B: Sample Metadata Schema 37 Appendix C: Sample Transfer Notes 39 Appendix D: A Glossary of Terms and Concepts 40 Appendix E: Selected Resources 48 ii I. Preface Digitizing Video for Long-Term Preservation: An RFP Guide and Template is intended to take an institution step-by-step through the process of drafting a Request for Proposals (RFP) for the transfer of analog video formats to digital carriers for preservation. This template can be used by libraries, archives, and other cultural heritage institutions and submitted to qualified transfer vendors. Funded by The Andrew W. Mellon Foundation, the Digitizing Video for Long-Term Preservation publication is part of the Video at Risk project undertaken by New York University and two partner institutions, Loyola University New Orleans and the University of California, Berkeley. The authors of this publication set out to create a template that would identify the key elements integral to the transfer of the video and audio signal from Standard Definition VHS to a preservation-quality digital file.
    [Show full text]
  • Direct Digital Copy of ADAT Tapes
    Leo Backman/DigiOmmel & Co. DigiOmmel is now using Alesis XT 8-channel recorder, digitally connected to E-MU 1820 audio interface unit for bit-for-bit transfer of ADAT tape recordings into more manageable multi-track file formats. We can also repair dysfunctional cassettes and, if necessary, move tape reels into working shells. The ADAT digital multichannel audio tape recorder uses a standard VHS transport that provides reliable and robust operation based on well-proven helical scan VCR technology. The recording media is a half- inch S-SVHS tape encased in cassette shells. The format is configured to operate with iron oxide magnetic particles instead of more costly pure iron particle, or metal evaporation tapes. An ADAT recording employs relatively low signal density per tape area. A low-density recording provides very reliable readout system, making the recorded tape signal fairly insensitive to dirt and defects such as crumples and cross-tape weaves. VHS cassettes are well protected, and the rotary heads work to wipe off loose particles from the tape surface. The only down- side of reduced signal density, compared to other contemporary DAT formats is the comparatively heavy and bulky cassettes. Helical-scan read/write system ADAT tape runs at a speed of 95.3mm/sec which is about 4 times the speed of standard VHS SP (PAL) format. The initial tape formatting begins with a 15-second 'Lead' segment, followed by a 115-second 'Data' segment of muted audio. Up to 44 minutes of 8-channel/track audio data can be recorded onto a three-hour S-VHS cassette (SE-180).
    [Show full text]
  • Manual for Akai VS-606EA Video Cassette Recorder
    AKAi Hi-Fi & Video. ••• Hi-Fi Video Cassette Recorder VS-606EA Operator's Manual PAL •• •••• ••••••••• •• WARNING-------- ••••••••• •• •• •• ••••••••• •• ••••••••• •• •• To prevent fire or shock hazard, do not expose this MULTIF'LEX TUNER •• •••• •• •• appliance to rain or moisture. ITAPE \JIEW SYSTEN\ I WAIT! Caution Moving the video tape recorder from a cold place to a warm place, or using it in a humid place will cause dew condensation on the drum and the video heads inside the unit. If recording or playback is carried out in this state, the heads may become dirty and the tape may be damaged. This could also result in a malfunction of the machine itself. To prevent this from occuring, the VCR should be plugged in for about one hour, with the FUNCTION button ofT, before starting recording or playback of a video cassette tape. This is particularly important when a video cassette is inserted for the first time after purchase of the video cassette recorder. Akai-Creative At Heart. WarningS & Precautions 1. Avoid using the Akai VCR under the following conditions: VOLTAGE SELECTION Extremely hot, cold, humid or dusty places. Power requirements for electrical equipment differ from area to area. Near appliances generating strong magnetic fields. The operating voltage of the Akai VCR is preset at the factory accord­ Places poorly ventilated or subject to vibration. ing to it's intended destination. However, some models are equipped * Near fluorescent lamps which may shorten the operation range of with a voltage selector. If your VCR is so equipped, before the remote control unit. connecting, check to see that the AC INPUT selector on the rear panel is set to the voltage for your area.
    [Show full text]
  • Ampex Home Video Recorder by JOSEPH Roizeninternational Video Consultant, Ampex Corporation
    Top view of the recorder. Control center is at extreme left. Ampex Home Video Recorder By JOSEPH ROIZENInternational Video Consultant, Ampex Corporation Design and operation of this manufacturer's lowest priced full helical scan recorder for in -home, educational, and industrial uses. VIDEO recorders utilizing magnetic tape as a storage tape. A 10 -inch reel of this tape (3000 feet) costs $59.95, medium are beginning to rival the already familiar while a lighter duty tape is expected to cost $39.95 a roll. audio tape units in size, price, and simplicity. The The video head used is expected to have a minimum life of Ampex VR-6000 series, designed for home use, is an example 500 hours with a replacement cost of under $35. A tape of such a device. Its cubic dimensions, weight, and cost are made on one of these recorders can be played back on an- roughly double that of a good -quality audio recorder. other similar Ampex recorder. The Model 6200 consolette, which includes deck, base, The VR-6000 uses the helical -scan principle with a single and video control center, costs $1495; the price of the Model rotating head assembly (Fig. 1), laying down the 3° 6' 6100 basic deck alone is $1095. The control center contains angled tracks containing the picture signal. Two stationary TV receiver front-end circuits for making a recording but heads record the control and audio track signals in normal no display monitor. The center also permits the recorder to longitudinal fashion along the top and bottom edges of the be connected to any TV set's antenna terminals to allow the one -inch -wide tape (Fig.
    [Show full text]