NOAA Technical Memorandum NWS NHC-6 the DEADLIEST

Total Page:16

File Type:pdf, Size:1020Kb

NOAA Technical Memorandum NWS NHC-6 the DEADLIEST NOAA Technical Memorandum NWS NHC-6 THE DEADLIEST, COSTLIEST, AND MOST INTENSE UNITED STATES TROPICAL CYCLONES FROM 1851 TO 2010 (AND OTHER FREQUENTLY REQUESTED HURRICANE FACTS) Eric S. Blake Christopher W. Landsea NHC Miami Ethan J. Gibney I.M. Systems Group NCDC Asheville National Weather Service National Hurricane Center Miami, Florida August 2011 PREFACE This version of the Deadliest, Costliest, and Most Intense United States Tropical Cyclones extends the work of Blake et al. (2007) to include 2007-2010 and revised hurricane best track data from the period 1915-1930. In addition, estimates from several storms are updated to correct errors as well as to include a more standardized methodology. In most storms since 1995, estimates of flood damage from the National Flood Insurance Program are included in the total damage estimates for a more realistic total. The technical memorandum also continues the methodology of Pielke et al. (2008) to produce an estimate of the monetary loss that historical hurricanes could exact on the current property-at-risk in the same location. THE DEADLIEST, COSTLIEST, AND MOST INTENSE UNITED STATES TROPICAL CYCLONES FROM 1851 TO 2010 (AND OTHER FREQUENTLY REQUESTED HURRICANE FACTS) by Eric S. Blake and Christopher W. Landsea NOAA/NWS/NCEP/National Hurricane Center Miami, Florida Ethan J. Gibney I.M. Systems Group NOAA/NCDC Asheville, North Carolina ABSTRACT This technical memorandum lists the deadliest tropical cyclones in the United States during 1851- 2010 and the costliest tropical cyclones in the United States during 1900-2010. The compilation ranks damage, as expressed by monetary losses, in three ways: 1) contemporaneous estimates; 2) contemporaneous estimates adjusted by inflation to 2010 dollars; and 3) contemporaneous estimates adjusted for inflation and the growth of population and personal wealth (Pielke et al. 2008) to 2010 dollars. In addition, the most intense (i.e., major1 ) hurricanes to make landfall in the United States during the 160-year period are listed. Also presented are some additional statistics on United States hurricanes and tropical cyclones in general. 1. INTRODUCTION The National Hurricane Center (NHC) receives numerous requests for statistical information on deaths and damage incurred during tropical cyclones (including tropical depression, tropical storms, subtropical storms and hurricanes) affecting the United States. Information about tropical cyclone intensity (i.e., maximum 1-min surface wind) is also frequently of interest. Estimates of these measures vary in the literature and our goal is to present the best compilation of currently available estimates. In some instances, data in our lists represent revised estimates based on more complete information received since earlier publications including previous versions of this technical memorandum. There are also other frequently asked questions about hurricanes, and these questions are answered in Section 3. _____________________________________ 1 A major hurricane is a category 3, 4, or 5 hurricane on the Saffir/Simpson Hurricane Wind Scale (see Table 1). 1 Table 1. The Saffir/Simpson Hurricane Wind Scale, modifed from Simpson (1974). Winds Scale Number Maximum 1-min (Category) (mph) 1 74-95 2 96-110 3 111-130 4 131-155 5 > 155 2 2. BACKGROUND AND DEFINITIONS The Saffir/Simpson Hurricane Wind Scale (SSHWS, Table 1) provides specific wind values for each hurricane category. It is important to note that the original Saffir/Simpson hurricane scale category assignment of U.S. hurricanes was based on a combination of wind, central pressure and storm surge values (Hebert and Taylor 1975). Since about 1990, however, the NHC has assigned the SSHWS category on the basis of the maximum one-minute sustained wind speed only. Thus, there is an inconsistency in the Atlantic hurricane database (HURDAT) that will be rectified as the Atlantic best-track reanalysis project is completed (Landsea et al. 2004). Currently, the SSHWS category assignment is based on wind speed from 1851-1930 and 1990-2010 and on a combination of wind, pressure and storm surge from 1931-1989. Heavy rainfall associated with a hurricane was not one of the criteria used in the categorization. The process of assigning a SSHWS category number to a hurricane in any location is subjective, and it is made on a county-by-county basis. In this study, we use criteria for direct hit as described in the work by Jarrell et al. (1992). Direct Hit - Using "R" as the radius of maximum winds in a hurricane (the distance in miles from the storm's center to the circle of maximum winds around the center), all or parts of coastal counties falling within approximately 2R to the right and R to the left of a storm's track were considered to have received a direct hit. (This assumes an observer at sea looking toward the shore. If there was no landfall, the closest point of approach was used in place of the landfall point). On average, this direct hit zone extended about 50 miles along the coastline (corresponding to an average value of R of 15 miles). Of course, some hurricanes were smaller than this and some, particularly at higher latitudes, were much larger. Cases were judged individually, and many borderline situations had to be resolved. In this document, the term strike is designated to mean one of two things: 1) During the years 1851-1930 and 1990 to 2010, a hurricane strike is defined to be the occurrence of sustained hurricane force winds on the coastline or inland. This does not require the center to make landfall in the area of hurricane-force winds. Such an event occurred with Hurricane Ophelia in 2005, which remained offshore of the North Carolina coast but still brought sustained hurricane-force winds to the coastline. 2) During the years 1931 to 1989, a hurricane strike is defined as one whose center passes within the direct hit definition area provided above. The best-track reanalysis project is working to change the definition to be strictly determined by the winds, but for now the regional effects catalogued by HURDAT are in a transition period that could last several more years. Statistics on tropical storm and hurricane activity in the North Atlantic Ocean (which includes the Gulf of Mexico and the Caribbean Sea) can also be found in McAdie et al. (2009). A stratification of hurricanes by SSHWS category which have affected coastal counties of the Gulf of Mexico and North Atlantic Ocean can be found in Jarrell et al. (1992) and also at the NOAA Coastal Services Center (http://csc.noaa.gov/hurricanes/) updated through 2010. Additional information about the 3 impact of hurricanes can be found in annual hurricane season summary articles in Monthly Weather Review, Storm Data and Mariner’s Weather Log. A continuing feature for this update is the inclusion of estimated inland wind impacts of some hurricanes. These cyclones are indicated with an “I” before the state abbreviation in the HURDAT database and this symbol is exclusively used for hurricane wind impacts that are felt in a state, but not at the coastal areas (see Appendix A). One example of this occurrence is Hurricane Dennis (2005). After landfall, Dennis produced category one hurricane winds over inland areas of Alabama, but these effects were not felt along the coast of Alabama. Thus an “I” is added in front of the state designation, to be IAL 1. If a hurricane primarily impacts the coastal areas of a state, inland effects are not listed separately. The goal of this listing is to indicate only the most significant impact to that state. Because of the geography of Florida, any effects in the state are considered coastal. It is important to note the changing derivation of damage estimates at NHC. Death and damage totals for the period 1915-1965 were taken from Gentry (1966), which gave figures adjusted to 1957-59 costs as a base for the period 1915-1965. From 1966-1994, damages were obtained from Monthly Weather Review. However, the Monthly Weather Review estimates represented a highly variable and subjective combination of losses from the American Red Cross, the U.S. Office of Emergency Preparedness, insurance companies and press reports. After 1994, except for a few cases involving significant flooding, most of the Monthly Weather Review damage estimates were determined by doubling the private insurance losses reported by the Property Claim Service or the American Insurance Institute. These insurance loss figures do not include flood losses from the National Flood Insurance Program (NFIP), which have only been included since Hurricane Ike of 2008. A standardized methodology for calculating total losses, including NFIP figures, has been developed and utilized for each storm that made landfall after 1994 in the mainland United States. In this document, for almost all storms that occurred beginning in the 1995 season, the final NHC damage estimate is the sum of double the insured loss estimate, plus an adjusted estimate of flood losses from NFIP. Because of the highly variable rates of flood insurance along the coast, it is improper to simply double the flood losses for an estimate of total flood damage. Instead, the county NFIP losses are multiplied by the estimated county penetration rates for the highest flood risk area using the Federal Emergency Management Agency (FEMA) special flood hazard area (SFHA, e.g. the 100-year base flood plain) for a more accurate measure. This estimate should still be conservative for total flood damages because most homeowner’s policies are capped at $250,000 and areas outside of the SFHA can be affecting in a significant flood. Note that this calculation adds a significant amount of damage to previous estimates after 1994 (e.g. Allison 2001 rises from $5 billion to $9 billion). See Appendix B for other significant changes to several U.S.
Recommended publications
  • Tropical Cyclone Report for Hurricane Ivan
    Tropical Cyclone Report Hurricane Ivan 2-24 September 2004 Stacy R. Stewart National Hurricane Center 16 December 2004 Updated 27 May 2005 to revise damage estimate Updated 11 August 2011 to revise damage estimate Ivan was a classical, long-lived Cape Verde hurricane that reached Category 5 strength three times on the Saffir-Simpson Hurricane Scale (SSHS). It was also the strongest hurricane on record that far south east of the Lesser Antilles. Ivan caused considerable damage and loss of life as it passed through the Caribbean Sea. a. Synoptic History Ivan developed from a large tropical wave that moved off the west coast of Africa on 31 August. Although the wave was accompanied by a surface pressure system and an impressive upper-level outflow pattern, associated convection was limited and not well organized. However, by early on 1 September, convective banding began to develop around the low-level center and Dvorak satellite classifications were initiated later that day. Favorable upper-level outflow and low shear environment was conducive for the formation of vigorous deep convection to develop and persist near the center, and it is estimated that a tropical depression formed around 1800 UTC 2 September. Figure 1 depicts the “best track” of the tropical cyclone’s path. The wind and pressure histories are shown in Figs. 2a and 3a, respectively. Table 1 is a listing of the best track positions and intensities. Despite a relatively low latitude (9.7o N), development continued and it is estimated that the cyclone became Tropical Storm Ivan just 12 h later at 0600 UTC 3 September.
    [Show full text]
  • P2.4 Remote Sensing of Microphysical Particles in Hurricanes from Aircraft Observations
    P2.4 REMOTE SENSING OF MICROPHYSICAL PARTICLES IN HURRICANES FROM AIRCRAFT OBSERVATIONS Cerese M. Albers and Dr. Gail Skofronick-Jackson Florida State University, Tallahassee, FL and NASA Goddard Space Flight Center Code 970 Remote Sensing Branch, Greenbelt, MD I. Abstract This observed data will be helpful in In an effort to better understand the understanding whether the model slice is number concentration characteristics and particle appropriate and if the accompanying size distributions of frozen hydrometeors in parameterization is useful for these types of hurricanes, brightness temperatures were hydrometeors. There is a correlation between high compared with observations of Hurricane Erin frequencies (>= 85 GHz) and the accurate (2001) from CAMEX-4 radiometers on the ER-2 detection of frozen particles’ radiative signatures in aircraft. Frozen hydrometeors and hurricane storms. Higher frequencies are particularly sensitive particle microphysics play a large role in the to the frozen hydrometeors, and finding a multi- development and strength of tropical cyclones frequency retrieval algorithm for ice particle through the convective processes in the rain bands characteristics is the goal. present. Previous studies have proven that it is difficult to select proper ice particle parameterizations and that in situ measurements and additional studies are key to defining appropriate parameterizations. II. Introduction The observations from the Fourth Scientists often seek to refine their Convection and Moisture Experiment (CAMEX-4) observations to obtain more precise measurements and ER-2 Doppler reflectivities were co-located with of their desired distributions. In a time when the brightness temperatures from the High Altitude remote sensing of microphysical particles from MIMC Sounding Radiometer (HAMSR) and the aircraft and satellite has become increasingly Advanced Precipitation Microwave Radiometer (see important this is certainly a priority.
    [Show full text]
  • A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding
    AUGUST 2020 Y A N G E T A L . 1663 A Rapid Forecasting and Mapping System of Storm Surge and Coastal Flooding KUN YANG,VLADIMIR A. PARAMYGIN, AND Y. PETER SHENG Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida (Manuscript received 16 July 2019, in final form 2 March 2020) ABSTRACT A prototype of an efficient and accurate rapid forecasting and mapping system (RFMS) of storm surge is presented. Given a storm advisory from the National Hurricane Center, the RFMS can generate a coastal inundation map on a high-resolution grid in 1 min (reference system Intel Core i7–3770K). The foundation of the RFMS is a storm surge database consisting of high-resolution simulations of 490 optimal storms generated by a robust storm surge modeling system, Curvilinear-Grid Hydrodynamics in 3D (CH3D-SSMS). The RFMS uses an efficient quick kriging interpolation scheme to interpolate the surge response from the storm surge database, which considers tens of thousands of combinations of five landfall parameters of storms: central pressure deficit, radius to maximum wind, forward speed, heading direction, and landfall location. The RFMS is applied to southwest Florida using data from Hurricane Charley in 2004 and Hurricane Irma in 2017, and to the Florida Panhandle using data from Hurricane Michael in 2018 and validated with observed high water mark data. The RFMS results agree well with observation and direct simulation of the high-resolution CH3D- SSMS. The RFMS can be used for real-time forecasting during a hurricane or ‘‘what-if’’ scenarios for miti- gation planning and preparedness training, or to produce a probabilistic flood map.
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • 10R.3 the Tornado Outbreak Across the North Florida Panhandle in Association with Hurricane Ivan
    10R.3 The Tornado Outbreak across the North Florida Panhandle in association with Hurricane Ivan Andrew I. Watson* Michael A. Jamski T.J. Turnage NOAA/National Weather Service Tallahassee, Florida Joshua R.Bowen Meteorology Department Florida State University Tallahassee, Florida Jason C. Kelley WJHG-TV Panama City, Florida 1. INTRODUCTION their mobile homes were destroyed near Blountstown, Florida. Hurricane Ivan made landfall early on the morning of 16 September 2004, just west of Overall, there were 24 tornadoes reported Gulf Shores, Alabama as a category 3 across the National Weather Service (NWS) hurricane on the Saffir-Simpson Hurricane Tallahassee forecast area. The office issued Scale. Approximately 117 tornadoes were 130 tornado warnings from the afternoon of 15 reported associated with Ivan across the September until just after daybreak on 16 southeast United States. Eight people were September. killed and 17 were injured by tornadoes (Storm Data 2004; Stewart 2004). The most The paper examines the convective cells significant tornadoes occurred as hurricane within the rain bands of hurricane Ivan, which Ivan approached the Florida Gulf coast on the produced these tornadoes across the Florida afternoon and evening of 15 September. Panhandle, Big Bend, and southwest Georgia. The structure of the tornadic and non-tornadic The intense outer rain bands of Ivan supercells is examined for clues on how to produced numerous supercells over portions better warn for these types of storms. This of the Florida Panhandle, Big Bend, southwest study will focus on the short-term predictability Georgia, and Gulf coastal waters. In turn, of these dangerous storms, and will these supercells spawned dozens of investigate the problem of how to reduce the tornadoes.
    [Show full text]
  • The 1993 Superstorm: 15-Year Retrospective
    THE 1993 SUPERSTORM: 15-YEAR RETROSPECTIVE RMS Special Report INTRODUCTION From March 12–14, 1993, a powerful extra-tropical storm descended upon the eastern half of the United States, causing widespread damage from the Gulf Coast to Maine. Spawning tornadoes in Florida and causing record snowfalls across the Appalachian Mountains and Mid-Atlantic states, the storm produced hurricane-force winds and extremely low temperatures throughout the region. Due to the intensity and size of the storm, as well as its far-reaching impacts, it is widely acknowledged in the United States as the ―1993 Superstorm‖ or ―Storm of the Century.‖ During the storm’s formation, the National Weather Service (NWS) issued storm and blizzard warnings two days in advance, allowing the 100 million individuals who were potentially in the storm’s path to prepare. This was the first time the NWS had ever forecast a storm of this magnitude. Yet in spite of the forecasting efforts, about 100 deaths were directly attributed to the storm (NWS, 1994). The storm also caused considerable damage and disruption across the impacted region, leading to the closure of every major airport in the eastern U.S. at one time or another during its duration. Heavy snowfall caused roofs to collapse in Georgia, and the storm left many individuals in the Appalachian Mountains stranded without power. Many others in urban centers were subject to record low temperatures, including -11°F (-24°C) in Syracuse, New York. Overall, economic losses due to wind, ice, snow, freezing temperatures, and tornado damage totaled between $5-6 billion at the time of the event (Lott et al., 2007) with insured losses of close to $2 billion.
    [Show full text]
  • Gea2270 Geography of Florida (Fall 2020)
    GEOGRAPHY OF FLORIDA University of Florida, Department of Geography GEA 2270 Fall 2020, 3 Credits Instructor: Carly Muir Class Time: Tuesday Period 3 (9:35 – 10:25) Thursday Periods 3-4 (9:35 – 11:30) Office: online office hours E-Mail: [email protected] Office Hours: Wednesday (2:30 to 4:30) and Thursday (3:00 to 4:00). Department of Geography’s Main Office Location: TUR 3141 For questions or to inquire about majoring in Geography, please contact the Undergraduate Coordinator: Dr. Liang Mao, Ph.D., Associate Professor Email: [email protected] Telephone: (352) 294- 7502 Web site information: http://geog.ufl.edu/programs/undergrad/ Special Note for Fall 2020: Our class sessions may be audio-visually recorded for students in the class to refer back and for enrolled students who are unable to attend live. Students who participate with their camera engaged or utilize a profile image are agreeing to have their video or image recorded. If you are unwilling to consent to have your profile or video image recorded, be sure to keep your camera off and do not use a profile image. Likewise, students who un-mute during class and participate verbally are agreeing to have their voices recorded. If you are not willing to consent to have your voice recorded during class, you will need to keep your mute button activated and communicate exclusively using the "chat" feature, which allows students to type questions and comments live. The chat will not be recorded or shared. Course Description The course will emphasize the significance of Florida’s physical and cultural environments, and economic and political affairs in a globalizing world.
    [Show full text]
  • Ex-Hurricane Ophelia 16 October 2017
    Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland.
    [Show full text]
  • Hurricane Irma Storm Review
    Hurricane Irma Storm Review November 11, 2018 At Duke Energy Florida, we power more than 4 million lives Service territory includes: . Service to 1.8 million retail customers in 35 counties . 13,000 square miles . More than 5,100 miles of transmission lines and 32,000 miles of distribution lines . Owns and operates nearly 9,500 MWs of generating capacity . 76.2% gas, 21% coal, 3% renewable, 0.2%oil, 2,400 MWs Purchased Power. 2 Storm Preparedness Activities Operational preparation is a year-round activity Coordination with County EOC Officials . Transmission & Distribution Systems Inspected and . Structured Engagement and Information Maintained Sharing Before, During and After Hurricane . Storm Organizations Drilled & Prepared . Coordination with county EOC priorities . Internal and External Resource Needs Secured . Public Communications and Outreach . Response Plan Tested and Continuously Improved Storm Restoration Organization Transmission Hurricane Distribution System Preparedness System Local Governmental Coordination 3 Hurricane Irma – Resources & Logistics Resources . 12,528 Total Resources . 1,553 pre-staged in Perry, Georgia . 91 line and vegetation vendors from 25 states . Duke Energy Carolinas and Midwest crews as well as resources from Texas, New York, Louisiana, Colorado, Illinois, Oklahoma, Minnesota, Maine and Canada . 26 independent basecamps, parking/staging sites Mutual Assistance . Largest mobilization in DEF history . Mutual Assistance Agreements, executed between DEF and other utilities, ensure that resources can be timely dispatched and fairly apportioned. Southeastern Electric Exchange coordinates Mutual Assistance 4 5. Individual homes RESTORATION 3. Critical Infrastructure 2. Substations 1. Transmission Lines 4. High-density neighborhoods 5 Hurricane Irma- Restoration Irma’s track northward up the Florida peninsula Restoration Summary resulted in a broad swath of hurricane and tropical Customers Peak Customers Outage storm force winds.
    [Show full text]
  • Background Hurricane Katrina
    PARTPART 33 IMPACTIMPACT OFOF HURRICANESHURRICANES ONON NEWNEW ORLEANSORLEANS ANDAND THETHE GULFGULF COASTCOAST 19001900--19981998 HURRICANEHURRICANE--CAUSEDCAUSED FLOODINGFLOODING OFOF NEWNEW ORLEANSORLEANS •• SinceSince 1559,1559, 172172 hurricaneshurricanes havehave struckstruck southernsouthern LouisianaLouisiana ((ShallatShallat,, 2000).2000). •• OfOf these,these, 3838 havehave causedcaused floodingflooding inin NewNew thethe OrleansOrleans area,area, usuallyusually viavia LakeLake PonchartrainPonchartrain.. •• SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: SomeSome ofof thethe moremore notablenotable eventsevents havehave included:included: 1812,1812, 1831,1831, 1860,1860, 1915,1915, 1947,1947, 1965,1965, 1969,1969, andand 20052005.. IsaacIsaac MonroeMonroe ClineCline USWS meteorologist Isaac Monroe Cline pioneered the study of tropical cyclones and hurricanes in the early 20th Century, by recording barometric pressures, storm surges, and wind velocities. •• Cline charted barometric gradients (right) and tracked the eyes of hurricanes as they approached landfall. This shows the event of Sept 29, 1915 hitting the New Orleans area. • Storm or tidal surges are caused by lifting of the oceanic surface by abnormal low atmospheric pressure beneath the eye of a hurricane. The faster the winds, the lower the pressure; and the greater the storm surge. At its peak, Hurricane Katrina caused a surge 53 feet high under its eye as it approached the Louisiana coast, triggering a storm surge advisory of 18 to 28 feet in New Orleans (image from USA Today). StormStorm SurgeSurge •• The surge effect is minimal in the open ocean, because the water falls back on itself •• As the storm makes landfall, water is lifted onto the continent, locally elevating the sea level, much like a tsunami, but with much higher winds Images from USA Today •• Cline showed that it was then northeast quadrant of a cyclonic event that produced the greatest storm surge, in accordance with the drop in barometric pressure.
    [Show full text]
  • A FAILURE of INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina
    A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina U.S. House of Representatives 4 A FAILURE OF INITIATIVE A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Union Calendar No. 00 109th Congress Report 2nd Session 000-000 A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Report by the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Available via the World Wide Web: http://www.gpoacess.gov/congress/index.html February 15, 2006. — Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U. S. GOVERNMEN T PRINTING OFFICE Keeping America Informed I www.gpo.gov WASHINGTON 2 0 0 6 23950 PDF For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 COVER PHOTO: FEMA, BACKGROUND PHOTO: NASA SELECT BIPARTISAN COMMITTEE TO INVESTIGATE THE PREPARATION FOR AND RESPONSE TO HURRICANE KATRINA TOM DAVIS, (VA) Chairman HAROLD ROGERS (KY) CHRISTOPHER SHAYS (CT) HENRY BONILLA (TX) STEVE BUYER (IN) SUE MYRICK (NC) MAC THORNBERRY (TX) KAY GRANGER (TX) CHARLES W. “CHIP” PICKERING (MS) BILL SHUSTER (PA) JEFF MILLER (FL) Members who participated at the invitation of the Select Committee CHARLIE MELANCON (LA) GENE TAYLOR (MS) WILLIAM J.
    [Show full text]
  • Memorial to Charles Wythe Cooke 1887— 1971 VICTOR T
    Memorial to Charles Wythe Cooke 1887— 1971 VICTOR T. STRINGFIELD 4208 50 Street, NW„ Washington, D.C. 20016 The death of Dr. Charles Wythe Cooke in Daytona Beach, Florida, on Christmas Day 1971, ended his long and successful career as geologist, stratigrapher, and paleontologist. He is survived by his sister, Madge Lane Cooke. Cooke was born in Baltimore, Maryland, July 20, 1887. He was a bachelor. He received the degree of Bachelor of Arts from Johns Hopkins University in 1908 and Ph.D. (in geology) in 1912. From 1911 to 1912 he was a Fellow at the university. In July 1910, while a grad­ uate student, he received an appointment as Junior Geologist for summer work in the U.S. Geological Survey, beginning his long career in that organization. In the U.S. Geological Survey, he was Assistant Geologist, 1913 to 1917; Paleontologist, 1917 to 1919; Associate Geologist, 1919 to 1920; Geologist, 1920 to 1928; Scientist, 1928 to 1941; Senior Scientist, 1941 to 1951; andGeologist-Stratigrapher-Paleontologist, 1952 to 1956. He served as research associate in the Smithsonian Institute, Washington, D.C., from 1956 until his death. He was geologist in the Dominican Republic for the Geological Survey in 1919 and worked for the Tropical Oil Company, Colombia, South America, in 1920. After completing his 40 years of service in the U.S. Geological Survey, Cooke retired on November 30,1956. Also in 1956 he received the Meritorious Service Award of the Interior Department in recognition of his outstanding service. That citation in 1956 states: His scientific work lias been concerned with the paleontology, stratigraphy, and landforms (geomorphology) of the Coastal Plain, extending from New Jersey to Mississippi.
    [Show full text]