A Specific and Unusual Nuclear Localization Signal in the DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
P53 Regulates Myogenesis by Triggering the Differentiation
CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central p53 Regulates Myogenesis by Triggering the Differentiation Activity of pRb Alessandro Porrello, Maria Antonietta Cerone, Sabrina Coen, Aymone Gurtner, Giulia Fontemaggi, Letizia Cimino, Giulia Piaggio, Ada Sacchi, and Silvia Soddu Molecular Oncogenesis Laboratory, Regina Elena Cancer Institute, Center for Experimental Research, 00158 Rome, Italy Abstract. The p53 oncosuppressor protein regulates mary myoblasts, pRb is hypophosphorylated and prolif- cell cycle checkpoints and apoptosis, but increasing evi- eration stops. However, these cells do not upregulate dence also indicates its involvement in differentiation pRb and have reduced MyoD activity. The transduction and development. We had previously demonstrated of exogenous TP53 or Rb genes in p53-defective myo- that in the presence of differentiation-promoting stim- blasts rescues MyoD activity and differentiation poten- uli, p53-defective myoblasts exit from the cell cycle but tial. Additionally, in vivo studies on the Rb promoter do not differentiate into myocytes and myotubes. To demonstrate that p53 regulates the Rb gene expression identify the pathways through which p53 contributes at transcriptional level through a p53-binding site. to skeletal muscle differentiation, we have analyzed Therefore, here we show that p53 regulates myoblast the expression of a series of genes regulated during differentiation by means of pRb without affecting its myogenesis in parental and dominant–negative p53 cell cycle–related functions. (dnp53)-expressing C2C12 myoblasts. We found that in dnp53-expressing C2C12 cells, as well as in p53Ϫ/Ϫ pri- Key words: p53 • Rb • MyoD • differentiation • muscle Introduction The differentiation of skeletal myoblasts is characterized review, see Wright, 1992). -
Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes. -
Cellular and Developmental Control of O2 Homeostasis by Hypoxia-Inducible Factor 1␣
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1a Narayan V. Iyer,1,5 Lori E. Kotch,1,5 Faton Agani,1 Sandra W. Leung,1 Erik Laughner,1 Roland H. Wenger,2 Max Gassmann,2 John D. Gearhart,3 Ann M. Lawler,3 Aimee Y. Yu,1 and Gregg L. Semenza1,4 1Center for Medical Genetics, Departments of Pediatrics and Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3914 USA; 2Institute of Physiology, University of Zurich-Irchel, 8057 Zurich, Switzerland; 3Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 USA Hypoxia is an essential developmental and physiological stimulus that plays a key role in the pathophysiology of cancer, heart attack, stroke, and other major causes of mortality. Hypoxia-inducible factor 1 (HIF-1) is the only known mammalian transcription factor expressed uniquely in response to physiologically relevant levels −/− of hypoxia. We now report that in Hif1a embryonic stem cells that did not express the O2-regulated HIF-1a subunit, levels of mRNAs encoding glucose transporters and glycolytic enzymes were reduced, and cellular proliferation was impaired. Vascular endothelial growth factor mRNA expression was also markedly decreased in hypoxic Hif1a−/− embryonic stem cells and cystic embryoid bodies. Complete deficiency of HIF-1a resulted in developmental arrest and lethality by E11 of Hif1a−/− embryos that manifested neural tube defects, cardiovascular malformations, and marked cell death within the cephalic mesenchyme. In Hif1a+/+ embryos, HIF-1a expression increased between E8.5 and E9.5, coincident with the onset of developmental defects and cell death in Hif1a−/− embryos. -
The MCK Enhancer Contains a P53 Responsive Element (P53/Anti-Oncogene/Trans-Activation) HAROLD WEINTRAUB*, STEPHEN Hauschkat, and STEPHEN J
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 4570-4571, June 1991 Biochemistry The MCK enhancer contains a p53 responsive element (p53/anti-oncogene/trans-activation) HAROLD WEINTRAUB*, STEPHEN HAUSCHKAt, AND STEPHEN J. TAPSCOTT* *Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, WA 98104; and tDepartment of Biochemistry, University of Washington, Seattle, WA 98195 Contributed by Harold Weintraub, March 4, 1991 ABSTRACT p53 is an antioncogene that is defective or suggesting that activation may be species specific; however, absent in a large number of human tumors. Its function in levels ofprotein produced by the expression vectors were not normal cells is not known. We show that co-transfection of directly assayed in these experiments. By using an MCK- mouse p53 with muscle-specific creatine kinase-chloramphen- specific antibody, we have not been able to demonstrate icol acetyltransferase reporter gene, containing 3.3 kilobase of activation of the endogenous MCK gene in 10T1/2 cells upstream control sequence for the muscle-specfic creatine transfected with p53; in contrast 10T'/2 cells transfected with kinase gene, results in a 10- to 80-fold activation. The p53 MyoD express endogenous MCK immunoreactivity. responsive element maps to a region disinguhed from the Table 2 shows that a transforming mutant of murine p53 known MyoD binding region. Identification ofa p53 responsive (Ala -3 Val at position 135) fails to activate MCK-CAT in element should allow a more focused analysis of the effects of CV1 cells. A related mutation has lost its capacity for p53 in controlling gene activity. transactivation when fused to the DNA binding domain of GaI4 (5, 6). -
Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries -
Androgen-Dependent Pathology Demonstrates Myopathic
Research article Androgen-dependent pathology demonstrates myopathic contribution to the Kennedy disease phenotype in a mouse knock-in model Zhigang Yu,1 Nahid Dadgar,1 Megan Albertelli,2 Kirsten Gruis,3 Cynthia Jordan,4 Diane M. Robins,2 and Andrew P. Lieberman1 1Department of Pathology, 2Department of Human Genetics, and 3Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA. 4Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, Michigan, USA. Kennedy disease, a degenerative disorder characterized by androgen-dependent neuromuscular weakness, is caused by a CAG/glutamine tract expansion in the androgen receptor (Ar) gene. We developed a mouse model of Kennedy disease, using gene targeting to convert mouse androgen receptor (AR) to human sequence while introducing 113 glutamines. AR113Q mice developed hormone and glutamine length–dependent neuromus- cular weakness characterized by the early occurrence of myopathic and neurogenic skeletal muscle pathology and by the late development of neuronal intranuclear inclusions in spinal neurons. AR113Q males unexpect- edly died at 2–4 months. We show that this androgen-dependent death reflects decreased expression of skeletal muscle chloride channel 1 (CLCN1) and the skeletal muscle sodium channel α-subunit, resulting in myotonic discharges in skeletal muscle of the lower urinary tract. AR113Q limb muscles show similar myopathic features and express decreased levels of mRNAs encoding neurotrophin-4 and glial cell line–derived neurotrophic fac- tor. These data define an important myopathic contribution to the Kennedy disease phenotype and suggest a role for muscle in non–cell autonomous toxicity of lower motor neurons. Introduction dent on the presence of androgen (13–16) and is regulated, in Kennedy disease, or spinal and bulbar muscular atrophy, is one part, by hormone-dependent retrograde transport (17, 18). -
Convergence of Multiple Mechanisms of Steroid Hormone Action
Review 569 Convergence of Multiple Mechanisms of Steroid Hormone Action Authors S. K. Mani 1 * , P. G. Mermelstein 2 * , M. J. Tetel 3 * , G. Anesetti 4 * Affi liations 1 Department of Molecular & Cellular Biology and Neuroscience, Baylor College of Medicine, Houston, TX, USA 2 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA 3 Neuroscience Program, Wellesley College, Wellesley, MA, USA 4 Departamento de Hostologia y Embriologia, Facultad de Medicine, Universidad de la Republica, Montevideo, Uruguay Key words Abstract receptors can also be activated in a “ligand-inde- ● ▶ estrogen ▼ pendent” manner by other factors including neu- ● ▶ progesterone Steroid hormones modulate a wide array of rotransmitters. Recent studies indicate that rapid, ▶ ● signaling physiological processes including development, nonclassical steroid eff ects involve extranuclear ● ▶ cross-talk metabolism, and reproduction in various species. steroid receptors located at the membrane, which ● ▶ ovary ● ▶ brain It is generally believed that these biological eff ects interact with cytoplasmic kinase signaling mol- are predominantly mediated by their binding to ecules and G-proteins. The current review deals specifi c intracellular receptors resulting in con- with various mechanisms that function together formational change, dimerization, and recruit- in an integrated manner to promote hormone- ment of coregulators for transcription-dependent dependent actions on the central and sympathetic genomic actions (classical mechanism). In addi- nervous systems. tion, to their cognate ligands, intracellular steroid Abbreviations gene expression and function. Interestingly, not ▼ all the “classical” receptors are intranuclear and CBP CREB binding protein can be associated at the membrane. As described CRE CREB response element in this review, extranuclear ERs and PRs at the DAR Dopamine receptor (DAR) membrane or in the cytoplasm can interact with ER Estrogen receptor G proteins and signaling kinases, and other G received 13 . -
Myod-Cre Driven Alterations in K-Ras and P53 Lead to a Mouse Model
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.15.448607; this version posted June 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MyoD-Cre driven alterations in K-Ras and p53 lead to a mouse model with histological and molecular characteristics of human rhabdomyosarcoma with direct translational applications Kengo Nakahata1, Brian W. Simons2, Enrico Pozzo3, Ryan Shuck1, Lyazat Kurenbekova1, Cristian Coarfa4,6 Tajhal D. Patel1, and Jason T. Yustein*1,5,6 1Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030 2Center for Comparative Medicine, Baylor College of Medicine, Houston, TX 77030 3Translational Cardiomyology Laboratory, Stem Cell Research Institute, Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium. 4Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 5Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030 6Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, TX 77030 *Corresponding Author Corresponding Author: Jason T. Yustein, MD, PhD 1102 Bates St., Suite 1025.07 Houston, Texas 77030 832-824-4601 (Office) [email protected] ORCID: https://orcid.org/0000-0002-2052-0527 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2021.06.15.448607; this version posted June 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. -
Hypoxia and Aging Eui-Ju Yeo1
Yeo Experimental & Molecular Medicine (2019) 51:67 https://doi.org/10.1038/s12276-019-0233-3 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Hypoxia and aging Eui-Ju Yeo1 Abstract Eukaryotic cells require sufficient oxygen (O2) for biological activity and survival. When the oxygen demand exceeds its supply, the oxygen levels in local tissues or the whole body decrease (termed hypoxia), leading to a metabolic crisis, threatening physiological functions and viability. Therefore, eukaryotes have developed an efficient and rapid oxygen sensing system: hypoxia-inducible factors (HIFs). The hypoxic responses are controlled by HIFs, which induce the expression of several adaptive genes to increase the oxygen supply and support anaerobic ATP generation in eukaryotic cells. Hypoxia also contributes to a functional decline during the aging process. In this review, we focus on the molecular mechanisms regulating HIF-1α and aging-associated signaling proteins, such as sirtuins, AMP-activated protein kinase, mechanistic target of rapamycin complex 1, UNC-51-like kinase 1, and nuclear factor κB, and their roles in aging and aging-related diseases. In addition, the effects of prenatal hypoxia and obstructive sleep apnea (OSA)- induced intermittent hypoxia have been reviewed due to their involvement in the progression and severity of many diseases, including cancer and other aging-related diseases. The pathophysiological consequences and clinical manifestations of prenatal hypoxia and OSA-induced chronic intermittent hypoxia are discussed in detail. Introduction chemoreceptors stimulates the neurotransmitter release 3 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Oxygen (O2) plays critical roles in aerobic respiration pathway and modulates the activity of a neutral endo- and metabolism as the final electron acceptor of the peptidase, neprilysin (NEP), which modifies the cellular mitochondrial electron transport chain, which is respon- response to hypoxia by hydrolyzing substance P4. -
Physical Interaction of the Retinoblastoma Protein with Human D Cyclins
Cell, Vol. 73, 499-511, May 7, 1993, Copyright 0 1993 by Cell Press Physical Interaction of the Retinoblastoma Protein with Human D Cyclins Steven F. Dowdy,* Philip W. Hinds,’ Kenway Louie,’ into Rb- tumor cells by microinjection, viral infection, or Steven I. Reed,t Andrew Arnold,* transfection can lead to the growth arrest of these recipient and Robert A. Weinberg” cells (Huang et al., 1988; Goodrich et al., 1991; Templeton *The Whitehead Institute for Biomedical Research et al., 1991; Hinds et al., 1992). and Department of Biology Oncoproteins specified by the SV40, adenovirus, and Massachusetts Institute of Technology papilloma DNA tumor viruses have been shown to associ- Cambridge, Massachusetts 02142 ate with pRb in virus-transformed cells (Whyte et al., 1988; tThe Scripps Research Institute DeCaprio et al., 1988; Dyson et al., 1989). Oncoprotein Department of Molecular Biology binding of pRb is presumed to lead to its sequestration 10666 North Torrey Pines Road and functional inactivation. Conserved region II mutants La Jolla, California 92037 of adenovirus ElA, SV40 large T antigen, human papil- *Endocrine Unit loma E7 viral oncoproteins that have lost their ability to and Massachusetts General Hospital Cancer Center bind pflb, and other pRb-related proteins exhibit signifi- Massachusetts General Hospital cantly reduced transforming potential (Moran et al., 1986; and Harvard Medical School Lillie et al., 1987; Cherington et al., 1988; DeCaprio et al., Boston, Massachusetts 02114 1988; Moran, 1988; Smith and Ziff, 1988; Whyte et al., 1989). This suggests that binding of pRb and related pro- teins by these oncoproteins is critical to their transforming abilities. -
Steroid Hormones
Chemical Signaling Hormonal Signal Transduction Pathways Types of Chemical Signaling Chemical signaling between cells is one of the most important ways that activities of tissues and organs are coordinated. The nervous system is the other major coordinating system in animals, but even here chemical signaling is used between adjacent neurons. Three major types: Sites of Hormone Release More commonly, especially in the vertebrates, the sources of hormones are specialized glands called endocrine glands. Even here the source of the hormone is often modified nerve cells or neurosecretory cells. Some organs that have other functions also release hormones - for example, many hormones are released by different organs of the digestive system. Types of Responses Controlled by Hormones Hormones are not only used for long-distance signaling around the body, but they also provide for more prolonged regulatory responses. Prolonged responses can persist for minutes, hours, or even many days. Examples include maintenance of blood osmolarity, blood glucose, metabolic rate of specific tissues, control of reproductive cycles. The nervous system is used for more rapid responses of shorter duration. Example of Regulation of Blood Glucose Types of Hormones 1) Amines: Catecholamines, epinephrine and norepinephrine, derived from amino acids 2) Prostaglandins: Cyclic unsaturated fatty acids Types of Hormones 3) Steroid hormones: Include testosterone and estrogen, cyclic hydrocarbons derived from cholesterol. 4) Peptides and proteins: Include insulin Three Steps in Cell Signaling Target organ specificity is the result of specific receptor molecules for the hormone, either on the plasma membrane surface, or in some cases in the cytoplasm, of cells in the target organ.