The Tensor-Entanglement Renormalization Group of the 2D Quantum Rotor Model

Total Page:16

File Type:pdf, Size:1020Kb

The Tensor-Entanglement Renormalization Group of the 2D Quantum Rotor Model The tensor-entanglement renormalization group of the 2D quantum rotor model Rolando La Placa Department of Physics, Harvard University, Cambridge, MA, 02138 (Dated: May 16, 2014) We review the tensor-renormalization group (TRG)[1], and the tensor-entanglement renormaliza- tion group (TERG) [2]. Then, we use TERG to setup a variational optimization of the ground state of the O(2) quantum rotor model in a square lattice. I. INTRODUCTION mean-field theory cannot be applied in systems with long- range entanglement, such as phases found beyond Lan- Tensor-renormalization group (TRG) is a real- dau's symmetry breaking paradigm [2]. In some cases, space renormalization technique used to study any 2- \Tensor Product States"(TPS) are possible trial ground dimensional classical lattice systems with local interac- state wave functions. To define a TPS, consider a system tions [1]. It stems from the idea that any such system with quantum numbers mi 2 1; 2;:::;M residing over a can be rewritten as a tensor-network model. To describe square lattice. A TPS of this square lattice is a tensor-network model, we assign a p-rank tensor T ij::: X to every site of a lattice, where p- is the number of bonds m1 m2 jΨ(fmig)i = TijkmTemfg ::: (2) in each site. Each index fi; j; : : : g is D dimensional, i;j::: and can be seen as residing on an adjacent bond of the site (Fig. 1). For a classical lattice model Hamiltonian mi where Tijkm are complex numbers, fmig are the physical −βH = −βH(i; j; : : : ) with local interactions, we can M-dimensional indexes, and fi; j; : : : g are the indexes find a tensor T such that with bond dimensionality D. The bond dimensionality X X might vary according to the model being studied, e.g. Z = e−βH(i;j;::: ) = T T ··· : (1) ijkl emfg D = 2 is enough to reproduce the quantum Ising model, i;j;::: i;j;::: and the Heisenberg model [2]. Using a TPS as a ground A real space-renormalization transformation T ! T 0 can state ansatz, be carried out to study the critical behavior of tensor- hΨjHjΨi network models. ≥ 0 (3) Motivated by the classical-quantum mapping in which hΨjΨi the partition function of a d-dimensional quantum model can be mapped to the partition function of a d + 1 di- can be minimized to find the appropriate tensor compo- mensions classical model, we expect that a similar renor- nents. This is computationally hard, but TRG can be malization technique to be valid in the study of some used to reduce the complexity of the computation. 1-dimensional quantum systems. In fact, examples of This variational approach using TPS and TRG TRG-based calculations for the quantum spin-1/2 and can be seen as an attempt to generalized the varia- spin-1 chains can be found in Ref. [3]. tional optimization described by the \Matrix Product States"(MPS) and the density matrix renormalization group (DMRG). DMRG has been an effective method to study 1-dimensional models such as spin chains [4]. In Section III, we will discuss a TRG-based method called the tensor-entanglement renormalization group (TREG). TERG is an approximation scheme to perform the varia- tional calculation described above. Finally, we try to use TERG on the 2-dimensional O(2) quantum rotor lattice. II. TENSOR-ENTANGLEMENT RENORMALIZATION GROUP FIG. 1. A Tensor-network model on a square lattice. Given a translationally invariant Hamiltonian on a lat- P tice with sites α and local interactions, H = Hα, we α will try an ansatz for the ground state in the form of Additionally, tensor-networks models and TRG can shown in Eq. 2. By assumptions, Hα can be written in α,0 α,1 β;2 be used to perform variational calculations. Traditional terms of local operators: Hα = O + O O + ··· . 2 FIG. 2. Decomposition of a 4-tensor into two 3-tensors. For sublattice A , we decompose into S1 and S2. In sublattice B, the decomposition is into S3 and S4. FIG. 3. Tensor-renormalization transformation of a square lattice. Which means that we can rewrite: Start by dividing the square lattice into two sublattices m m A and B as shown in Fig. 3. Then, decompose the tensors X m1 1 m2 2 hΨjΨi = T T 0 0 0 0 T T 0 0 0 0 ··· (4) ijkm i j k m emfg e m f g T at each site of A sublattice in terms of two 3-rank 0 0 m1;:::;ii ;jj ;::: tensors S1 and S2, and do a similar decomposition of = tT r[T ⊗ T ⊗ · · · ] tensors in the B sublattice into 3-rank tensors S3 and S4 (Fig. 2). Note that the T tensors can be seen as 4-rank tensors in which each index has D2 dimensions. We have A X 1 2 Tijkl = SijnSnkl; (7) n m X α,0 m1 1 m2 B X 3 4 hΨjH jΨi = O T T 0 0 0 0 T ··· α m1m2 ijkm i j k m emfg Tijkl = SijnSnkl 0 0 m1;:::;ii ;jj ;::: n m X α,1 β;2 m1 1 m2 2 4 + O O T T 0 0 0 0 T ::: + ··· m1m2 m2m3 ijkm i j k m emfg with i; j; k; l each having D dimensions and n being D - 0 0 m1;:::;ii ;jj ;::: dimensional. With an approximation, we can reduce the α,0 α,1 β;2 dimensionality of n. Viewing A as a matrix M A , = tTr[T ⊗ T ··· ] + tTr[T ⊗ T ⊗ T ··· ] + ··· Tijkl ij;kl (5) we can factorize it into its singular value decomposition A A A Ay (SVD), Mij;kl = Uij;nΛn;n0 Vn0;kl. Finally, we approxi- mate M by only consideringp the biggest Dc singularp val- The tensor trace denotes summation over all indices, 1 A 2 Ay ues λn. Letting Sijn = λnUij;n and Snkl = λnV P m m α,a n;kl and we have defined T = m T ⊗ T and T = so that the approximate decomposition becomes. k 0 P Oα,aT ⊗ T k with Oα,a being the (k; k0) matrix k;k0 kk0 kk0 D element of Oα,a in the basis of quantum numbers k. Cal- Xc A ≈ S1 S2 : (8) culating the tensor traces is computationally expensive, Tijkl ijn nkl n but with the real-space renormalization we can decimate the tensor lattice and find an approximation with less The same process is done with the B sublattice. After degrees of freedom. We will find T~ s.t. this transformation we end up with lattice of the form shown in Fig. 3. By adding the degrees of freedom found in each small square in the new 3-rank tensors S lattice tTr[ ⊗ ⊗ · · · ] ≈ tTr[~ ⊗ ~ ⊗ · · · ] (6) T T T T (see Fig. 4), we obtain the desired T~ X ~ = S1 S2 S3 S4 : (9) with the tensor trace over T~ containing one-fourth of the Tqrst jkq rli ijs tkl i;j;k;l tensors in tTr[T ⊗ T ⊗ · · · ]. This approximation trans- formations T ! T~ is based on TRG [1]. ~ By our SVD approximation, the tensor Tqrst has in- dexes of Dc dimensions, and the transformation gives us 3 quantum rotor lattice by adding an interaction term X L^2 1 X H = α − n^ n^ (13) 2I g α β α hα,βi where hi; ji is a summation over nearest neighbors. For the case N = 2, parametrizen ^i = (cos(θi); sin(θi)), and @ eimiθi L^i = −i with eigenstates given by jmii = p . @θi 2π There are no naturally occurring quantum rotors in na- ture, but some systems such as antiferromagnets and su- FIG. 4. Adding the S tensors in a square of the approximated perfluids can be studied through this model. ~ lattice results in the renormalized T. For d > 1 the quantum rotor model exhibits a disor- dered/paramagnetic phase as g ! 1 for which hn^i ·n^ji ∼ jxi−xj j a new lattice with a quarter of the tensors of the orig- exp(− ξ ), and an ordered phase in the limit g ! 0 inal lattice. This decimation is iterated until there are with hn^i · n^ji = C. There is a critical gc in which the only few tensors in the tensor traces, making the calcula- quantum phase transition happens. In the d = 1 and tion of the expectation values tractable. Note that with N ≥ 3 case, there is no phase transition; however, the some labeling care this procedure can be generalized to N = 2 exhibits a phase transition but does not follow take into account the tensors of the form Tα,a, since a the long-distance behavior of d > 1. This is analogous square of tensors Tα,a; Tβ;b; Tγ;c; Tδ;d maps to a square to the Kosterlitz-Thouless transition of the classical XY T~α,a; T~β;b; T~γ;c; T~δ;d (A group of 4 tensors is "closed" un- model in d = 2. In fact, there is a mapping between the der RG). partition functions of the O(N) quantum rotor and the classical O(N) model [5]. III. QUANTUM ROTOR MODEL B. TREG of the O(2) quantum rotor model A. The quantum rotor Hamiltonian The local Hamiltonian for the 2-dimensional O(2) quantum rotor can be written as Consider a d-dimensional lattice with N-component unit operatorsn ^ on each site.n ^ can be seen as de- α α L^2 1X scribing the position of a particle constraint to move on H = α − (cos(θ ) cos(θ )+sin(θ ) sin(θ )) (14) α 2I g α β α β the surface of N-dimensional unit sphere located at the β site α.
Recommended publications
  • Computing Quantum Phase Transitions Preamble
    COMPUTING QUANTUM PHASE TRANSITIONS Thomas Vojta Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 PREAMBLE: MOTIVATION AND HISTORY A phase transition occurs when the thermodynamic properties of a material display a singularity as a function of the external parameters. Imagine, for instance, taking a piece of ice out of the freezer. Initially, its properties change only slowly with increasing temperature. However, at 0°C, a sudden and dramatic change occurs. The thermal motion of the water molecules becomes so strong that it destroys the crystal structure. The ice melts, and a new phase of water forms, the liquid phase. At the phase transition temperature of 0°C the solid (ice) and the liquid phases of water coexist. A finite amount of heat, the so-called latent heat, is required to transform the ice into liquid water. Phase transitions involving latent heat are called first-order transitions. Another well known example of a phase transition is the ferromagnetic transition of iron. At room temperature, iron is ferromagnetic, i.e., it displays a spontaneous magnetization. With rising temperature, the magnetization decreases continuously due to thermal fluctuations of the spins. At the transition temperature (the so-called Curie point) of 770°C, the magnetization vanishes, and iron is paramagnetic at higher temperatures. In contrast to the previous example, there is no phase coexistence at the transition temperature; the ferromagnetic and paramagnetic phases rather become indistinguishable. Consequently, there is no latent heat. This type of phase transition is called continuous (second-order) transition or critical point. Phase transitions play an essential role in shaping the world.
    [Show full text]
  • Quantum Phase Transitions
    P1: GKW/UKS P2: GKW/UKS QC: GKW CB196-FM July 31, 1999 15:48 Quantum Phase Transitions SUBIR SACHDEV Professor of Physics Yale University iii P1: GKW/UKS P2: GKW/UKS QC: GKW CB196-FM July 31, 1999 15:48 PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http: //www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain C Subir Sachdev 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United States of America Typeface in Times Roman 10/12.5 pt. System LATEX2ε [TB] A catalog record for this book is available from the British Library. Library of Congress Cataloging-in-Publication Data Sachdev, Subir, 1961– Quantum phase transitions / Subir Sachdev. p. cm. Includes bibliographical references and index. ISBN 0-521-58254-7 1. Phase transformations (Statistical physics) 2. Quantum theory. I. Title. QC175. 16.P5S23 2000 530.4014 – dc21 99-12280 CIP ISBN 0 521 58254 7 hardback iv P1: GKW/UKS P2: GKW/UKS QC: GKW CB196-FM July 31, 1999 15:48 Contents Preface page xi Acknowledgments xv Part I: Introduction 1 1 Basic Concepts 3 1.1 What Is a Quantum Phase Transition?
    [Show full text]
  • Emergent Phenomena in Quantum Critical Systems
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses July 2018 Emergent Phenomena in Quantum Critical Systems Kun Chen University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, Other Physics Commons, Quantum Physics Commons, and the Statistical, Nonlinear, and Soft Matter Physics Commons Recommended Citation Chen, Kun, "Emergent Phenomena in Quantum Critical Systems" (2018). Doctoral Dissertations. 1224. https://doi.org/10.7275/11928423.0 https://scholarworks.umass.edu/dissertations_2/1224 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. EMERGENT PHENOMENA IN QUANTUM CRITICAL SYSTEMS A Dissertation Presented by KUN CHEN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2018 Department of Physics c Copyright by Kun Chen 2018 All Rights Reserved EMERGENT PHENOMENA IN QUANTUM CRITICAL SYSTEMS A Dissertation Presented by KUN CHEN Approved as to style and content by: Nikolay Prokof'ev, Co-chair Boris Svistunov, Co-chair Jonathan Machta, Member Murugappan Muthukumar, Member Narayanan Menon, Department Chair Department of Physics ACKNOWLEDGMENTS First and foremost I would like to express my sincere gratitude to my supervisors Prof. Nikolay Prokof'ev and Prof. Boris Svistunov for the continuous support of my Ph.D study and related research, for their patience, motivation, intensive discussion, and immense knowl- edge.
    [Show full text]
  • Quantum Phase Transitions of Correlated Electrons in Two Dimensions: Connections to Cuprate Superconductivity
    Quantum Phase Transitions of Correlated Electrons in Two Dimensions: Connections to Cuprate Superconductivity Vamsi Akkineni Department of Physics, University of Illinois at Urbana-Champaign ABSTRACT The physics of the two dimensional electron gas is important to the high-Tc superconductivity in the cuprates where the behavior of electrons in the CuO2 planes determines the properties of the material. Due to the ¯lling of closely spaced atomic orbitals the electrons are strongly interacting at length scales where quantum e®ects are important. The ground state of such a system could have very di®erent order as a function of some parameter, with these di®erent phases connected by quantum phase transitions. Since the nature of the ground state is a crucial determinant of the behavior at ¯nite temperature, the study of these phases and their excitations are important to high-Tc superconductiv- ity. This paper starts with an introduction to quantum phase transitions including the important quantum-classical mapping described for the quantum rotor model. The coupled ladder an- tiferromagnet model is introduced and the quantum phases and excitations of this model are detailed. Finally, the magnetic tran- sitions in the cuprate superconductors are described and shown to be of the same universal class as those of the coupled ladder antiferromagnet. 1 1 Introduction 1.1 Quantum Phase Transitions Consider a system whose degrees of freedom reside on the sites of an in¯- nite lattice, and which is described by a microscopic Hamiltonian containing two non-commuting operators. The Hamiltonian also involves a continuously variable parameter g that represents the essential tension between the com- peting ordering tendencies of the two non-commuting operators.
    [Show full text]
  • Zero Temperature Phase Transitions in Quantum
    Zero temperature phase transitions in quantum Heisenberg ferromagnets Subir Sachdev and T. Senthil Department of Physics, P.O.Box 208120, Yale University, New Haven, CT 06520-8120 (February 5, 1996) Abstract The purpose of this work is to understand the zero temperature phases, and the phase transitions, of Heisenberg spin systems which can have an extensive, spontaneous magnetic moment; this entails a study of quantum transitions with an order parameter which is also a non-abelian conserved charge. To this end, we introduce and study a new class of lattice models of quantum rotors. We compute their mean-field phase diagrams, and present continuum, quantum field-theoretic descriptions of their low energy properties in different regimes. We argue that, in spatial dimension d = 1, the phase transitions in itinerant Fermi systems are in the same universality class as the corresponding transitions in certain rotor models. We discuss implications of our results for itinerant fermions systems in higher d, and for other physical systems. arXiv:cond-mat/9602028 6 Feb 96 Typeset using REVTEX 1 I. INTRODUCTION Despite the great deal of attention lavished recently on magnetic quantum critical phe- nomena, relatively little work has been done on systems in which one of the phases has an extensive, spatially averaged, magnetic moment. In fact, the simple Stoner mean-field theory [1] of the zero temperature transition from an unpolarized Fermi liquid to a ferro- magnetic phase is an example of such a study, and is probably also the earliest theory of a quantum phase transition in any system. What makes such phases, and the transitions between them, interesting is that the order parameter is also a conserved charge; in sys- tems with a Heisenberg O(3) symmetry this is expected to lead to strong constraints on the critical field theories [2].
    [Show full text]
  • Quantum Phase Transitions in Disordered Superconductors and Detection of Modulated Superfluidity in Imbalanced Fermi Gases
    Quantum phase transitions in disordered superconductors and detection of modulated superfluidity in imbalanced Fermi gases DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Mason Swanson, B.S. Graduate Program in Physics The Ohio State University 2014 Dissertation Committee: Professor Nandini Trivedi, Advisor Professor Eric Braaten Professor Thomas Lemberger Professor Mohit Randeria c Copyright by Mason Swanson 2014 Abstract Ultracold atomic gas experiments have emerged as a new testing ground for finding elusive, exotic states of matter. One such state that has eluded detection is the Larkin-Ovchinnikov (LO) phase predicted to exist in a system with unequal populations of up and down fermions. This phase is characterized by periodic domain walls across which the order parameter changes sign and the excess polarization is localized Despite fifty years of theoretical and experimental work, there has so far been no unambiguous observation of an LO phase. In this thesis, we propose an experiment in which two fermion clouds, prepared with unequal population imbalances, are allowed to expand and interfere. We show that a pattern of staggered fringes in the interference is unequivocal evidence of LO physics. Finally, we study the superconductor-insulator quantum phase transition. Both super- conductivity and localization stand on the shoulders of giants { the BCS theory of super- conductivity and the Anderson theory of localization. Yet, when their combined effects are considered, both paradigms break down, even for s-wave superconductors. In this work, we calculate the dynamical quantities that help guide present and future experiments.
    [Show full text]
  • Quantum Phase Transitions in Disordered Boson Systems
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2018 QUANTUM PHASE TRANSITIONS IN DISORDERED BOSON SYSTEMS Zhiyuan Yao University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, and the Quantum Physics Commons Recommended Citation Yao, Zhiyuan, "QUANTUM PHASE TRANSITIONS IN DISORDERED BOSON SYSTEMS" (2018). Doctoral Dissertations. 1396. https://doi.org/10.7275/12500150 https://scholarworks.umass.edu/dissertations_2/1396 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. QUANTUM PHASE TRANSITIONS IN DISORDERED BOSON SYSTEMS A Dissertation Presented by ZHIYUAN YAO Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2018 Department of Physics c Copyright by Zhiyuan Yao 2018 All Rights Reserved QUANTUM PHASE TRANSITIONS IN DISORDERED BOSON SYSTEMS A Dissertation Presented by ZHIYUAN YAO Approved as to style and content by: Nikolay V. Prokof'ev, Chair Boris V. Svistunov, Member Tigran Sedrakyan, Member Murugappan Muthukumar, Member Narayanan Menon, Department Chair Department of Physics ACKNOWLEDGMENTS First and foremost, my deepest appreciation goes to my advisors, Nikolay Prokof'ev and Boris Svistunov. Whenever I went to their office for help, they would immediately stop their work and patiently answer my questions.
    [Show full text]
  • The Quantum Hall Effect: Novel Excitations and Broken Symmetries
    COURSE 2 THE QUANTUM HALL EFFECT: NOVEL EXCITATIONS ANO BROKEN SYMMETRIES S.M. GIRVIN Indiana University, Department of Physics, Bloomington, IN 47405, U.S.A. Contents 1 The quantum Hali effect 55 1.1 Introduction ..... 55 1.2 Why 2D is important . 57 1.3 Constructing the 2DEG 57 1.4 Why is disorder and-localization important? . 58 1.5 Classical dynamics ........... 61 1.6 Semi-classical approximation . 64 1. 7 Quantum Dynamics in Strong B Fields . 65 1.8 IQHE edge states . 72 1.9 Semiclassical percolation picture 76 1.10 Fractional QHE . 80 1.11 The v = 1 many-body state 85 1.12 Neutra! collective excitations 94 1.13 Charged excitations ... 104 1.14 FQHE edge states .... 113 1.15 Quantum hall ferromagnets 116 1.16 Coulomb exchange .. 118 1.17 Spin wave excitations 119 1.18. Effective action .... 124 1.19 Topologica! excitations . 129 1.20 Skyrmion dynamics . 141 1.21 Skyrme lattices . 147 1.22 Double-layer quantum hall ferromagnets 152 1.23 Pseudospin analogy . 154 1.24 Experimental background . 156 1.25 Interlayer phase coherence . 160 1.26 Interlayer tunneling and tilted field effects 162 Appendix 165 A Lowest Landau level projection 165 B Berry's phase and adiabatic transport 168 THE QUANTUM HALL EFFECT: NOVEL EXCITATIONS ANO BROKEN SYMMETRIES S.M. Girvin 1 The quantum Hali effect 1.1 lntroduction The Quantum Hall Effect (QHE) is one of the most remarkable condensed­ matter phenomena discovered in the second half of the 20th century. It rivals superconductivity in its fundamental significance as a manifestation of quantum mechanics on macroscopic scales.
    [Show full text]
  • Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: the Parent State of Quantum Phases
    PHYSICAL REVIEW X 9, 021022 (2019) Monte Carlo Study of Lattice Compact Quantum Electrodynamics with Fermionic Matter: The Parent State of Quantum Phases – † ‡ Xiao Yan Xu,1,* Yang Qi,2 4, Long Zhang,5 Fakher F. Assaad,6 Cenke Xu,7 and Zi Yang Meng8,9,10,11, 1Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China 2Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China 3State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China 4Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 5Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 6Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074, Würzburg, Germany 7Department of Physics, University of California, Santa Barbara, California 93106, USA 8Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 9Department of Physics, The University of Hong Kong, China 10CAS Center of Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 11Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China (Received 1 August 2018; revised manuscript received 19 March 2019; published 2 May 2019) The interplay between lattice gauge theories and fermionic matter accounts for fundamental physical phenomena ranging from the deconfinement of quarks in particle physics to quantum spin liquid with fractionalized anyons and emergent gauge structures in condensed matter physics. However, except for certain limits (for instance, a large number of flavors of matter fields), analytical methods can provide few concrete results.
    [Show full text]
  • Quantum Phases and Phase Transitions in Disordered Low
    Quantum Phases and Phase Transitions In Disordered Low-Dimensional Systems: Thin Film Superconductors, Bilayer Two-dimensional Electron Systems, And One-dimensional Optical Lattices Thesis by Yue Zou In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Submitted 2010) ii ⃝c 2011 Yue Zou All Rights Reserved iii In memory of my grandfather iv Acknowledgments I would like to express my deep gratitude to my advisor Gil Refael. I always consider myself extremely lucky to have him as my advisor, who is more than an advisor but also my role model and personal good friend. I want to thank him for his amazing insights in physics, his encouragement and inspiration, and his patient guidance and support. I would also like to thank many professors I have interactions with: Jim Eisenstein, Ady Stern, and Jongsoo Yoon, for all the exciting and fruitful collab- orations; Nai-Chang Yeh and Alexei Kitaev, for many insightful conversations and generous help I received from them; Olexei Motrunich and Matthew Fisher, for many eye-opening discussions and comments. I enjoyed very much working closely with Israel Klich and Ryan Barnett on Chapter 2 and 5 of this thesis during their stay at Caltech. I would also like to thank Waheb Bishara, for being my academic big brother and personal good friend. I also had the privilege to discuss and interact with many great scientists here at Caltech: Jason Alicea, Doron Bergman, Gregory Fiete, Karol Gregor, Oleg Kogan, Tami Pereg-Barnea, Heywood Tam, Jing Xia, and Ke Xu, among others.
    [Show full text]
  • Duality in Low Dimensional Quantum Field Theories
    Chapter 13 DUALITY IN LOW DIMENSIONAL QUANTUM FIELD THEORIES Matthew P.A. Fisher Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106–4030 [email protected] Abstract In some strongly correlated electronic materials Landau’s quasiparticle concept appears to break down, suggesting the possibility of new quantum ground states which support particle-like excitations carrying fractional quantum numbers. Theoretical descriptions of such exotic ground states can be greatly aided by the use of duality transforma- tions which exchange the electronic operators for new quantum fields. This chapter gives a brief and self-contained introduction to duality transformations in the simplest possible context - lattice quantum field theories in one and two spatial dimensions with a global Ising or XY symmetry. The duality transformations are expressed as exact oper- ator change of variables performed on simple lattice Hamiltonians. A Hamiltonian version of the Z2 gauge theory approach to electron frac- tionalization is also reviewed. Several experimental systems of current interest for which the ideas of duality might be beneficial are briefly discussed. Keywords: Duality, quantum Ising model, quantum XY model, rotors, Z2 gauge theory, fractionalization 1. Introduction At the heart of quantum mechanics is the wave-particle dualism. Quantum particles such as electrons when detected “are” particles, but exhibit many wavelike characteristics such as diffraction and interfer- ence. In condensed matter physics one is often interested in the collective behavior of 1023 electrons, which must be treated quantum mechanically 419 D. Baeriswyl and L. Degiorgi (eds.), Strong Interactions in Low Dimensions, 419–438. © 2004 by Kluwer Academic Publishers, Printed in the Netherlands.
    [Show full text]
  • Valence Bond Calculations for Quantum Spin Chains
    VALENCE BOND CALCULATIONS FOR QUANTUM SPIN CHAINS VALENCE BOND CALCULATIONS FOR QUANTUM SPIN CHAINS: FROM IMPURITY ENTANGLEMENT AND INCOMMENSURATE BEHAVIOUR TO QUANTUM MONTE CARLO By ANDREAS DESCHNER, Dipl.-Phys. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University Copyright by Andreas Deschner, 2014. Doctor of Philosophy, Physics and Astronomy, McMaster University (2014), Hamilton, Ontario Title: Valence Bond Calculations for Quantum Spin Chains: From Impurity Entanglement and Incommensurate Behaviour to Quantum Monte Carlo Author: Andreas Deschner, Dipl.-Phys. (Heidelberg University) Supervisor: Dr. Erik S. Sørensen Number of pages: xi, 120 ii Abstract In this thesis I present three publications about the use of valence bonds to gain information about quantum spin systems. Valence bonds are an essential ingredient of low energy states present in many compounds. The first part of this thesis is dedicated to two studies of the antiferromagnetic 퐽1-퐽2 chain with 푆 = 1/2. We show how automated variational calculations based on valence bond states can be performed close to the Majumdar-Ghosh point (MG-point). At this point, the groundstate is a product state of dimers (valence bonds between nearest neighbours). In the dimerized region surrounding the MG-point, we find such variational computations to be reliable. The first publication is about the entanglement properties of an impurity attached to the chain. We show how to use the variational method to calculate the negativity, an entanglement measure between the impurity and a distant part of the chain. We find that increasing the impurity coupling and a minute explicit dimerization, suppress the long-ranged entanglement present in the system for small impurity coupling at the MG-point.
    [Show full text]