Quick viewing(Text Mode)

The International Mars Exploration Programme and Current Planetary Protection Measures

The International Mars Exploration Programme and Current Planetary Protection Measures

The International Exploration Programme and Current Measures

G. Kminek Vice-Chair, COSPAR Panel on Planetary Protection The prospect for - up, down, and up again… Planet Mars

Mariner

Viking

MGS

Antarctic Dry Valleys

Cueva de Villa Luz

Black Smoker

MRO Rio Tinto

Phoenix Life on Current and Planned Missions

Operational 2011 2013 2016 2018 2020+

Towards Mars Sample Return

Mars Express

MAVEN ESA-NASA ExoMars Trace Mars Reconnaissance Gas Orbiter Orbiter (Italian SHARAD)

Mars Odyssey

International Cooperation Programme

ESA EDL Demonstrator

NASA & Caching Rover

ESA ExoMars Station Network Exploration Rovers Growing up… MSL Science Payload

REMOTE SENSING ChemCam Mastcam Mastcam (M. Malin, MSSS) ‐ Color and telephoto imaging, video, atmospheric opacity

RAD ChemCam (R. Wiens, LANL/CNES) –Chemical composition; REMS remote micro‐imaging

DAN CONTACT INSTRUMENTS (ARM) MAHLI (K. Edgett, MSSS) –Hand‐lens color imaging

APXS (R. Gellert, U. Guelph, Canada) ‐ Chemical composition

ANALYTICAL LABORATORY (ROVER BODY) MAHLI APXS SAM (P. Mahaffy, GSFC/CNES) ‐ Chemical and isotopic composition, including organics Brush MARDI Drill / Sieves CheMin (D. Blake, ARC) ‐ Mineralogy Scoop

ENVIRONMENTAL CHARACTERIZATION Rover Width: 2.8 m MARDI (M. Malin, MSSS) ‐ Descent imaging Height of Deck: 1.1 m REMS (J. Gómez‐Elvira, CAB, Spain) ‐ Meteorology / UV Ground Clearance: 0.66 m RAD (D. Hassler, SwRI) ‐ High‐energy radiation Height of Mast: 2.2 m DAN (I. Mitrofanov, IKI, Russia) ‐ Subsurface 5

Mars Sites (Previous Missions and MSL Candidates)

6 Candidate Landing Sites

Eberswalde Crater (24°S, 327°E, ‐1.5 km) contains a Crater (4.5°S, 137°E, ‐4.5 km) contains a 5‐km clay‐bearing delta formed when an ancient river sequence of layers that vary from clay‐rich materials deposited sediment, possibly into a lake. near the bottom to at higher elevation.

Holden Crater (26°S, 325°E, ‐1.9 km) has alluvial Mawrth Vallis (24°N, 341°E, ‐2.2 km) exposes layers fans, flood deposits, possible lake beds, and clay‐ within Mars’ surface with differing mineralogy, rich sediment. including at least two kinds of clays. 7 Programme Building Blocks E XX OO M A R S

•• ESAESA andand NNASAASA havehave agreedagreed toto embarkembark onon aa jointjoint MarsMars robroboticotic explorationexploration programme:programme:

 InitialInitial missionsmissions havehave beenbeen defineddefined forfor thethe 20201616 (January)(January) andand 20182018 launchlaunch opportunities;opportunities;  Missions for 2020 and beyond are in a planning stage;  Missions for 2020 and beyond are in a planning stage;  The joint programme’s ultimate objective is an international Mars Sample Return mission.  The joint p rogramme’s ultimate objective is an international Mars Sample Return mission.

2016 ESA-led mission Launcher: NASA – V-431 Orbiter: ESA Payload: NASA-ESA EDL Demo: ESA

2018 NASA-led mission Launcher: NASA – -531 Cruise & EDL: NASA Rover 1: ESA Payload: ESA-NASA Rover 2: NASA 2016 Mission Objectives E XX OO M A R S

TECHNOLOGYTECHNOLOGY OBJOBJEECTIVECTIVE

Entry,Entry, Descent,Descent, andand LandingLanding (EDL)(EDL) ofof aa payloadpayload onon thethe surfacesurface ofof Mars.Mars. 20162016

SCIENTIFICSCIENTIFIC OBJOBJEECTIVECTIVE

ToTo studystudy MartianMartian atmosphericatmospheric tracetrace gasesgases andand theirtheir sources.sources.

➟  UseUse ofof aerobrakingaerobraking toto achieveachieve sciscienceence orbit.orbit.  ProvideProvide datadata relayrelay servicesservices forfor landedlanded missimissionsons untuntilil 2022.2022.

9 2016 Payload E XX OO M A R S

PRIORITISED GOALS INSTRUMENTS

1. Detect a broad suite of atmospheric trace MATMOS US, CAN H/W gases and key isotopes with high sensitivity. (ppt) B, F, RUS Science

2. Map their spatial and temporal variability NOMAD B, E, I, UK with high sensitivity. (10–1 ppb) USA, CAN

3. Determine basic atmospheric state by EMCS USA, UK characterising P, T, winds, dust and (P, T, dust, ices, H2 O) F circulation patterns. MAGIE USA (Full hemisphere WAC) B, F, RUS

4. Image surface features possibly related to HiSCI USA, CH trace gas sources and sinks. (HRC 2 m/pixel) UK, I, D, F

ExcellentExcellent coveracoveragege ofof high-priorityhigh-priority objectives.objectives.

10 2016EDL EDL ModuleDemonstration (EDM) E XX OO M A R S

EDMEDM

AA European European technol technologyogy demonstrator demonstrator for for landing landing medium-large medium-large payloads payloads on on Mars; Mars;

ProvidesProvides a a limited, limited, but but useful useful means means to to conduct conduct scientific scientific m measurementseasurements during during the the dust dust storm storm season.season.

EDMEDM PAYLOAD PAYLOAD

IntegratedIntegrated payload payload mass mass estimate: estimate: 3 3 kg; kg;

Lifetime:Lifetime: 4 4 sols; sols;

Data:Data: 1 1 p paassss of of 50 50 Mbits. Mbits.

11 2018 Mission Concept

Key mission concept features • Cruise/EDL system derived from MSL, launched on Atlas V 531 class vehicle • Land in ~10 km radius landing ellipse, up to -1 km altitude, within +25 to -15 degrees • NASA MAX-C rover will perform in situ and acquire/cache sets of scientifically selected samples

Instrument/Sensing Quad UHF High Gain Antenna Mast Helix Low Gain Antenna

SHEC “Sample Cache”

2.2m Ultraflex Hazard Solar Array Cameras Sampling/Science Arm 2018 ExoMars RM Objectives E XX OO M A R S

TECHNOLOGYTECHNOLOGY OBJOBJEECTIVESCTIVES SurfaceSurface mobilitymobility withwith aa roverrover (hav(havinging severalseveral kilometreskilometres rarange);nge); AccessAccess toto thethe subsurfacesubsurface toto acquacquiriree samplessamples (with(with aa drill,drill, downdown toto 2-2- 20182018 mm depth);depth); SamplSamplee acquiacquissition,ition, preparatiopreparationn,, distribution,distribution, andand analysianalysiss.. SCIENTIFICSCIENTIFIC OBJOBJEECTIVESCTIVES ToTo searchsearch forfor signssigns ofof pastpast andand presentpresent lifelife onon Mars;Mars; ToTo characterisecharacterise thethe water/subsurfacewater/subsurface environmenvironmentent asas aa functionfunction ofof depthdepth inin thethe shallowshallow subsubssurface.urface.

13 ExoMars Pasteur Payload E XX OO M A R S

Panoramic camera system

HRCHRC

xx

WAC WAC Two Wide Angle Cameras (WAC): Color, stereo, 34° FOV One High-Resolution Camera (HRC): Color, 5° FOV

~~33-m-m penetration penetration, ,w withith ~2 ~2-c-cmm r eresosolulutiontion (depen(dependsds on on subsu subsurfacerface EM EM p properopertiesrties))

0 0 Aeolian deposits

Sedimentary filling SpecSpectratral lrang rangee: : 0 0.4–2.4.4–2.4 μ μm,m, (m) (ns) SaSampmplingling reso resolulution:tion: 20 20 nm nm Ground-Penetrating Radar 10 100 AAnnalyticalalytical L Laabb 0 Distance14 (m) 30 ExoMars RM Laboratory E XX OO M A R S

2018 ExoMars RM - International E XX OO M A R S

Science Aspects for Mars Sample Return

NNASAASA has has established established a a End-to-E End-to-Endnd Science Science Advisory Advisory Group Group with with international international participation participation to: to:

IdentifyIdentify M Maarsrs sample sample retu returnrn s sccienceience obj objectivesectives and and priorities priorities

IdentifyIdentify science science nee needsds for for sample sample sele selectction,ion, acquisition, acquisition, control control and and analysi analysiss Mars Sample Return Architecture

Caching rover Cache Fetch rover Lander collects contingency sample deposits cache retrieves cache

Mars Ascent Vehicle (MAV) Sky Crane Sky Crane descent descent Orbiting Sample (OS) Verify flight containment 500 km orbit Rendezvous and system capture of OS

Caching MSR MSR Mission Orbiter Lander Earth divert of ERV

Sample Receiving Facility (SRF) Earth Entry Vehicle (EEV) NASA-ESA Programme Coordination

Implementing Planetary Protection Constraints

UNUN OUTEROUTER SPACESPACE TREATYTREATY ArticleArticle IXIX:: avoidavoid harmfulharmful contcontaminationamination ofof celestialcelestial bodiesbodies andand adverseadverse changeschanges inin thethe environmentenvironment ofof thethe EarthEarth

COSPARCOSPAR PLANETARYPLANETARY PROTECTIONPROTECTION POLICYPOLICY ANDAND IMPLEMENTATIONIMPLEMENTATION GUIDELINESGUIDELINES MaintainsMaintains andand promulgatespromulgates policypolicy forfor thethe referencereference ofof spacefaringspacefaring nationsnations asas internationallyinternationally acceptedaccepted standardstandard toto guideguide cocompmplianceliance withwith ArticleArticle IXIX ooff thethe OuteOuterr SpaceSpace TreatyTreaty

SPACESPACE AGENCYAGENCY POLICYPOLICY

 StatesStates ccoompliancmpliancee withwith COSPARCOSPAR PlanetaryPlanetary ProtProtecectiontion PolicPolicyy  RequirementsRequirements derivedderived fromfrom policypolicy

 BindingBinding forfor flightflight pprojectsrojects

 CoordinatedCoordinated betweenbetween AgenciesAgencies

The Gold Standard – Viking ‘75

Biology experiment

Mission Objective: Search for life on Mars

GC-MS

Bioburden controlled assembly

Terminal Sterilization of Lander Planetary Protection Constraints Today

SAM/MSL

BIOBURDENBIOBURDEN CONSTRAINTSCONSTRAINTS RangeRange fromfrom standardstandard classclass 100.000100.000 assemblyassembly toto sterilesterile flightflight systemsystemss MoreMore stringentstringent forfor missimissionsons withwith lifelife detectiondetection investigations,investigations, samplesample retureturnrn andand landinglanding inin MarsMars specialspecial regionsregions SamplSamplee returnreturn missimissionsons havehave additionaladditional constraintsconstraints forfor containmentcontainment andand hazardhazard assessmentassessment NeedsNeeds toto bebe reflectedreflected fromfrom thethe veryvery beginbegin ofof thethe missionmission definitiondefinition phasephase andand continuouslycontinuously monitoredmonitored duringduring thethe projectproject lifelife cyclecycle

IMPACTIMPACT AVOIDANCEAVOIDANCE CONSTRAINTSCONSTRAINTS  ImpactImpact probabilityprobability constraintconstraint forfor launcherlauncher uppeupperr stagesstages  ImpactImpact probabilityprobability constraintsconstraints forfor primaryprimary andand secondarysecondary targetstargets

 ImpactImpact probabilityprobability constraiconstraintsnts forfor orbiterorbiter systemssystems

 Compliance is affected by trajectory, mission design, flight  Compliance is affected by trajectory, mission design, flight Mars Aim point hardwarehardware design, design, reliabilityreliability ofof systemssystems andand redundancyredundancy levellevelss  2 usedused  3  ScopeScope goesgoes wellwell beyondbeyond end-of-end-of-liflifee ofof thethe specifispecificc missionmission

Bioburden Control Today

People! (Pathfinder) TYPICALTYPICAL BIOBURDENBIOBURDEN VALUESVALUES 5 2 Non-controlledNon-controlled manufacturing:manufacturing: 10105 spores/mspores/m2 4 2 ClassClass 100.000100.000 cleanroom:cleanroom: 10104 spores/mspores/m2 2 ClassClass 10.10.000000 cleanroom:cleanroom: 10001000 spores/mspores/m2 2 AseptiAsepticc environment:environment: << 4040 spores/mspores/m2

TYPICALTYPICAL BIOBURDENBIOBURDEN CONSTRAINTSCONSTRAINTS 2 LessLess thanthan 300300 spores/mspores/m2 onon generalgeneral surfacessurfaces 5 LessLess thanthan 3x103x105 sporesspores onon anan entireentire MarsMars landerlander systemsystem

TYPITYPICALCAL BIOBURDENBIOBURDEN CONTROLCONTROL Large size – more than 1000 m2 of accountable surface MEASURESMEASURES area (MSL)  FrequentFrequent cleaningcleaning ofof allall flightflight hardwarehardware withwith alcoholalcohol oror precisionprecision cleaningcleaning methodsmethods

 HeatHeat sterilizationsterilization (~(~ 125125°°C)C) ofof moremore thanthan 50%50% ofof thethe flightflight hardwarehardware perper sizesize Very complex machinery (MSL)

 SeveralSeveral thousandthousand bibioburdenoburden assaysassays toto controlcontrol thethe bioburdenbioburden levellevelss

 RecontaminationRecontamination prevpreventionention byby design,design, barriers,barriers, andand analysianalysiss

Last but not least - Training

TRAITRAININGNING OPPORTUNITIESOPPORTUNITIES  NASANASA andand ESAESA trainingtraining coursescourses areare offeredoffered onon anan annualannual basibasiss

 ProjectProjectss usuallusuallyy havehave theirtheir ownown tailoredtailored trainingtraining coursecoursess

 TrainingTraining needsneeds forfor aa typicaltypical MarsMars flightflight projectproject isis inin thethe orderorder ofof severalseveral 100100 participantsparticipants overover aa timetime periodperiod ofof severalseveral yearsyears

TRAININGTRAINING LEVELSLEVELS DependsDepends onon thethe missionmission typetype DependsDepends howhow muchmuch thethe indiviindividualdual isis involvedinvolved withwith flightflight hardwarehardware