Identification and Characterization of Barrier Insulator Activity in the T-Cell Receptor Alpha Locus Control Region

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of Barrier Insulator Activity in the T-Cell Receptor Alpha Locus Control Region City University of New York (CUNY) CUNY Academic Works All Dissertations, Theses, and Capstone Projects Dissertations, Theses, and Capstone Projects 2-2019 Identification and Characterization of Barrier Insulator Activity in the T-Cell Receptor alpha Locus Control Region Gayathri Devi Raghupathy The Graduate Center, City University of New York How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/gc_etds/3005 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] IDENTIFICATION AND CHARACTERIZATION OF BARRIER INSULATOR ACTIVITY IN THE T CELL RECEPTOR α LOCUS CONTROL REGION by GAYATHRI DEVI RAGHUPATHY A dissertation submitted to the Graduate Faculty in Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York 2019 © 2019 GAYATHRI DEVI RAGHUPATHY All Rights Reserved ii IDENTIFICATION AND CHARACTERIZATION OF BARRIER INSULATOR ACTIVITY IN THE T CELL RECEPTOR α LOCUS CONTROL REGION by Gayathri Devi Raghupathy This manuscript has been read and accepted for the Graduate Faculty in Biology in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy. Date [Ben Ortiz] Chair of Examining Committee Date [Cathy Savage-Dunn] Executive Officer Supervisory Committee: Laurel Eckhardt Shubha Govind Diana Bratu Fei Li THE CITY UNIVERSITY OF NEW YORK iii ABSTRACT IDENTIFICATION AND CHARACTERIZATION OF BARRIER INSULATOR ACTIVITY IN THE T CELL RECEPTOR α LOCUS CONTROL REGION by Gayathri Devi Raghupathy Advisor: Dr.Ben Ortiz Genes of different spatiotemporal expression profiles are often juxtaposed in the genome. This organization raises risks of cross-regulatory influences from neighboring genes; for instance heterochromatin can spread over euchromatin or long-range acting enhancers can inappropriately activate genes. Gene regulatory elements such as Locus Control Regions (LCR) and Insulators prevent such cross-communications and allow for normal gene expression patterns. In transgenic systems, LCRs limit influences from surrounding chromatin by providing site-of-integration independent and specific spatiotemporal expression upon a linked transgene. The field’s understanding of the ability of an LCR to overcome chromatin influences and allow site-of- integration independent expression is minimal. Interestingly, this function of an LCR closely resembles that of barrier insulators. Barrier insulators prevent the spread of heterochromatin onto a euchromatin region and are characterized by their ability to suppress site-of-integration dependent chromatin influences upon a transgene. We hypothesize that the integration site- independence activity of LCRs is mediated by insulator-like DNA elements present within the LCR. In support of this hypothesis, we identify a novel barrier insulator activity within the mouse T-cell receptor (TCR)-α LCR. A 4.0-kb compilation of TCRα LCR sub-elements insulates a linked transgene in barrier assay- a long-term culture of stably transfected T cell lines. TCRα LCR-derived insulators enable maintenance of euchromatin and prevention of heterochromatin at a linked transgene. We find one element within the TCRα LCR that interacts iv with the USF1 transcription factor, which has been shown to have an important role in barrier insulation. In contrast to previously identified barrier insulators, the function of TCRα LCR- derived insulators does not require them to bi-laterally flank a gene. These data suggest that the TCRα LCR-derived elements may support both known and novel mechanisms of barrier insulation. v Acknowledgements I would like to thank the CUNY Graduate Center for accepting me into the PhD program. My sincere thanks to Dr.Ben Ortiz for giving me an opportunity to work in his laboratory, where I evolved as a scientist. Thank you Ben for being available to answer my questions and bearing with me through my struggles with experiments. I would like to thank my committee members- Dr.Eckhardt, Dr.Bratu, Dr.Li and Dr.Govind for guiding me through my research at various stages. My sincere thanks to Dr.Eckhardt, whose brilliant advice to focus on certain projects, helped me to not only save time and resources but to also learn to prioritize. A big thanks to Dr. Li and his lab members, Dr.Qianhua Dong and Dr.Haijin He for supporting me throughout the collaboration. Dr.Li thank you for being very encouraging and appreciative of my efforts. This project would not have existed if not for Armin Lahiji, who laid the groundwork for this research. My first day in the Ortiz lab, Armin was my teacher and since then he has been supportive and helpful through these years. I thank Martina Kucerova Levisohn for always being available (amidst her crazy schedule) to brain storm ideas and troubleshoot my experiments. I often refer to Martina’s lab notebooks for protocols, thanks to her for leaving behind meticulously written records. I also would like to thank my undergraduate students, Valia Kostiyuk and Calvin Herman for being energetic and ready to help at all times in the middle of their classes and tests. They have helped me get through my dull days and I have learnt quite a lot from them in terms of aiming high, multi-tasking and handling pressure. I would like to thank Zayd Daruwala, for creating a fun environment in the lab and for giving me cool cloning tips. The best part of the last seven years in this program has been my best friend Jordana Lovett. She has been my classmate, lab mate, friend, family, motivator and a ‘shrink’. We have had a shared experience throughout this program, since day 1 of our classes. Jordana has helped me bring out the hidden best side in me; she has unconsciously played a huge role in daring me to vi make my dreams into reality. We both know that our journey together as friends and ‘dynamic duo’ does not end with this program; we are looking forward to doing bigger things together. I have so many more things to share and thank Jordana for; it might be way too long so I will stop here… I would like to thank the Department of Biology at Hunter College and my friends, Livia, Irena, Jyoti, Chong for being supportive and giving feedback on my work. Thanks to Inna and Razib for making teaching convenient and less laborious. Thanks to Priscillia Lhmouad, Skok Lab, NYULMC for being very helpful in optimizing in my experiments. Thanks to my parents, who have been my emotional support system throughout this program. While they did not get my experimental issues, their kind encouraging words, ‘there will be light at the end of the tunnel’ kept me going. My parents did not get to complete their education but they raised me to appreciate education and stay committed to it. My success of achieving this highest level of education truly belongs to them. I dedicate my PhD work to my parents, Mr.Raghupathy and Mrs.Padma Raghupathy. Thanks to my brother, Hari for trying to understand what was wrong with my experiments and even attempting to fix it! Thanks to my in- law family for being very understanding and supportive during my research. Last but not the least, I would like to thank my husband, Kishan without whose unconditional love and support, I would have been very stuck. Kishan, you have played a tremendous role in enabling me to get through every struggle that I had through this journey. You have supported me in small and big ways. Thanks for always believing in me and pushing me to stay positive and be my best. This would not have been possible without you! There is a very special person; I would like to thank-my Anya baby. While I feared that my pregnancy would hinder me in wrapping-up, it indeed has powered me up with positivity and energy, Thank You Biology! . vii Table of Contents CHAPTER 1: INTRODUCTION 1 1.1 LOCUS CONTROL REGION 1 1.2 BARRIER INSULATORS 5 1.3 TCRα/DAD1 LOCUS 8 CHAPTER 2: MATERIALS AND METHODS 13 2.1 CHROMATIN IMMUNOPRECIPITATION 13 2.2 DNASE I SENSITIVITY-QUANTITATIVE PCR 15 2.3 SOUTHERN BLOTTING TO DETECT TANDEM INTEGRATION OF TRANSGENES 16 2.4 POLYMERASE CHAIN REACTION TO DETECT TANDEM INTEGRATION OF TRANSGENES 16 2.5 T CELL LINE MAINTENANCE AND TRANSFECTION 17 2.6 DATA MINING METHODS BASED ON CISTROME AND UCSC GENOME BROWSER 18 2.7 YEAST INSULATOR ASSAY 18 CHAPTER 3: IDENTIFICATION AND CHARACTERIZATION OF BARRIER INSULATOR ACTIVITY IN THE TCRα LCR 21 3.1 HALLMARK EPIGENETIC EVENTS ASSOCIATED WITH BARRIER INSULATORS 21 3.2 TCRα LCR ELEMENTS PRESERVE EUCHROMATIN STATUS AND PREVENT HETEROCHROMATIN ENCROACHMENT AT THE REPORTER GENE LOCUS 22 3.3 TCRα LCR ELEMENTS MAINTAIN REPORTER GENE LOCUS ACCESSIBILITY IN CHROMATIN 25 CHAPTER 4: NOVEL FEATURE OF INSULATION BY TCRα LCR ELEMENTS 27 4.1 CLASSICAL BARRIER INSULATORS INSULATE ONLY WHEN FLANKING A TRANSGENE 27 4.2 TCRα LCR ELEMENTS INSULATE THE TRANSGENE IN A UNILATERAL MANNER 27 viii CHAPTER 5: DETERMINING THE BINDING OF TCRα LCR TO THE INSULATOR FACTOR, USF1 30 5.1 ROLE OF USF1 IN BARRIER INSULATION 30 5.2 INSULATOR FACTOR USF1 BINDS TO THE HS1’ REGION, BUT NOT THE HS4 OR HS6 REGIONS OF THE TCRα LCR 31 5.3 TESTING SHORT HAIRPIN RNAs (SHRNA) TO KNOCKDOWN USF1 33 CHAPTER 6: IDENTIFICATION OF FACTORS THAT BIND TO THE TCRα LCR35 6.1 CANDIDATE FACTORS THAT BIND TO THE TCRα LCR 35 CHAPTER 7: CHROMATIN LANDSCAPE OF THE TCRα/DAD1 LOCUS 38 7.1 CHROMATIN MARKS ASSOCIATED WITH TCRα, LCR AND DAD1 IN THYMUS AND NON-THYMUS TISSUES 38 CHAPTER 8: ASSESSING THE INSULATOR ACTIVITY OF TCRα LCR IN A FISSION YEAST MODEL 42 8.1 FISSION YEAST: TESTING A NEW MODEL TO STUDY VERTEBRATE INSULATORS 42 8.2 HS6 ELEMENT OF THE TCRα LCR IS NOT SUFFICIENT TO INSULATE A TRANSGENE IN YEAST INSULATOR ASSAY 43 CHAPTER 9: CONCLUSION 45 9.1 MODEL OF INSULATION 46 9.2 FUTURE DIRECTIONS 48 9.3 SIGNIFICANCE 49 REFERENCES 51 ix LIST OF FIGURES Figure 1.
Recommended publications
  • Identifying and Mapping Cell-Type-Specific Chromatin PNAS PLUS Programming of Gene Expression
    Identifying and mapping cell-type-specific chromatin PNAS PLUS programming of gene expression Troels T. Marstranda and John D. Storeya,b,1 aLewis-Sigler Institute for Integrative Genomics, and bDepartment of Molecular Biology, Princeton University, Princeton, NJ 08544 Edited by Wing Hung Wong, Stanford University, Stanford, CA, and approved January 2, 2014 (received for review July 2, 2013) A problem of substantial interest is to systematically map variation Relating DHS to gene-expression levels across multiple cell in chromatin structure to gene-expression regulation across con- types is challenging because the DHS represents a continuous ditions, environments, or differentiated cell types. We developed variable along the genome not bound to any specific region, and and applied a quantitative framework for determining the exis- the relationship between DHS and gene expression is largely tence, strength, and type of relationship between high-resolution uncharacterized. To exploit variation across cell types and test chromatin structure in terms of DNaseI hypersensitivity and genome- for cell-type-specific relationships between DHS and gene expres- wide gene-expression levels in 20 diverse human cell types. We sion, the measurement units must be placed on a common scale, show that ∼25% of genes show cell-type-specific expression ex- the continuous DHS measure associated to each gene in a well- plained by alterations in chromatin structure. We find that distal defined manner, and all measurements considered simultaneously. regions of chromatin structure (e.g., ±200 kb) capture more genes Moreover, the chromatin and gene-expression relationship may with this relationship than local regions (e.g., ±2.5 kb), yet the local only manifest in a single cell type, making standard measures of regions show a more pronounced effect.
    [Show full text]
  • 422.Full.Pdf
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Research Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch Angel Carlos Roma´n,1 Francisco J. Gonza´lez-Rico,1 Eduardo Molto´,2,3 Henar Hernando,4 Ana Neto,5 Cristina Vicente-Garcia,2,3 Esteban Ballestar,4 Jose´ L. Go´mez-Skarmeta,5 Jana Vavrova-Anderson,6 Robert J. White,6,7 Lluı´s Montoliu,2,3 and Pedro M. Ferna´ndez-Salguero1,8 1Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; 2Centro Nacional de Biotecnologı´a (CNB), Consejo Superior de Investigaciones Cientı´ficas (CSIC), Department of Molecular and Cellular Biology, Campus de Cantoblanco, C/Darwin 3, 28049 Madrid, Spain; 3Centro de Investigacio´n Biome´dica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain; 4Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain; 5Centro Andaluz de Biologı´a del Desarrollo, CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; 6College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; 7Beatson Institute for Cancer Research, Glasgow, G61 1BD, United Kingdom Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent in- trinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE.
    [Show full text]
  • No Evidence for Transvection in Vivo by a Superenhancer:Promoter Pair
    bioRxiv preprint doi: https://doi.org/10.1101/393363; this version posted August 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 No evidence for transvection in vivo by a superenhancer:promoter 2 pair integrated into identical open chromatin at the Rosa26 locus 3 4 Keiji Tanimoto1, 2, *, Hitomi Matsuzaki1, 2, Eiichi Okamura3, Aki Ushiki2, Akiyoshi 5 Fukamizu1, 2, and James Douglas Engel4 6 7 1 Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, 8 Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 9 305-8577, Japan 10 2 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 11 305-8577, Japan 12 3 Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan 13 4 Department of Cell and Developmental Biology, University of Michigan, USA 14 15 16 17 * Corresponding author: Faculty of Life and Environmental Sciences, 18 University of Tsukuba, Tennoudai 1-1-1 19 Tsukuba, Ibaraki 305-8577, Japan 20 Phone/Fax: (+81) 29-853-6070 21 E-mail: [email protected] 22 1 bioRxiv preprint doi: https://doi.org/10.1101/393363; this version posted August 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • CTCF-Dependent Enhancer-Blocking by Alternative Chromatin Loop Formation
    CTCF-dependent enhancer-blocking by alternative chromatin loop formation Chunhui Houa, Hui Zhaoa,1, Keiji Tanimotob, and Ann Deana,2 aLaboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892; and bGraduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan Edited by Gary Felsenfeld, National Institutes of Health, Bethesda, MD, and approved November 1, 2008 (received for review August 27, 2008) The mechanism underlying enhancer-blocking by insulators is expressed (14, 15). However, the function of HS5 in vivo is not unclear. We explored the activity of human ␤-globin HS5, the clear. Chromosomal deletion of mouse HS5 had no significant orthologue of the CTCF-dependent chicken HS4 insulator. An extra effect on ␤-globin expression or on silent odorant receptor genes copy of HS5 placed between the ␤-globin locus control region (LCR) located downstream of HS5, indicating that HS5 is not required and downstream genes on a transgene fulfills the classic predic- as an insulator at its endogenous location (16, 17). In contrast, tions for an enhancer-blocker. Ectopic HS5 does not perturb the LCR an ectopic globin gene placed upstream in a human transgenic but blocks gene activation by interfering with RNA pol II, activator globin locus, and separated from the LCR by HS5, failed to be and coactivator recruitment, and epigenetic modification at the activated, although some evidence suggested the blocking varied downstream ␤-globin gene. Underlying these effects, ectopic HS5 in a developmental stage-specific fashion (18, 19). disrupts chromatin loop formation between ␤-globin and the LCR, Earlier studies suggested that human HS5 could function as a and instead forms a new loop with endogenous HS5 that topo- transcriptional enhancer-blocker when placed between the LCR logically isolates the LCR.
    [Show full text]
  • Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture
    Genes 2015, 6, 790-811; doi:10.3390/genes6030790 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture Navneet K. Matharu 1,* and Sajad H. Ahanger 2,* 1 Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA 2 Department of Ophthalmology, Lab for Retinal Cell Biology, University of Zurich, Wagistrasse 14, Zurich 8952, Switzerland * Authors to whom correspondence should be addressed; E-Mails: [email protected] (N.K.M.); [email protected] (S.H.A.). Academic Editor: Jessica Tyler Received: 8 June 2015 / Accepted: 20 August 2015 / Published: 1 September 2015 Abstract: The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress.
    [Show full text]
  • Molecular Basis of the Function of Transcriptional Enhancers
    cells Review Molecular Basis of the Function of Transcriptional Enhancers 1,2, 1, 1,3, Airat N. Ibragimov y, Oleg V. Bylino y and Yulii V. Shidlovskii * 1 Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; [email protected] (A.N.I.); [email protected] (O.V.B.) 2 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia 3 I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-4991354096 These authors contributed equally to this study. y Received: 30 May 2020; Accepted: 3 July 2020; Published: 5 July 2020 Abstract: Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription. Keywords: enhancer; promoter; chromatin; transcriptional bursting; transcription factories; enhancer RNA; epigenetic marks 1. Introduction Gene transcription is precisely organized in time and space. The process requires the participation of hundreds of molecules, which form an extensive interaction network. Substantial progress was achieved recently in our understanding of the molecular processes that take place in the cell nucleus (e.g., see [1–9]).
    [Show full text]
  • A Subset of Drosophila Myc Sites Remain Associated with Mitotic Chromosomes Colocalized with Insulator Proteins
    ARTICLE Received 16 Aug 2012 | Accepted 7 Jan 2013 | Published 12 Feb 2013 DOI: 10.1038/ncomms2469 A subset of Drosophila Myc sites remain associated with mitotic chromosomes colocalized with insulator proteins Jingping Yang1, Elizabeth Sung1, Paul G. Donlin-Asp1 & Victor G. Corces1 Myc has been characterized as a transcription factor that activates expression of genes involved in pluripotency and cancer, and as a component of the replication complex. Here we find that Myc is present at promoters and enhancers of Drosophila melanogaster genes during interphase. Myc colocalizes with Orc2, which is part of the prereplication complex, during G1. As is the case in mammals, Myc associates preferentially with paused genes, suggesting that it may also be involved in the release of RNA polymerase II from the promoter-proximal pausing in Drosophila. Interestingly, about 40% of Myc sites present in interphase persists during mitosis. None of the Myc mitotic sites correspond to enhancers, and only some correspond to promoters. The rest of the mitotic Myc sites overlap with binding sites for multiple insulator proteins that are also maintained in mitosis. These results suggest alternative mechanisms to explain the role of Myc in pluripotency and cancer. 1 Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA. Correspondence and requests for materials should be addressedto V.G.C. (email: [email protected]). NATURE COMMUNICATIONS | 4:1464 | DOI: 10.1038/ncomms2469 | www.nature.com/naturecommunications 1 & 2013 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2469 yc has been extensively studied as an oncogene that has Results critical roles in cancer initiation and metastasis of many Myc is present at the promoters of paused genes.
    [Show full text]
  • BRG1 Requirement for Long-Range Interaction of a Locus Control Region with a Downstream Promoter
    BRG1 requirement for long-range interaction of a locus control region with a downstream promoter Shin-Il Kima, Scott J. Bultmanb, Christine M. Kieferc, Ann Deanc, and Emery H. Bresnicka,1 aDepartment of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; bDepartment of Genetics, University of North Carolina, Chapel Hill, NC 27599; and cLaboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892 Edited by Mark T. Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved December 4, 2008 (received for review July 2, 2008) The dynamic packaging of DNA into chromatin is a fundamental step generation of conditional knockouts or hypomorphic alleles rep- in the control of diverse nuclear processes. Whereas certain transcrip- resents a powerful strategy for conducting mechanistic analyses. A tion factors and chromosomal components promote the formation of mouse strain was isolated containing an ethyl-nitrosourea-induced higher-order chromatin loops, the co-regulator machinery mediating hypomorphic Brg1 mutation (26). Although this mutation resides loop assembly and disassembly is unknown. Using mice bearing a within the ATPase domain, ATPase activity appears to be unal- hypomorphic allele of the BRG1 chromatin remodeler, we demon- tered. Brg1null/ENU1 mice (Brg1-mutant) are anemic and die by strate that the Brg1 mutation abrogated a cell type-specific loop embryonic day 14.5. ␤-globin transcription is severely reduced in between the ␤-globin locus control region and the downstream Brg1-mutant fetal livers, even though factors occupy the LCR and ␤major promoter, despite trans-acting factor occupancy at both sites.
    [Show full text]
  • The -Globin Locus Control Region
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The ␤-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation Tomoyuki Sawado,1 Jessica Halow,1 M.A. Bender,2,3 and Mark Groudine1,4,5 1Division of Basic Sciences, 2Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; 3Department of Pediatrics, 4Department of Radiation Oncology, University of Washington School of Medicine, Seattle, Washington 98104, USA To investigate the molecular basis of ␤-globin gene activation, we analyzed factor recruitment and histone modification at the adult ␤-globin gene in wild-type (WT)/locus control region knockout (⌬LCR) heterozygous mice and in murine erythroleukemia (MEL) cells. Although histone acetylation and methylation (Lys 4) are high before and after MEL differentiation, recruitment of the erythroid-specific activator NF-E2 to the promoter and preinitiation complex (PIC) assembly occur only after differentiation. We reported previously that targeted deletion of the LCR reduces ␤-globin gene expression to 1%–4% of WT without affecting promoter histone acetylation. Here, we report that NF-E2 is recruited equally efficiently to the adult ␤-globin promoters of the ⌬LCR and WT alleles. Moreover, the LCR deletion reduces PIC assembly only twofold, but has a dramatic effect on Ser 5 phosphorylation of RNA polymerase II and transcriptional elongation. Our results suggest at least three distinct stages in ␤-globin gene activation: (1) an LCR-independent chromatin opening stage prior to NF-E2 recruitment to the promoter and PIC assembly; (2) an intermediate stage in which NF-E2 binding (LCR-independent) and PIC assembly (partially LCR-dependent) occur; and (3) an LCR-dependent fully active stage characterized by efficient pol II elongation.
    [Show full text]
  • Genetic Insulator for Preventing Influence by Another Gene Promoter Susheng Gan University of Kentucky
    University of Kentucky UKnowledge Plant and Soil Sciences Faculty Patents Plant and Soil Sciences 10-20-2009 Genetic Insulator for Preventing Influence by Another Gene Promoter Susheng Gan University of Kentucky Mingtang Xie Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/pss_patents Part of the Plant Sciences Commons Recommended Citation Gan, Susheng and Xie, Mingtang, "Genetic Insulator for Preventing Influence by Another Gene Promoter" (2009). Plant and Soil Sciences Faculty Patents. 35. https://uknowledge.uky.edu/pss_patents/35 This Patent is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Plant and Soil Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact [email protected]. US007605300B2 (12) United States Patent (10) Patent N0.: US 7,605,300 B2 Gan et al. (45) Date of Patent: Oct. 20, 2009 (54) GENETIC INSULATOR FOR PREVENTING Gan, S. Ph.D. Thesis; Molecular characterization and genetic INFLUENCE BY ANOTHER GENE manipulation of plant senescence (University of Wisconsin-Madi PROMOTER son, Madison, 1995).* Millar et al., The Plant Cell, vol. 11, pp. 825-838, May 1999. (75) Inventors: Susheng Gan, Lexington, KY (U S); NCBI, GenBank, AF129511, 2000. An G, “Binary Ti vectors for plant transformation and promoter Mingtang Xie, Burnaby (CA) analysis.” In Methods in Enzymology.‘ RecombinantDNA, R. Wu, and L. Grossman, eds, 292-305 (San Diego, Academic Press, 1987). (73) Assignee: University of Kentucky Research Bechtold N et al., “In Planta Agrobacterium-mediated gene transfer Foundation, Lexington, KY (U S) by in?ltration of adult Arabidopsis plants”, C R Acad Sci Paris 316, 1194-1199 (1993).
    [Show full text]
  • Annotated Classic the Insulator Activity of CTCF
    Annotated Classic The Insulator Activity of CTCF Victor G. Corces1,* 1Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA *Correspondence: [email protected] We are pleased to present a series of Annotated Classics celebrating 40 years of exciting biology in the pages of Cell. This install- ment revisits “The Protein CTCF Is Required for the Enhancer Blocking Activity of Vertebrate Insulators” by Dr. Gary Felsenfeld and his colleagues. Here, Dr. Victor G. Corces comments on the landmark discovery of the insulator activity of CTCF from Felsenfeld, who has pioneered the work decoding the function of CTCF in chromatin organization and transcriptional regulation. Each Annotated Classic offers a personal perspective on a groundbreaking Cell paper from a leader in the field with notes on what stood out at the time of first reading and retrospective comments regarding the longer term influence of the work. To see Victor G. Corces’ thoughts on different parts of the manuscript, just download the PDF and then hover over or double-click the highlighted text and comment boxes on the following pages. You can also view Corces’ annotation by opening the Comments navigation panel in Acrobat. Cell 158, August 14, 2014, 2014 ©2014 Elsevier Inc. Cell, Vol. 98, 387±396, August 6, 1999, Copyright 1999 by Cell Press The Protein CTCF Is Required for the Enhancer Blocking Activity of Vertebrate Insulators Adam C. Bell, Adam G. West, and Gary Felsenfeld* al., 1985). When scs elements are placed on either side Laboratory of Molecular Biology of a gene for eye color and introduced into Drosophila, National Institute of Diabetes and the resulting flies all have similar eye color independent Digestive and Kidney Diseases of the transgene's site of integration, an indication that National Institutes of Health scs has protected the reporter gene from both negative Bethesda, Maryland 20892-0540 and positive endogenous influences, or ªposition ef- fectsº (Kellum and Schedl, 1991, 1992).
    [Show full text]
  • Three-Dimensional Genome Architecture: Players and Mechanisms
    REVIEWS Three-dimensional genome architecture: players and mechanisms Ana Pombo1 and Niall Dillon2 Abstract | The different cell types of an organism share the same DNA, but during cell differentiation their genomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. These can range from large-scale folding of whole chromosomes or of smaller genomic regions, to the re-organization of local interactions between enhancers and promoters, mediated by the binding of transcription factors and chromatin looping. The higher-order organization of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures such as the lamina. Sophisticated methods for mapping chromatin contacts are generating genome-wide data that provide deep insights into the formation of chromatin interactions, and into their roles in the organization and function of the eukaryotic cell nucleus. Chromatin The 2-metre length of DNA in a mammalian cell is more than 30 years ago, it has become clear that this type immunoprecipitation organized into chromosomes, which are packaged and of genetic element can regulate gene trans­cription over A method in which chromatin folded through various mechanisms and occupy discrete large distances. Looping out of the DNA that separates bound by a protein is positions in the nucleus. The multiple levels of DNA promoters and distally located enhancers was proposed immunoprecipitated with an antibody against that protein, folding generate extensive contacts between different as a mechanism by which factors that are bound to to allow the extraction and genomic regions. These contacts are influenced by the enhancers can directly contact their target promoters analysis of the bound DNA proximity of DNA sequences to one another, by the fold- and influence the composition of transcription initiation by quantitative PCR or ing architecture of local and long-range chromatin con- complexes (FIG.
    [Show full text]